JPH0597741A - Production of bisphenol compound - Google Patents

Production of bisphenol compound

Info

Publication number
JPH0597741A
JPH0597741A JP3292209A JP29220991A JPH0597741A JP H0597741 A JPH0597741 A JP H0597741A JP 3292209 A JP3292209 A JP 3292209A JP 29220991 A JP29220991 A JP 29220991A JP H0597741 A JPH0597741 A JP H0597741A
Authority
JP
Japan
Prior art keywords
reaction
compound
ion exchange
strong acid
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3292209A
Other languages
Japanese (ja)
Inventor
Noriyuki Yoneda
則行 米田
Sachio Asaoka
佐知夫 浅岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiyoda Corp
Chiyoda Chemical Engineering and Construction Co Ltd
Original Assignee
Chiyoda Corp
Chiyoda Chemical Engineering and Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiyoda Corp, Chiyoda Chemical Engineering and Construction Co Ltd filed Critical Chiyoda Corp
Priority to JP3292209A priority Critical patent/JPH0597741A/en
Publication of JPH0597741A publication Critical patent/JPH0597741A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To provide a novel production method of a bisphenol compound, high in the maximum conversion of a carbonyl compound as a raw material and low in by-product yield. CONSTITUTION:In producing a bisphenol compound by condensation reaction between a monohydric phenolic compound and a carbonyl compound using two kinds of strong acid-type ion exchange resins as catalyst, both the compounds are first reacted by contact with a gel-type strong acid-type ion exchange resin, and the reaction product is then further reacted by contact with a porous strong acid-type ion exchange resin.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ビスフェノール化合物
の製造方法に関するものである。
FIELD OF THE INVENTION The present invention relates to a method for producing a bisphenol compound.

【0002】[0002]

【従来技術及びその問題点】ビスフェノール化合物を製
造するために、過剰の一価フェノール化合物に、カルボ
ニル化合物を混合し、酸触媒の存在下、縮合反応させる
ことは知られている。また、この反応において、その触
媒として強酸型イオン交換樹脂を用いることも知られて
いる。この強酸型イオン交換樹脂を触媒として反応を行
う場合、その触媒の種類によって得られる反応生成物の
成分組成が変化する。例えば、副生物の生成率の少ない
触媒では、反応に際して、水による被毒を受けやすく、
その反応活性が低下し、カルボニル化合物の最高到達転
化率が低くなってしまう等の問題がある。一方、水の被
毒を受けにくい触媒では、カルボニル化合物の最高到達
転化率は高くなるが、この場合には、副生物の生成率が
大きくなるという問題がある。
2. Description of the Related Art It is known that, in order to produce a bisphenol compound, an excess monohydric phenol compound is mixed with a carbonyl compound and the condensation reaction is carried out in the presence of an acid catalyst. It is also known to use a strong acid type ion exchange resin as a catalyst in this reaction. When the reaction is carried out using this strong acid type ion exchange resin as a catalyst, the composition of the reaction product obtained varies depending on the type of the catalyst. For example, a catalyst with a low production rate of by-products is likely to be poisoned by water during the reaction,
There is a problem that the reaction activity is lowered and the maximum conversion of the carbonyl compound is lowered. On the other hand, a catalyst that is less susceptible to water poisoning has a higher maximum conversion of carbonyl compounds, but in this case, there is a problem that the production rate of by-products increases.

【0003】[0003]

【発明が解決しようとする課題】本発明は、従来技術に
見られる前記問題を解決し、カルボニル化合物の最高到
達転化率が高くかつ副生物の生成率の低いビスフェノー
ル化合物の製造方法を提供することをその課題とする。
The present invention solves the above problems found in the prior art and provides a method for producing a bisphenol compound having a high maximum conversion of carbonyl compounds and a low by-product formation rate. Is the task.

【0004】[0004]

【課題を解決するための手段】本発明者らは、前記課題
を解決すべく鋭意研究を重ねた結果、本発明を完成する
に至った。即ち、本発明によれば、一価フェノール化合
物とカルボニル化合物を、強酸型イオン交換樹脂を触媒
として用い、縮合反応させてビスフェノール化合物を製
造する際に、該一価フェノール化合物とカルボニル化合
物を、ゲル型の強酸型イオン交換樹脂と接触させて反応
させた後、得られた反応生成物をポーラス型の強酸型イ
オン交換樹脂と接触させて反応させることを特徴とする
ビスフェノール化合物の製造方法が提供される。
The present inventors have completed the present invention as a result of intensive studies to solve the above problems. That is, according to the present invention, a monohydric phenol compound and a carbonyl compound are subjected to a condensation reaction using a strong acid ion exchange resin as a catalyst to produce a bisphenol compound. Provided is a method for producing a bisphenol compound, which comprises reacting the resulting reaction product with a porous strong acid type ion exchange resin after contacting with a strong acid type ion exchange resin of the acid type to cause a reaction. It

【0005】本発明における一価フェノール化合物とカ
ルボニル化合物との反応によりビスフェノール化合物を
生成させる反応は従来よく知られた反応である。この場
合、一価フェノール化合物としては、フェノールがその
代表例であるが、他の一価フェノールも使用でき、カル
ボニル化合物としては、アルデヒド及びケトンが包含さ
れ、アセトンがその代表例であるが、他のケトン及びア
ルデヒドも使用できる。一価フェノール化合物は、カル
ボニル化合物1モルに対し、4モル以上、好ましくは1
0〜20モルの割合で用いる。
The reaction for producing a bisphenol compound by the reaction of a monohydric phenol compound and a carbonyl compound in the present invention is a well-known reaction. In this case, phenol is a typical example of the monohydric phenol compound, but other monohydric phenols can also be used, and aldehyde and ketone are included as the carbonyl compound, and acetone is a typical example thereof. The ketones and aldehydes of can also be used. The monohydric phenol compound is 4 mol or more, preferably 1 mol, per 1 mol of the carbonyl compound.
It is used in a proportion of 0 to 20 mol.

【0006】本発明においては、前記反応において、そ
の触媒として、強酸型イオン交換樹脂を用いる。この強
酸型イオン交換樹脂としては、スルホン化スチレン−ジ
ビニルベンゼンコポリマー、スルホン化架橋スチレンポ
リマー、フェノール−ホルムアルデヒド−スルホン酸樹
脂、ベンゼン−ホルムアルデヒド−スルホン酸樹脂等が
ある。これらの樹脂はいずれも、架橋構造を有し、不溶
性のものである。本発明においては、これらの強酸型イ
オン交換樹脂(以下、単に樹脂とも言う)を触媒として
用いる場合、その基本構造に関して少なくとも2種を用
いる。本発明で用いる第1の樹脂Aは、ゲル型の構造を
有し、第2の樹脂Bはポーラス型の構造を有する。ゲル
型の樹脂Aは、架橋度が10%未満、好ましくは5%以
下の低架橋度のもので、第2のポーラス型の樹脂Bは架
橋度が10%以上、好ましくは15%以上の高架橋度の
ものである。本発明者らの研究では、ゲル型の樹脂Aを
用いる場合、反応成分の樹脂内部への拡散速度が速く、
副生物の生成率が低いという利点があるが、水による被
毒を受やすく、カルボニル化合物の最高到達転化率が低
いという問題があり、一方、ポーラス型の樹脂Bを用い
る場合、水による被毒を受けにくく、カルボニル化合物
の最高到達転化率が高いという利点があるが、反応生成
成分の樹脂外部への拡散速度が遅く、その最高到達転化
率を得るまでの反応時間が短いにもかかわらず副生物の
生成率が高いという問題があることが判明した。そし
て、本発明者らは、一価フェノール化合物とカルボニル
化合物との反応に際し、先ず、それら原料液を、ゲル型
の樹脂Aに接触させて反応を行った後、得られた反応生
成物をポーラス型の樹脂Bに接触させて反応させること
により、全体として大きな反応速度で、かつ高いカルボ
ニル化合物転化率で、さらに低い副生物生成率でビスフ
ェノール化合物の製造が可能になることを見出した。な
お、本明細書でいう樹脂の架橋度とは、ジビニルベンゼ
ンの如き架橋剤の含有率(重量%)を意味する。
In the present invention, a strong acid type ion exchange resin is used as a catalyst in the above reaction. Examples of the strong acid type ion exchange resin include sulfonated styrene-divinylbenzene copolymer, sulfonated crosslinked styrene polymer, phenol-formaldehyde-sulfonic acid resin and benzene-formaldehyde-sulfonic acid resin. All of these resins have a crosslinked structure and are insoluble. In the present invention, when these strong acid type ion exchange resins (hereinafter, also simply referred to as resins) are used as catalysts, at least two kinds are used with respect to their basic structures. The first resin A used in the present invention has a gel type structure, and the second resin B has a porous type structure. The gel type resin A has a low degree of crosslinking of less than 10%, preferably 5% or less, and the second porous type resin B has a degree of crosslinking of 10% or more, preferably 15% or more. It is a degree. In the study of the present inventors, when the gel type resin A is used, the diffusion rate of the reaction components into the resin is high,
Although it has an advantage that the production rate of by-products is low, it has a problem that it is easily poisoned by water and the maximum conversion rate of the carbonyl compound is low. On the other hand, when the porous resin B is used, it is poisoned by water. It has the advantage that it is hard to receive and the maximum conversion rate of the carbonyl compound is high, but the diffusion rate of the reaction products to the outside of the resin is slow, and the reaction time until the maximum conversion rate is reached is short, It turns out that there is a problem of high production rate of living things. Then, when the monohydric phenol compound and the carbonyl compound react with each other, the present inventors first contact the raw material liquids with the gel-type resin A to carry out the reaction, and then the obtained reaction product is porous. It has been found that the bisphenol compound can be produced at a high reaction rate as a whole, with a high conversion rate of a carbonyl compound, and with a low byproduct formation rate by contacting with a resin B of a mold to cause a reaction. The degree of crosslinking of the resin as used herein means the content (% by weight) of a crosslinking agent such as divinylbenzene.

【0007】本発明における一価フェノールとカルボニ
ル化合物の反応において、ゲル型の樹脂Aを触媒として
用いる反応は、カルボニル化合物の転化率が50〜90
%、好ましくは60〜80%になるように行う。このた
めには、触媒として用いる樹脂Aの量及び接触時間を適
当に選べばよい。そして、この樹脂Aを触媒して得られ
る反応生成物は、これをポーラス型の樹脂Bと接触さ
せ、所望するカルボニル化合物転化率が得られるように
反応を行う。本発明においては、全カルボニル化合物転
化率は、通常、50%以上、好ましくは60〜100%
である。
In the reaction between the monohydric phenol and the carbonyl compound in the present invention, the reaction using the gel type resin A as a catalyst has a conversion rate of the carbonyl compound of 50 to 90.
%, Preferably 60 to 80%. For this purpose, the amount of resin A used as a catalyst and the contact time may be appropriately selected. Then, the reaction product obtained by catalyzing the resin A is brought into contact with the porous resin B, and the reaction is performed so that a desired carbonyl compound conversion rate can be obtained. In the present invention, the conversion rate of all carbonyl compounds is usually 50% or more, preferably 60 to 100%.
Is.

【0008】本発明の反応は、触媒塔を用いる流通方式
で好ましく実施される。この触媒塔においては、その原
料導入口に連絡する塔内部にゲル型の樹脂Aを充填し、
生成物排出口に連絡する塔内部にポーラス型の樹脂Bを
充填する。この場合、全体の樹脂充填量に対し、低架橋
度の樹脂Aの充填量は、25vol%以上、好ましくは
30〜60vol%にするのがよく、ポーラス型の樹脂
Bの充填量は、25vol%以上、好ましくは40〜7
0vol%にするのがよい。触媒塔の中間には、必要に
応じ、中架橋度の樹脂を充填することもできる。本発明
の反応を行う場合、必要に応じ、アルキルメルカプタン
等の反応促進剤を併用することもできる。
The reaction of the present invention is preferably carried out in a flow system using a catalyst tower. In this catalyst tower, the gel type resin A is filled inside the tower communicating with the raw material introduction port,
A porous resin B is filled in the inside of the tower which communicates with the product discharge port. In this case, with respect to the total resin filling amount, the filling amount of the resin A having a low degree of crosslinking is 25 vol% or more, preferably 30 to 60 vol%, and the filling amount of the porous resin B is 25 vol%. Or more, preferably 40 to 7
It is better to set it to 0 vol%. If necessary, the middle of the catalyst tower may be filled with a resin having an intermediate degree of crosslinking. When carrying out the reaction of the present invention, a reaction accelerator such as an alkyl mercaptan may be used in combination, if necessary.

【0009】[0009]

【発明の効果】本発明によれば、高められたカルボニル
化合物転化率でかつ低められた副生物生成率の条件で反
応を実施することができる。
EFFECTS OF THE INVENTION According to the present invention, the reaction can be carried out under the conditions of an increased conversion rate of carbonyl compound and a reduced byproduct formation rate.

【0010】[0010]

【実施例】次に本発明を実施例によりさらに詳細に説明
する。
EXAMPLES Next, the present invention will be described in more detail by way of examples.

【0011】実施例1 内径20mm、長さ100mlのステンレス製反応管
に、低架橋度のゲル型樹脂Aを、反応管内空間容積の3
5%に相当する部分(反応管の高さ3.5mm)まで充
填し、その上に高架橋度のポーラス型の樹脂Bを、反応
管内空間容積の65%に相当する部分(反応管の高さ
6.5mmから100mm)まで充填して触媒塔を作製
した。この場合、使用した樹脂A及び樹脂Bの具体的内
容は次の通りである。 (1)樹脂A スルホン化スチレン−ジビニルベンゼンコポリマー、ゲ
ル型、(ロームアンドハース社製、アンバーライトIR
−118H+) (2)樹脂B スルホン化スチレン−ジビニルベンゼンコポリマー、マ
クロポーラス型、(ロームアンドハース社製、アンバー
リスト−15) 次に、前記触媒塔の底部からフェノールとアセトンとの
混合液(混合モル比:12/1)を、これに反応促進剤
としてエチルメルカプタンを0.15wt%添加して、
反応温度:70℃、触媒時間:80分の条件で流通させ
て反応を行い、反応生成物をその触媒塔頂部から抜出し
た。この場合、原料混合液中の水分は0.1wt%以下
であった。また、比較のために、樹脂A及び樹脂Bをそ
れぞれ単独で前記反応管に充填した触媒塔を用いた以外
は同様にして実験を行った。次に、前記実験結果を表1
に示す。なお、表1に示した4,4′−BPAはビスフ
ェノールA(2,2−ビス(4′−ヒドロキシフェニル)
プロパン)を意味し、2,4′−BPAは2−(2′−
ヒドロキシフェニル)−2−(4′−ヒドロキシフェニ
ル)プロパンを意味する。また、2,4′−BPA/
4,4′−BPAは、4,4′−BPAに対する2,
4′−BPAの生成率(重量比)を示し、ディアニン化
合物/4,4′−BPAは、4,4′−BPAに対する
ディアニン化合物の生成率(重量比)を示す。
Example 1 A gel type resin A having a low degree of cross-linking was placed in a reaction tube made of stainless steel having an inner diameter of 20 mm and a length of 100 ml with a reaction tube having a space volume of 3
A portion corresponding to 5% (the height of the reaction tube is 3.5 mm) is filled, and a porous type resin B having a high degree of cross-linking is filled on the portion corresponding to 65% of the space volume in the reaction tube (the height of the reaction tube). A catalyst tower was prepared by filling the space from 6.5 mm to 100 mm). In this case, the specific contents of the resin A and the resin B used are as follows. (1) Resin A Sulfonated styrene-divinylbenzene copolymer, gel type, (Rohm and Haas, Amberlite IR
-118H +) (2) Resin B Sulfonated styrene-divinylbenzene copolymer, macroporous type, (Amberlyst-15, manufactured by Rohm and Haas Co.) Next, from the bottom of the catalyst tower, a mixed liquid of phenol and acetone ( Mixing molar ratio: 12/1), to which 0.15 wt% of ethyl mercaptan as a reaction accelerator was added,
The reaction was carried out under the conditions of a reaction temperature of 70 ° C. and a catalyst time of 80 minutes, and the reaction product was extracted from the top of the catalyst column. In this case, the water content in the raw material mixture was 0.1 wt% or less. For comparison, the same experiment was performed except that the catalyst tower in which the resin A and the resin B were individually packed in the reaction tube was used. Next, the experimental results are shown in Table 1.
Shown in. The 4,4'-BPA shown in Table 1 is bisphenol A (2,2-bis (4'-hydroxyphenyl)
Propane) and 2,4'-BPA is 2- (2'-
Hydroxyphenyl) -2- (4'-hydroxyphenyl) propane. In addition, 2,4'-BPA /
4,4'-BPA is 2,4 for 4,4'-BPA
The production rate (weight ratio) of 4'-BPA is shown, and the production ratio (weight ratio) of the dianine compound to 4,4'-BPA is shown for dianine compound / 4,4'-BPA.

【0012】[0012]

【表1】 [Table 1]

【0013】表1に示した結果からわかるように、低架
橋度の樹脂Aと高架橋度の樹脂Bを併用することによ
り、アセトン転化率が著しく向上するにもかかわらず、
副生物生成率を低く抑制し得ることができる。
As can be seen from the results shown in Table 1, even if the resin A having a low degree of crosslinking and the resin B having a high degree of crosslinking are used in combination, the acetone conversion rate is remarkably improved.
By-product generation rate can be suppressed low.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 一価フェノール化合物とカルボニル化合
物を、強酸型イオン交換樹脂を触媒として用い、縮合反
応させてビスフェノール化合物を製造する際に、該一価
フェノール化合物とカルボニル化合物を、ゲル型の強酸
型イオン交換樹脂と接触させて反応させた後、得られた
反応生成物をポーラス型の強酸型イオン交換樹脂と接触
させて反応させることを特徴とするビスフェノール化合
物の製造方法。
1. When producing a bisphenol compound by subjecting a monohydric phenol compound and a carbonyl compound to a condensation reaction using a strong acid ion exchange resin as a catalyst, the monohydric phenol compound and the carbonyl compound are mixed with a gel-type strong acid. A method for producing a bisphenol compound, which comprises contacting with a type ion exchange resin to cause a reaction, and then bringing the resulting reaction product into contact with a porous strong acid type ion exchange resin to cause a reaction.
【請求項2】 該縮合反応を、強酸型イオン交換樹脂を
充填した触媒塔を用いて行うことからなり、該触媒塔
は、その原料導入口に連絡する塔内部分にゲル型の強酸
型イオン交換樹脂が充填され、その生成物排出口に連絡
する塔内部分のポーラス型の強酸型イオン交換樹脂が充
填されていることを特徴とする請求項1の方法。
2. The condensation reaction is carried out by using a catalyst column filled with a strong acid ion exchange resin, and the catalyst column has a gel type strong acid type ion in the column portion communicating with the raw material introduction port. 2. The method according to claim 1, wherein the exchange resin is filled, and the porous strong ion type ion exchange resin in the column portion communicating with the product discharge port is filled.
JP3292209A 1991-10-11 1991-10-11 Production of bisphenol compound Pending JPH0597741A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3292209A JPH0597741A (en) 1991-10-11 1991-10-11 Production of bisphenol compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3292209A JPH0597741A (en) 1991-10-11 1991-10-11 Production of bisphenol compound

Publications (1)

Publication Number Publication Date
JPH0597741A true JPH0597741A (en) 1993-04-20

Family

ID=17778937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3292209A Pending JPH0597741A (en) 1991-10-11 1991-10-11 Production of bisphenol compound

Country Status (1)

Country Link
JP (1) JPH0597741A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000050372A1 (en) * 1999-02-26 2000-08-31 General Electric Company Combination ion exchange resin bed for the synthesis of bisphenol a
WO2005026237A1 (en) 2003-09-10 2005-03-24 Mitsui Chemicals, Inc. Process for producing bisphenol a
US7968612B2 (en) 2004-07-02 2011-06-28 Mitsui Chemicals, Inc. Modified ion exchange resin and process for producing bisphenols

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000050372A1 (en) * 1999-02-26 2000-08-31 General Electric Company Combination ion exchange resin bed for the synthesis of bisphenol a
US6486222B2 (en) 1999-02-26 2002-11-26 General Electric Company Combination ion exchange resin bed for the synthesis of bisphenol A
KR100693659B1 (en) * 1999-02-26 2007-03-14 제너럴 일렉트릭 캄파니 Combination ion exchange resin bed for the synthesis of bisphenol a
WO2005026237A1 (en) 2003-09-10 2005-03-24 Mitsui Chemicals, Inc. Process for producing bisphenol a
US8263521B2 (en) 2003-09-10 2012-09-11 Mitsui Chemicals, Inc. Process for producing bisphenol A
US7968612B2 (en) 2004-07-02 2011-06-28 Mitsui Chemicals, Inc. Modified ion exchange resin and process for producing bisphenols
US8426479B2 (en) 2004-07-02 2013-04-23 Mitsui Chemicals, Inc. Modified ion exchange resin and process for producing bisphenols

Similar Documents

Publication Publication Date Title
KR0138910B1 (en) Preparation of bisphenol
US4045379A (en) Process for preparation of modified ion-exchange resin
US3049568A (en) Preparation of bisphenols
JP2631534B2 (en) Method for isomerizing by-products of bisphenol synthesis
JPS5843384B2 (en) Manufacturing method of ethyl acetate
JP4050053B2 (en) Catalyst for producing bisphenols and method for producing bisphenols using the catalyst
US4825010A (en) Isomerization of by-products of bi-phenol synthesis
RU2001126118A (en) LAYER OF COMBINED ION EXCHANGE RESIN FOR BISPHENOL A SYNTHESIS
JP4458204B2 (en) Method for producing bisphenol A
US5342541A (en) Purified hydroxy-functional polyether compounds
JP3934707B2 (en) Improved process for the production of ion exchange resins used as catalysts for the synthesis of bisphenols
US4345102A (en) Process for producing ethylene glycol mono-t-butyl ether
De Munck et al. Gas phase hydroformylation of propylene with porous resin anchored rhodium complexes part I. Methods of catalyst preparation and characterization
JPH0597741A (en) Production of bisphenol compound
US4140724A (en) Selective preparation of polyol monoethers of dicyclopentadiene
EP3039004B1 (en) A process for preparation of unsaturated ketone
JPS62748B2 (en)
US7968612B2 (en) Modified ion exchange resin and process for producing bisphenols
WO2000024700A1 (en) PROCESS FOR THE MANUFACTURE OF α,α-BRANCHED CARBOXYLIC ACIDS
CN1501902A (en) Catalyst promoter for the manufacture of polyphenols
US5082973A (en) Process for the preparation of bis(4-chlorophenyl) sulfone
EP0579153A2 (en) Process for producing tertiary alcohol, and for preparing catalyst therefor
JP2003514657A (en) Conditioning method of ion exchanger
US4319053A (en) Process for the preparation of 4,4'-dihydroxy-3,3',5,5'-tetraalkyl-diphenylalkanes
JPS6314690B2 (en)