JPH0597495A - High strength composite material - Google Patents

High strength composite material

Info

Publication number
JPH0597495A
JPH0597495A JP8027892A JP8027892A JPH0597495A JP H0597495 A JPH0597495 A JP H0597495A JP 8027892 A JP8027892 A JP 8027892A JP 8027892 A JP8027892 A JP 8027892A JP H0597495 A JPH0597495 A JP H0597495A
Authority
JP
Japan
Prior art keywords
water
composite material
strength composite
meth
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8027892A
Other languages
Japanese (ja)
Inventor
Masayuki Kiyomoto
正之 清本
Hiroshi Sakurai
弘 桜井
Kiichi Mano
基一 真野
Kazufumi Shizume
和史 鎮目
Akira Kajikawa
晃 鍛治川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Kayaku Co Ltd
Original Assignee
Nippon Kayaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kayaku Co Ltd filed Critical Nippon Kayaku Co Ltd
Priority to JP8027892A priority Critical patent/JPH0597495A/en
Publication of JPH0597495A publication Critical patent/JPH0597495A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/08Slag cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/0045Polymers chosen for their physico-chemical characteristics
    • C04B2103/0053Water-soluble polymers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/10Accelerators; Activators
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00034Physico-chemical characteristics of the mixtures
    • C04B2111/00129Extrudable mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • C04B2111/28Fire resistance, i.e. materials resistant to accidental fires or high temperatures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

PURPOSE:To provide a high strength inorg. hardened body having excellent flame resistance. CONSTITUTION:A compsn. consisting of water granulated blast furnace slag, an alkali stimulant, a water-soluble polymer, a superfine powdery substance, org. short fibers and water is kneaded, molded and wet-cured to obtain an inorg. hardened body.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は,高炉水砕スラグを主成
分とする高強度複合材料に関する。更に詳しくは建設材
料、建設部材としての内装材、外装材、及び構造材料等
に使用出来る高強度複合材料に関する。
TECHNICAL FIELD The present invention relates to a high-strength composite material containing granulated blast furnace slag as a main component. More specifically, it relates to a high-strength composite material that can be used as a construction material, an interior material as a construction member, an exterior material, a structural material, and the like.

【0002】[0002]

【従来の技術】ポルトランドセメントに代表されるセメ
ントは、安価であり、比較的容易に設計強度を発現出来
る等の理由から、建築分野を主体として多方面な分野で
利用されている。しかし、近年になってセメント硬化体
に対して、高強度化を求める要求が出て来ている。この
高強度化の問題解決の一方法として、デンマークのデン
シトアクティーゼルスカブ社が超緻密セメントを開発し
ている。しかし、この超緻密セメントから出来た硬化体
は、圧縮強度は1500Kgf/cm2 程度と大きいも
のの、曲げ強度はそれほど大きくなく200Kgf/c
2 程度である。また、曲げ強度の大きいセメント硬化
体に関しては、イギリスのICI社が曲げ強度1800
Kgf/cm2 もの高強度材料を開発しているが、セメ
ントとして高価なアルミナセメントを使用していること
と、曲げ強度は大きいが、耐水性に劣り、使用分野が限
られるという問題点を有している。
2. Description of the Related Art Cement represented by Portland cement is used in various fields, mainly in the field of construction, because it is inexpensive and can develop design strength relatively easily. However, in recent years, there has been a demand for higher strength of hardened cement products. As a method of solving this problem of strengthening, Density Actieselsk AB of Denmark is developing ultra-dense cement. However, the hardened product made from this ultra-dense cement has a high compressive strength of about 1500 Kgf / cm 2 , but not so much a bending strength of 200 Kgf / c 2.
It is about m 2 . As for the hardened cement with high bending strength, ICI of the United Kingdom has a bending strength of 1800.
We have developed a high strength material as high as Kgf / cm 2, but have the problems that expensive alumina cement is used as the cement and that the bending strength is large, but the water resistance is poor and the field of use is limited. is doing.

【0003】[0003]

【発明が解決しようとする課題】本発明者等は、上記の
問題点を解決すべく検討した結果、曲げ強度が大きく、
しかも耐水性に優れた無機複合材料を開発し、既に特許
出願した。しかし、この無機複合材料は高い曲げ強度を
有しており、しかも耐水性に優れているものの緻密にな
っている為か、バーナー等の炎に翳し急激に加熱する
と、炎の当たった部分が剥離または、崩壊する(以下、
これらを対炎性現象と称する)という問題点を有してい
た。
DISCLOSURE OF THE INVENTION As a result of investigations made by the present inventors to solve the above-mentioned problems, the bending strength is high,
Moreover, we have developed an inorganic composite material with excellent water resistance and have already applied for a patent. However, this inorganic composite material has high flexural strength and is excellent in water resistance, but it is dense, so when it is supported by a flame such as a burner and is rapidly heated, the part exposed to the flame peels off. Or it will collapse (below,
These are called "flame-resistant phenomena").

【0004】[0004]

【課題を解決する為の手段】本発明者等は上記の問題点
を解決すべく鋭意検討した結果、本発明に至った。即
ち、本発明は、(1)高炉水砕スラグ、アルカリ刺激
剤、水溶性高分子、超微粉状物質、有機質短繊維、及び
水からなる組成物を、混練、成形した後湿潤養生してな
る高強度複合材料、(2)水溶性高分子が、ポリ(メ
タ)アクリル酸塩、及び/又はカルボキシメチルセルロ
ースである上記(1)記載の高強度複合材料、(3)水
溶性高分子が、平均分子量20,000以上のポリ(メ
タ)アクリル酸塩で.る上記(1)記載の高強度複合材
料、(4)有機質短繊維が、パルプ、ポリプロレン繊維
又はビニロン繊維である上記(1)、(2)又は(3)
記載の高強度複合材料、(5)超微粉状物質がシリカフ
ュームである上記(1)、(2)、(3)又は(4)記
載の高強度複合材料、に関する。
Means for Solving the Problems The inventors of the present invention have made extensive studies to solve the above-mentioned problems, and as a result, achieved the present invention. That is, the present invention is (1) kneading and molding a composition comprising granulated blast furnace slag, an alkali stimulant, a water-soluble polymer, an ultrafine powdery substance, an organic short fiber, and water, followed by wet curing. The high-strength composite material, (2) the water-soluble polymer is poly (meth) acrylate, and / or carboxymethylcellulose. With a poly (meth) acrylic acid salt having an average molecular weight of 20,000 or more. The high-strength composite material according to (1) above, or (4) the organic short fiber is pulp, polypropylene fiber or vinylon fiber, (1), (2) or (3).
(5) The high-strength composite material according to (1), (2), (3) or (4) above, wherein the ultrafine powdery substance is silica fume.

【0005】本発明を詳細に説明する。使用する高炉水
砕スラグは、ブレーン値2000cm2 /g以上、好ま
しくは3000cm2 /g以上のものを使用する。
The present invention will be described in detail. The granulated blast furnace slag used has a Blaine value of 2000 cm 2 / g or more, preferably 3000 cm 2 / g or more.

【0006】使用する水溶性高分子に特に制限は無い
が、短時間に混練系に均一に、且つ迅速に溶解するのが
好ましいので、微粒子であることが好ましい。水溶性高
分子としては、以下に記す高分子が使用出来る。
The water-soluble polymer to be used is not particularly limited, but fine particles are preferable because it is preferable that the water-soluble polymer is uniformly and rapidly dissolved in the kneading system in a short time. The following polymers can be used as the water-soluble polymer.

【0007】(1)分子中にカルボキシル基及び/又は
アマイド基を有する水溶性高分子類、又はそれらの塩。
(1) Water-soluble polymers having a carboxyl group and / or an amide group in the molecule, or salts thereof.

【0008】αーヒドロキシーポリアクリル酸、又はこ
れの塩、及び以下のモノマーを原料とするホモポリマー
又はコポリマー類、又はそれらの塩。
Α-Hydroxy-polyacrylic acid, or a salt thereof, and homopolymers or copolymers of the following monomers as raw materials, or salts thereof.

【0009】アクリルアマイド、N,Nーヂメチルアク
リルアマイド、Nーメチルアクリルアマイド等の(メ
タ)アクリルアマイド系モノマー;
(Meth) acrylic amide type monomers such as acrylic amide, N, N-dimethyl acrylic amide, N-methyl acrylic amide;

【0010】(メタ)アクリル酸、(メタ)アクリル酸
ナトリウム、(メタ)アクリル酸カリウム、(メタ)ア
クリル酸リチウム、2ーヒドロキシエチル(又はプロピ
ル)(メタ)アクリレート等の(メタ)アクリル酸系モ
ノマー;Nービニールピロリドン、ビニールメチルエー
テル、スチレンスルホン酸(又は、これのナトリウム塩
又はカリウム塩)等のビニール系モノマー。(ここで
(メタ)アクリル酸はアクリル酸及び/又はメタクリル
酸を意味し、その他も同様である。)
(Meth) acrylic acid such as (meth) acrylic acid, sodium (meth) acrylate, potassium (meth) acrylate, lithium (meth) acrylate, 2-hydroxyethyl (or propyl) (meth) acrylate Monomer: Vinyl monomer such as N-vinylpyrrolidone, vinyl methyl ether, styrene sulfonic acid (or sodium salt or potassium salt thereof). (Here, (meth) acrylic acid means acrylic acid and / or methacrylic acid, and so on.)

【0011】(2)セルロース誘導体 ヒドロキシプロピルメチルセルロース、ヒドロキシエチ
ルセルロース、カルボキシメチルセルロース。
(2) Cellulose derivatives Hydroxypropylmethyl cellulose, hydroxyethyl cellulose, carboxymethyl cellulose.

【0012】(3)ポリ酢酸ビニール誘導体 部分加水分解性ポリ酢酸ビニール、カチオン化ポリ酢酸
ビニール、アニオン化ポリ酢酸ビニール。
(3) Polyvinyl acetate derivative Partially hydrolyzable polyvinyl acetate, cationized polyvinyl acetate, anionized polyvinyl acetate.

【0013】(4)可溶性澱粉。(4) Soluble starch.

【0014】(5)ポリエチレンオキサイド。(5) Polyethylene oxide.

【0015】(6)(メタ)アクリル酸メチル、(メ
タ)アクリル酸エチル、(メタ)アクリル酸プロピル等
の(メタ)アクリル酸エステル、スチレン、エチレン、
プロピレン等と上記(1)記載の水溶性モノマーとの共
重合物。
(6) (meth) acrylic acid esters such as methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, styrene, ethylene,
A copolymer of propylene and the like and the water-soluble monomer described in (1) above.

【0016】これらのうち、好ましいものはポリ(メ
タ)アクリル酸ナトリウム、ポリ(メタ)アクリル酸カ
リウム、等のポリ(メタ)アクリル酸塩、及びカルボキ
シメチルセルロースであり、最も好ましいものはポリ
(メタ)アクリル酸塩である。これらポリ(メタ)アク
リル酸塩は任意の平均分子量のものが使用できるが、好
ましくは20,000以上、より好ましくは50,00
0以上、最も好ましくは100,000以上の平均分子
量のものを使用する。
Among these, preferred are poly (meth) acrylic acid salts such as sodium poly (meth) acrylate, potassium poly (meth) acrylate, etc., and carboxymethyl cellulose, and most preferred are poly (meth) acrylic acid. It is an acrylate. These poly (meth) acrylic acid salts may have any average molecular weight, but are preferably 20,000 or more, more preferably 50,000.
An average molecular weight of 0 or more, most preferably 100,000 or more is used.

【0017】これら水溶性高分子の使用量は、高炉水砕
スラグと超微粉状物質の合計量に対して、通常重量比で
0.5〜12%、好ましくは1〜8%である。水溶性高
分子の使用量が0.5%未満であると、混合物が混練出
来ないか、又は出来たとしても後工程の成形加工性が悪
く成る傾向がある。又12%を越えると、水和硬化体の
水に対する安定性が悪くなる傾向にある。
The amount of these water-soluble polymers to be used is usually 0.5 to 12%, preferably 1 to 8% by weight, based on the total amount of granulated blast furnace slag and ultrafine powder. When the amount of the water-soluble polymer used is less than 0.5%, the mixture cannot be kneaded, or even if it is formed, the moldability of the subsequent step tends to be poor. On the other hand, if it exceeds 12%, the stability of the hydrated product to water tends to deteriorate.

【0018】使用し得るアルカリ刺激剤の具体例として
は、水酸化ナトリウム、水酸化カリウム、水酸化リチウ
ム、等のアルカリ金属の水酸化物;炭酸ナトリウム、炭
酸カリウム、炭酸リチウム、等のアルカリ金属の炭酸
塩;重炭酸ナトリウム、重炭酸カリウム、重炭酸リチウ
ム等のアルカリ金属の重炭酸塩;水酸化マグネシウム、
水酸化カルシウム、等のアルカリ土類金属の水酸化物;
酸化カルシウム、酸化マグネシウム等のアルカリ土類金
属の酸化物;ピロ燐酸ナトリウム、ピロ燐酸カリウム、
燐酸二カリウム、燐酸三カリウム、燐酸三ナトリウム、
メタ珪酸ナトリウム、メタ珪酸カリウム等である。これ
らアルカリ刺激剤のうちで、水酸化ナトリウム、炭酸ナ
トリウム、メタ珪酸ナトリウム、が好ましい例として挙
げられる。
Specific examples of the alkali stimulants that can be used include alkali metal hydroxides such as sodium hydroxide, potassium hydroxide and lithium hydroxide; alkali metal hydroxides such as sodium carbonate, potassium carbonate and lithium carbonate. Carbonate; alkali metal bicarbonate such as sodium bicarbonate, potassium bicarbonate, lithium bicarbonate; magnesium hydroxide,
Alkaline earth metal hydroxides such as calcium hydroxide;
Alkaline earth metal oxides such as calcium oxide and magnesium oxide; sodium pyrophosphate, potassium pyrophosphate,
Dipotassium phosphate, tripotassium phosphate, trisodium phosphate,
Examples thereof include sodium metasilicate and potassium metasilicate. Among these alkali stimulants, sodium hydroxide, sodium carbonate and sodium metasilicate are preferred examples.

【0019】これらアルカリ刺激剤の高炉水砕スラグに
対する使用量は、アルカリ刺激剤のアルカリ性の強さ、
高炉水砕スラグの平均粒度、及び使用する水の量に依っ
て異なるが、高炉水砕スラグと超微粉状物質の合計量に
対して概ね0.1〜5%であり、好ましくは0.2〜3
%(重量比)である。 アルカリ刺激剤の使用量が0.
1%未満であると、混練ー成形体が湿潤養生に依って硬
化しないか、又は硬化したとしても湿潤養生に長時間を
要し工業的に不利となる。又アルカリ刺激剤の使用量が
5%を越えると、硬化が速すぎて、混練ー成形工程中に
硬化が始まる恐れが出てくる。
The amount of these alkali stimulants used in the granulated blast furnace slag depends on the alkaline strength of the alkali stimulants,
Although it depends on the average particle size of the granulated blast furnace slag and the amount of water used, it is about 0.1 to 5%, preferably 0.1% to the total amount of the granulated blast furnace slag and the ultrafine powder substance. 2-3
% (Weight ratio). The amount of alkali stimulant used is 0.
If it is less than 1%, the kneaded-molded product does not cure due to wet curing, or even if it does, it takes a long time for wet curing, which is industrially disadvantageous. On the other hand, if the amount of the alkali stimulant used exceeds 5%, the curing will be too fast and the curing may start during the kneading-molding process.

【0020】次に、超微粉状物質は平均粒径が高炉水砕
スラグの平均粒径とほぼ同じか、好ましくはそれよりも
1オーダー小さいもの、より好ましくは、2オーダー小
さいものを使用する。超微粉状物質の好ましい平均粒径
は10μm以下であり、より好ましくは0.01〜5μ
mであり、最もこのましくは0.05〜1μmである。
超微粉状物質の平均粒径は、高炉水砕スラグの平均粒径
の1/2〜1/1000であることが好ましい。使用し
得る具体的な超微粉状物質の例としてはシリカフュー
ム、フライアッシュ、珪砂、珪石粉、クレー、タルク、
カオリン、炭酸カルシウム、陶磁器粉砕物、徐冷高炉ス
ラグ粉砕物、チタニア、ジルコニア、アルミナ、シリ
カ、等が挙げられる。
Next, as the ultrafine powdery substance, one having an average particle size which is substantially the same as that of the granulated blast furnace slag, preferably one order smaller than that, and more preferably two orders smaller than that is used. .. The average particle size of the ultrafine powder is preferably 10 μm or less, more preferably 0.01 to 5 μm.
m, and most preferably 0.05 to 1 μm.
The average particle size of the ultrafine powder material is preferably 1/2 to 1/1000 of the average particle size of the granulated blast furnace slag. Examples of specific ultrafine particles that can be used are silica fume, fly ash, silica sand, silica stone powder, clay, talc,
Examples include kaolin, calcium carbonate, ground ceramics, slowly cooled blast furnace slag grounds, titania, zirconia, alumina, silica, and the like.

【0021】これらのうち特に好ましい例としては、シ
リカフュームが挙げられる。これら超微粉状物質は高炉
水砕スラグと超微粉状物質の合計量中に占める割合が、
通常2〜50%、より好ましくは5〜30%(重量比)
となる量使用される。
Among these, silica fume is a particularly preferable example. The proportion of these ultrafine particles in the total amount of granulated blast furnace slag and ultrafine particles is
Usually 2 to 50%, more preferably 5 to 30% (weight ratio)
Will be used in an amount.

【0022】本発明に使用する有機質短繊維の形態とし
ては、チョップドファイバー状のものが好ましいが、ネ
ット、ロッド、マット、及び織物等の繊維集合体状のも
のも併用出来、その具体例としては、ビニロン繊維、パ
ルプ、ポリエチレン繊維、ポリプロピレン繊維、アラミ
ド繊維、ポリエステル繊維、等が挙げられる。これらの
うち好ましいものはビニロン繊維、パルプ、及びポリプ
ロピレン繊維である。これらの有機質短繊維は単独で
も、また二種類以上を併用しても良い。有機質短繊維の
使用量は、高炉水砕スラグと超微粉状物質の合計量に対
して0.2〜10%であり、好ましくは0.5〜7%で
ある。有機質短繊維の使用量が0.2%未満であると、
本発明の目的である対炎性現象の解消が充分でなくな
り、また、10%を越えると、コスト的に不利であるば
かりか、混練工程が難しくなる傾向にある。
The organic short fibers used in the present invention are preferably in the form of chopped fibers, but may also be in the form of fiber aggregates such as nets, rods, mats, and woven fabrics. , Vinylon fiber, pulp, polyethylene fiber, polypropylene fiber, aramid fiber, polyester fiber, and the like. Preferred of these are vinylon fibers, pulp, and polypropylene fibers. These organic short fibers may be used alone or in combination of two or more kinds. The amount of short organic fibers used is 0.2 to 10%, preferably 0.5 to 7%, based on the total amount of granulated blast furnace slag and ultrafine powder. If the amount of organic short fibers used is less than 0.2%,
The object of the present invention is not enough to eliminate the flame resistance phenomenon, and if it exceeds 10%, not only the cost is disadvantageous, but also the kneading process tends to be difficult.

【0023】本発明の高強度無機複合材料を得るにあた
っての水の使用量は、使用する水溶性高分子の種類と
量、アルカリ刺激剤の種類と量、超微粉状物質の種類と
量、及び有機質短繊維の種類と量に依って異なり、混合
物が良好な混練性を示す様に決めなければならないが、
概ね高炉水砕スラグと超微粉状物質の合計量に対して1
0〜45好ましくは15〜40%である。
The amount of water used for obtaining the high-strength inorganic composite material of the present invention is as follows: type and amount of water-soluble polymer, type and amount of alkali stimulant, type and amount of ultrafine powder, And, depending on the type and amount of organic short fibers, it must be determined so that the mixture exhibits good kneading properties,
Approximately 1 for the total amount of granulated blast furnace slag and ultrafine powder
It is 0 to 45, preferably 15 to 40%.

【0024】本発明に於いては、セメント分野でモルタ
ル製造時に用いられる細骨材を使用することも出来る。
使用する細骨材の粒径が細かい程、湿潤養生して得られ
る本発明の高強度複合材料の曲げ強度は大きくなる傾向
にある。一般的には、粒径100〜1000μmの細骨
材が好ましい。具体例を記すと、珪砂、珪石粉、徐冷ス
ラグ粉末、フェロクロムスラグ、陶磁器粉砕品、レンガ
粉砕品、抗火石、等を挙げることが出来る。
In the present invention, it is also possible to use the fine aggregate used in the mortar production in the cement field.
The smaller the particle size of the fine aggregate used, the greater the bending strength of the high-strength composite material of the present invention obtained by wet curing. Generally, fine aggregate having a particle size of 100 to 1000 μm is preferable. Specific examples include silica sand, silica stone powder, slowly cooled slag powder, ferrochrome slag, crushed ceramic products, crushed brick products, and anti-fire stones.

【0025】また、製造工程上、水和反応が始まるまで
の時間を調節する目的で、グルコン酸、酒石酸、マロン
酸、コハク酸、マレイン酸、フマル酸、リンゴ酸、等の
有機酸、又はこれらの塩や、ブドウ糖、果糖、ショ糖、
麦芽糖、乳糖、等の糖類を添加することも出来る。
In addition, in order to control the time until the hydration reaction starts in the manufacturing process, organic acids such as gluconic acid, tartaric acid, malonic acid, succinic acid, maleic acid, fumaric acid, malic acid, or the like. Salt, glucose, fructose, sucrose,
It is also possible to add sugars such as maltose and lactose.

【0026】次に、本発明の高強度無機複合材料の一般
的な製造法の説明を行う。まず、高炉水砕スラグ、水溶
性高分子、超微粉状物質、アルカリ刺激剤(アルカリ刺
激剤は水に溶解し、粉体成分を混合した後に加えるのが
好ましい。)、及び有機質短繊維を、オムニミキサー
(千代田技研工業(株)製)の様な揺動型ミキサーや、
プラネタリーミキサーに入れ粉体混合する。次にこの混
合物に所定量の水、又はアルカリ刺激剤を溶解したアル
カリ溶液を添加し、更に混合(粗混練)を行う。次いで
混練に移るが、混練は粗混練物に強い剪断力を与えられ
る機器を用いることが好ましい。例えば、ロールニーダ
ー、バンバリーミキサー、湿式バンバリーミキサー、ミ
キシングロール、バッグミル、加圧ニーダー、スクリュ
ー押し出し機、ニーダールーダー等が用いられ、これら
により混練物が粘土状を呈するまで混練を行う。
Next, a general method for producing the high-strength inorganic composite material of the present invention will be described. First, granulated blast furnace slag, a water-soluble polymer, an ultrafine powdery substance, an alkali stimulant (the alkali stimulant is preferably dissolved in water and mixed after mixing powder components), and organic short fibers. , An oscillating mixer such as an Omni mixer (Chiyoda Giken Kogyo Co., Ltd.),
Put in a planetary mixer and mix powder. Next, a predetermined amount of water or an alkaline solution in which an alkaline stimulant is dissolved is added to this mixture, and further mixed (coarse kneading). Next, the kneading is started, but it is preferable to use an apparatus capable of giving a strong shearing force to the coarse kneaded product. For example, a roll kneader, a Banbury mixer, a wet Banbury mixer, a mixing roll, a bag mill, a pressure kneader, a screw extruder, a kneader ruder, or the like is used, and kneading is performed until the kneaded product has a clay-like shape.

【0027】成形機に関しても特に制限は無く、カレン
ダーロール、(低〜高)加圧プレス、(真空)押し出し
機が一般に使用される。特に減圧下で成形出来る方法、
例えば、真空押し出し機や真空プレスを採用すると、よ
り大きな曲げ強度を有し、且つ曲げ強度物性のバラツキ
の少ない水和硬化体が得られるので好ましい。成形後、
湿潤養生に移る。湿潤養生は、少なくとも混練ー成形体
中の水分が蒸発しない高湿潤雰囲気下で行うことが必要
である。一般的には相対湿度80%以上、好ましくは9
0%以上、より好ましくは100%の雰囲気下で行う。
The molding machine is also not particularly limited, and calender rolls, (low to high) pressure presses, and (vacuum) extruders are generally used. Especially a method that can be molded under reduced pressure,
For example, when a vacuum extruder or a vacuum press is adopted, a hydrated cured product having larger bending strength and less variation in bending strength physical properties can be obtained, which is preferable. After molding,
Move to wet curing. The wet curing needs to be performed at least in a high-humidity atmosphere in which the water content in the kneaded-molded product does not evaporate. Generally, relative humidity is 80% or more, preferably 9
It is carried out in an atmosphere of 0% or more, more preferably 100%.

【0028】また、この様な高湿度雰囲気下において更
に、水分を通さない容器や袋,等に成形体を入れたり、
もしくはプラスチック板やプラスチックフィルム、金属
板に成形体を挟む方法、等により成形体中の水分の蒸発
が防止出来る様な方法で、湿潤養生を行なっても良い。
また、湿潤養生初期の成形体を水に浸漬して水中で養生
を行うことも出来る。
Further, in such a high humidity atmosphere, the molded body may be further put in a container or bag which is impermeable to water,
Alternatively, the wet curing may be performed by a method of preventing evaporation of water in the molded body by sandwiching the molded body between a plastic plate, a plastic film, and a metal plate.
It is also possible to carry out curing in water by immersing the molded body in the initial stage of wet curing in water.

【0029】本発明においては、湿潤養生温度が高い
程、混練ー成形体の硬化が速い傾向にあるが、一般的に
は,室温〜100℃の温度が用いられる。また、水蒸気
を用いて、100℃以上の温度でオートクレーブ処理を
行っても良い。湿潤養生の時間は、使用するアルカリ刺
激剤の種類と量、及び水和硬化条件に依って大きく左右
されるが、概ね半日〜5日間である。湿潤養生後の硬化
体は水を含んでいるので、この様な硬化体は乾燥して用
いるのが好ましい。乾燥温度は通常室温乃至100℃の
温度が自由に選択出来る。
In the present invention, the higher the wet curing temperature, the quicker the curing of the kneaded-molded product, but generally a temperature of room temperature to 100 ° C. is used. Further, steam may be used for autoclave treatment at a temperature of 100 ° C or higher. The time for wet curing depends on the type and amount of the alkaline stimulant used and the conditions for hydration hardening, but is generally about half a day to 5 days. Since the cured product after wet curing contains water, it is preferable to dry such a cured product. The drying temperature can usually be freely selected from room temperature to 100 ° C.

【0030】[0030]

【実施例】実施例よって、更に本発明を詳細に説明する
が、本発明がこれに限定されるべきでないことは言うま
でもない。
EXAMPLES The present invention will be described in more detail with reference to Examples, but it goes without saying that the present invention should not be limited thereto.

【0031】実施例1 高炉水砕スラグ(新日鉄化学(株)製;エスメント(ブ
レーン値;4000cm2 /g))90部、シリカフュ
ーム(平均粒径0.14μm)10部、水溶性高分子と
してポリアクリル酸ナトリウム(日本化薬(株)製;パ
ナカヤクーB)3部、有機質繊維としてパルプ3部、を
揺動型ミキサーであるオムニミキサー(千代田技研工業
(株)製)に入れ粉体混合した。次いで、この粉体混合
体にアルカリ刺激剤として水酸化ナトリウム1.0部を
水20部に溶解した水溶液を添加し、更に混合(粗混
練)した。
Example 1 90 parts of granulated blast furnace slag (manufactured by Nippon Steel Chemical Co., Ltd .; Essment (Blaine value: 4000 cm 2 / g)), 10 parts of silica fume (average particle size 0.14 μm), and poly as a water-soluble polymer 3 parts of sodium acrylate (manufactured by Nippon Kayaku Co., Ltd .; Panakayaku B) and 3 parts of pulp as organic fibers were put into an omni-mixer (manufactured by Chiyoda Giken Kogyo Co., Ltd.), which is a rocking type mixer, and powder-mixed. Next, an aqueous solution prepared by dissolving 1.0 part of sodium hydroxide in 20 parts of water as an alkali stimulant was added to this powder mixture, and further mixed (coarse kneading).

【0032】得られた粗混練物を、二本ロールニーダー
にて4分間高剪断力下に混練した。混練物は粘土状であ
り、真空押し出し機(本田鉄工(株)製;HDE−2
型)にて740mmHgの減圧下に、幅10cm、厚さ
4mmの板状に押し出し成形した。この押し出し成形板
にビニールシートを掛け、成形体中の水分が飛散しない
状態で、室温で1日放置(前養生)した後、90℃、相
対湿度100%の恒温恒湿室中で2日間湿潤養生して、
本発明の高強度複合材料を得た。
The obtained crude kneaded product was kneaded with a two-roll kneader for 4 minutes under high shearing force. The kneaded product is clay-like, and is a vacuum extruder (Honda Iron Works Co., Ltd .; HDE-2).
The mold was extruded into a plate having a width of 10 cm and a thickness of 4 mm under a reduced pressure of 740 mmHg. Put a vinyl sheet on this extruded plate, leave it at room temperature for 1 day (pre-curing) in a state where the water content in the molded body does not scatter, and then wet for 2 days in a constant temperature and humidity chamber at 90 ° C and a relative humidity of 100%. Cure
A high strength composite material of the present invention was obtained.

【0033】この高強度複合材料から、曲げ物性測定
用、及び対炎性試験測定用のサンプルとして、長さ8c
m、幅1.5cmの小片を多数切り出し、一部のサンプ
ルは60℃の乾燥器中で24時間乾燥した。これらの三
点曲げ試験結果を以下に記す。尚、三点曲げ試験は、テ
ンシロン((株)オリエンテック製;UTMー250
0)を用い、スパン間6cm、曲げ速度1mm/分の条
件で行った。また、対炎性試験は、着火した実験用バー
ナーにサンプルをかざし、硬化体から小片が剥離する
か、どうかを観察した。
From this high-strength composite material, a length of 8c was obtained as a sample for bending physical property measurement and flame resistance test measurement.
A large number of small pieces each having a width of 1.5 cm and a width of 1.5 cm were cut out, and some of the samples were dried in a dryer at 60 ° C. for 24 hours. The results of these three-point bending tests are shown below. The three-point bending test is performed by Tensilon (manufactured by Orientec Co., Ltd .; UTM-250).
0) was used, and the span was 6 cm, and the bending speed was 1 mm / min. Further, in the flame resistance test, the sample was held over an ignited experimental burner, and it was observed whether or not the small pieces were separated from the cured body.

【0034】 湿潤養生後 乾燥後 曲げ強度 Kgf/cm2 405 590 曲げ弾性率Kgf/cm2 ,*104 25.8 27.1 対炎性現象 無し 無し なお、30℃、2規定苛性ソーダ水溶液を用いて毛細管
粘度計で測定した、本実施例で用いたポリアクリル酸ナ
トリウムの極限粘度〔η〕は0.71であり、下記換算
式にて平均分子量を算出すると2.04×106 であっ
た。 換算式───〔η〕=8×10-8Mw1.1
After wet curing After drying Bending strength Kgf / cm 2 405 590 Bending elastic modulus Kgf / cm 2 , * 10 4 25.8 27.1 No flame resistance Phenomenon None None 30 ° C., 2N caustic soda solution was used. The intrinsic viscosity [η] of the sodium polyacrylate used in this example measured by a capillary viscometer was 0.71 and the average molecular weight calculated by the following conversion formula was 2.04 × 10 6 . .. Conversion formula ─── [η] = 8 × 10 -8 Mw 1.1

【0035】実施例2 水溶性高分子としてポリアクリル酸カリウムを4部、ア
ルカリ刺激剤としてメタ珪酸ナトリウムを2部、水を1
8部、有機質短繊維としてビニロン繊維((株)クラレ
製;繊維長6mm)1部とポリプロピレン繊維((株)
テザック製;FFー6,繊維長6mm)2部を用いた他
は、実施例1と同様の操作をし、本発明の高強度複合材
料を得た。三点曲げ試験結果と対炎性試験結果を以下に
示す。尚、ポリアクリル酸カリウムは、35%(重量)
のアクリル酸カリウム水溶液を過硫酸カリウムを重合開
始剤として、常法に従って合成した。得られたポリアク
リル酸カリウムの極限粘度〔η〕は0.69(実施例1
におけると同様にして測定)であり、実施例1で使用し
たポリアクリル酸ナトリウムの0.71とほぼ同等であ
り、分子量的に同等であった。即ち、本実施例で用いた
ポリアクリル酸カリウムの平均分子量を実施例1に記し
た換算式から算出すると、2.02×106 であった。
Example 2 4 parts of potassium polyacrylate as a water-soluble polymer, 2 parts of sodium metasilicate as an alkali stimulant, and 1 part of water
8 parts, vinylon fiber (made by Kuraray Co., Ltd .; fiber length 6 mm) as organic short fiber 1 part and polypropylene fiber (Co., Ltd.)
A high-strength composite material of the present invention was obtained by performing the same operation as in Example 1 except that 2 parts of TF-6 made by Tezac and a fiber length of 6 mm) were used. The results of the three-point bending test and the flame resistance test are shown below. In addition, potassium polyacrylate is 35% (weight)
The potassium acrylate aqueous solution was prepared according to a conventional method using potassium persulfate as a polymerization initiator. The intrinsic viscosity [η] of the obtained potassium polyacrylate was 0.69 (Example 1
Was measured in the same manner as in (1), and was almost equivalent to 0.71 of sodium polyacrylate used in Example 1, and was equivalent in terms of molecular weight. That is, when the average molecular weight of the potassium polyacrylate used in this example was calculated from the conversion formula described in Example 1, it was 2.02 × 10 6 .

【0036】 湿潤養生後 乾燥後 曲げ強度 Kgf/cm2 420 610 曲げ弾性率Kgf/cm2 ,*104 26.3 27.2 対炎性現象 無し 無し After wet curing After drying Flexural strength Kgf / cm 2 420 610 Flexural modulus Kgf / cm 2 , * 10 4 26.3 27.2 Anti-flame phenomenon None None

【0037】実施例3 水溶性高分子として、カルボキシメチルセルロース(第
一工業製薬(株)製;セロゲンBSHー12)7部、ア
ルカリ刺激剤として水酸化ナトリウム1.5部、水を2
5部、有機質繊維としてアラミド繊維(帝人(株)製;
テクノーラ、繊維長6mm)1.5部とパルプ4部、及
び細骨材としてフェロクロムスラグ(日本磁力選鉱
(株)製;NJサンド7号)40部、を用いた他は実施
例1と同様な操作を行い、本発明の高強度複合材料を得
た。三点曲げ試験結果と対炎性試験結果を以下に示す。
Example 3 As a water-soluble polymer, 7 parts of carboxymethyl cellulose (Daiichi Kogyo Seiyaku Co., Ltd .; serogen BSH-12), 1.5 parts of sodium hydroxide as an alkali stimulant, and 2 parts of water were used.
5 parts, aramid fiber as an organic fiber (manufactured by Teijin Ltd .;
Technora, 1.5 parts of fiber length 6 mm) and 4 parts of pulp, and 40 parts of ferrochrome slag (manufactured by Japan Magnetic Separation Co., Ltd .; NJ Sand No. 7) as fine aggregate were used. The operation was performed to obtain the high-strength composite material of the present invention. The results of the three-point bending test and the flame resistance test are shown below.

【0038】 湿潤養生後 乾燥後 曲げ強度 Kgf/cm2 360 630 曲げ弾性率Kgf/cm2 ,*104 25.8 27.0 対炎性現象 無し 無し After wet curing After drying Flexural strength Kgf / cm 2 360 630 Flexural modulus Kgf / cm 2 , * 10 4 25.8 27.0 Anti-flame phenomenon None None

【0039】実施例4 水溶性高分子として実施例1で用いたポリアクリル酸ナ
トリウムを5部、アルカリ刺激剤として水酸化ナトリウ
ムを1.2部、有機質短繊維としてパルプを4.5部、
細骨材として7号珪砂を50部、用いた他は実施例1と
同様の操作を行い本発明の高強度複合材料を得た。三点
曲げ試験結果と対炎性試験結果を以下に示す。
Example 4 5 parts of the sodium polyacrylate used in Example 1 as a water-soluble polymer, 1.2 parts of sodium hydroxide as an alkali stimulant, and 4.5 parts of pulp as an organic short fiber,
The high-strength composite material of the present invention was obtained by the same procedure as in Example 1 except that 50 parts of No. 7 silica sand was used as the fine aggregate. The results of the three-point bending test and the flame resistance test are shown below.

【0040】 湿潤養生後 乾燥後 曲げ強度 Kgf/cm2 310 560 曲げ弾性率Kgf/cm2 ,*104 23.2 24.4 対炎性現象 無し 無し After wet curing After drying Flexural strength Kgf / cm 2 310 560 Flexural modulus Kgf / cm 2 , * 10 4 23.2 24.4 Anti-flame phenomenon None None

【0041】比較例1 パルプを用いなかった他は実施例1と全く同じ操作を
し,高強度複合材料を得た。三点曲げ試験結果と対炎性
試験結果を以下に示す。
Comparative Example 1 A high-strength composite material was obtained by the same procedure as in Example 1 except that pulp was not used. The results of the three-point bending test and the flame resistance test are shown below.

【0042】 湿潤養生後 乾燥後 曲げ強度 Kgf/cm2 400 575 曲げ弾性率Kgf/cm2 ,*104 26.2 27.4 対炎性現象 有り 有り After wet curing After drying Flexural strength Kgf / cm 2 400 575 Flexural modulus Kgf / cm 2 , * 10 4 26.2 27.4 Flame resistance Yes Yes

【0043】[0043]

【発明の効果】安価な高炉水砕スラグを主原料とし、高
強度で、しかも炎に対して優れた抵抗性を持った複合材
料を開発することが出来た。
EFFECTS OF THE INVENTION It has been possible to develop a composite material which is made of inexpensive granulated blast furnace slag as a main raw material and has high strength and excellent resistance to flame.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 C04B 18:14 Z 2102−4G 16:06) Z 2102−4G ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location C04B 18:14 Z 2102-4G 16:06) Z 2102-4G

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】高炉水砕スラグ、アルカリ刺激剤、水溶性
高分子、超微粉状物質、有機質短繊維、及び水からなる
組成物を、混練、成形した後湿潤養生してなる高強度複
合材料。
1. A high-strength composite obtained by kneading and molding a composition comprising granulated blast furnace slag, an alkali stimulant, a water-soluble polymer, an ultrafine powdery substance, organic short fibers, and water, and then wet curing. material.
【請求項2】水溶性高分子が,ポリ(メタ)アクリル酸
塩、及び/又はカルボキシメチルセルロースである請求
項1記載の高強度複合材料。
2. The high-strength composite material according to claim 1, wherein the water-soluble polymer is poly (meth) acrylic acid salt and / or carboxymethyl cellulose.
【請求項3】水溶性高分子が、平均分子量20,000
以上のポリ(メタ)アクリル酸塩である請求項1記載の
高強度複合材料。
3. The water-soluble polymer has an average molecular weight of 20,000.
The high-strength composite material according to claim 1, which is the above poly (meth) acrylate.
【請求項4】有機質短繊維が、パルプ、ポリプロレン繊
維又はビニロン繊維である請求項1、2又は3記載の高
強度複合材料。
4. The high-strength composite material according to claim 1, 2 or 3, wherein the organic short fibers are pulp, polypropylene fibers or vinylon fibers.
【請求項5】超微粉状物質がシリカフュームである請求
項1、2、3又は4記載の高強度複合材料。
5. The high-strength composite material according to claim 1, 2, 3, or 4, wherein the ultrafine powdery substance is silica fume.
JP8027892A 1991-03-12 1992-03-03 High strength composite material Pending JPH0597495A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8027892A JPH0597495A (en) 1991-03-12 1992-03-03 High strength composite material

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP7044591 1991-03-12
JP3-70445 1991-03-12
JP8027892A JPH0597495A (en) 1991-03-12 1992-03-03 High strength composite material

Publications (1)

Publication Number Publication Date
JPH0597495A true JPH0597495A (en) 1993-04-20

Family

ID=26411603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8027892A Pending JPH0597495A (en) 1991-03-12 1992-03-03 High strength composite material

Country Status (1)

Country Link
JP (1) JPH0597495A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022004643A1 (en) 2020-06-29 2022-01-06 株式会社クラレ Cured body reinforced with fibers

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022004643A1 (en) 2020-06-29 2022-01-06 株式会社クラレ Cured body reinforced with fibers

Similar Documents

Publication Publication Date Title
JP2668598B2 (en) Hydraulic composition and high-strength composite material
JP2001287980A (en) Hydraulic composition and method for producing mineral molded product
JP3315523B2 (en) Dispersant for inorganic hydraulic composition, hydraulic composition and cured product thereof
JPH0597495A (en) High strength composite material
JPS63291840A (en) Cement composite
JPH0597494A (en) Composite material
JP2000344564A (en) Lightweight hydraulic composition
JP3011515B2 (en) Colored composite materials
JPH1036161A (en) Hydraulic composition and its hardened product
JPH07126055A (en) Hydraulic composition, extrusion molded article and production thereof
JPH04285083A (en) Clad material
JPH09169580A (en) High strength composite material
JPH10120456A (en) Hydraulic composition and cured product
JP3280636B2 (en) Manufacturing method of molded product
JP2000336834A (en) Inorganic plate
JP4425110B2 (en) Steam and / or autoclave curing hydraulic composition, and molded article
JPH1112015A (en) Production of high strength hardened cement having excellent water resistance
JPH0976404A (en) Composite material and production thereof
JP2640376B2 (en) High strength composite material
JPH02307850A (en) High-strength composite material and production thereof
JPH07241824A (en) Highly strong composite material and manufacture thereof
JP2001080947A (en) Molding
JPH06305806A (en) Composite material
JPH09131827A (en) Composite material and manufacture thereof
JP2001030216A (en) Platelike molding and plate material for double flooring