JPH059616B2 - - Google Patents

Info

Publication number
JPH059616B2
JPH059616B2 JP60108431A JP10843185A JPH059616B2 JP H059616 B2 JPH059616 B2 JP H059616B2 JP 60108431 A JP60108431 A JP 60108431A JP 10843185 A JP10843185 A JP 10843185A JP H059616 B2 JPH059616 B2 JP H059616B2
Authority
JP
Japan
Prior art keywords
combustion chamber
fuel
sub
wall
main combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60108431A
Other languages
Japanese (ja)
Other versions
JPS61268818A (en
Inventor
Shiro Ishida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP10843185A priority Critical patent/JPS61268818A/en
Publication of JPS61268818A publication Critical patent/JPS61268818A/en
Publication of JPH059616B2 publication Critical patent/JPH059616B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B2275/00Other engines, components or details, not provided for in other groups of this subclass
    • F02B2275/14Direct injection into combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition

Landscapes

  • Combustion Methods Of Internal-Combustion Engines (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は直噴式デイーゼルエンジン燃焼室に係
り、特に、低負荷から高負荷に至る広範囲にわた
つて、着火遅れなく緩慢燃焼させて青白煙、燃焼
未燃物、騒音を大巾に低下させることのできる直
噴式デイーゼルエンジン燃焼室に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a combustion chamber of a direct injection diesel engine, and in particular, it produces slow combustion without ignition delay over a wide range of conditions, from low loads to high loads, thereby producing blue and white smoke. This invention relates to a direct injection diesel engine combustion chamber that can significantly reduce combusted unburned materials and noise.

[従来の技術] 一般に、直噴式デイーゼル内燃機関は、高い燃
焼効率、低い排気温度等の長所を有しているが、
その反面、爆発圧力、振動及び騒音等が高く欠点
とされていた。
[Prior Art] In general, direct injection diesel internal combustion engines have advantages such as high combustion efficiency and low exhaust temperature.
On the other hand, high explosion pressure, vibration, noise, etc. were considered to be disadvantageous.

このような欠点を改善すべく、ピストンの頂部
を窪ませて燃焼室を形成し、その燃焼室内にスワ
ールを生成する一方で燃焼室の内壁に燃料を噴射
衝突させてそれを蒸発させ、上記スワールに混合
させて着火性に優れた予混合気を生成し、それを
自発的に着火燃焼させるいわゆるMAN−M方式
機関が知られている。
In order to improve these drawbacks, the top of the piston is recessed to form a combustion chamber, and while a swirl is generated within the combustion chamber, fuel is injected and collides with the inner wall of the combustion chamber to evaporate it, thereby reducing the swirl. A so-called MAN-M type engine is known in which a premixture with excellent ignitability is generated by mixing the premixed mixture with the premixed mixture, and the premixed mixture is spontaneously ignited and combusted.

しかしながら、上記M方式機関は、噴射される
燃料を蒸発燃焼させる方式であるため大気温が低
く、また機関の冷却水温が低い条件下で十分な壁
面蒸発能力を持ち得なかつた。その結果燃焼室内
に多くの燃焼未燃物(HC)が生じ、青白煙の発
生原因となつている。また大気、水温が常温の場
合でも、アイドリング時等の軽負荷時の場合に
は、燃料蒸発に必要な壁温に達していないために
燃焼未燃物(HC)を多大に発生させ燃焼状態を
悪化させる要因になつていた。
However, since the M type engine is a type in which the injected fuel is evaporated and burned, it does not have sufficient wall evaporation capacity under conditions where the atmospheric temperature is low and the engine cooling water temperature is low. As a result, a large amount of unburned matter (HC) is generated in the combustion chamber, which causes blue-white smoke. Furthermore, even when the air and water temperatures are normal, when the load is light such as when idling, the wall temperature required for fuel evaporation has not been reached, so a large amount of unburned matter (HC) is generated and the combustion state is deteriorated. It became a factor that made things worse.

また、この欠点はトロイダル形燃焼室で燃料制
御噴射した稀薄状態でも発生することが確認され
ている。原因としては、着火した後、火炎伝播が
正常になし得ず吹き消えてしまうからである。
It has also been confirmed that this drawback occurs even in lean conditions with controlled fuel injection in a toroidal combustion chamber. The reason is that after ignition, the flame cannot propagate normally and it blows out.

このような欠点を解消すべく特開昭49−50307
号公報(従来例)、実開昭51−33221号公報(従
来例)及び特開昭57−41417号公報(従来例)
の提案がなされており、これらについて以下に説
明する。
In order to eliminate these drawbacks, Japanese Patent Application Laid-Open No. 49-50307
Publication No. 1987-33221 (conventional example), and JP-A-57-41417 (conventional example)
Proposals have been made, and these will be explained below.

従来例は第5図に示す如くピストン頂部1を
深く窪ませたいわゆるMAN−M方式機関の主燃
焼室2を形成すると共に、シリンダヘツド20内
に略球状の小さな副燃焼室3を形成し、それら燃
焼室2,3間に連通する連絡通路21がシリンダ
ヘツド20内に形成されている。一方、第6図に
示す如く従来例も従来例と同様にピストン6
内及びシリンダヘツド20内にそれぞれ主燃焼室
2、副燃焼室3が形成され、ピストン6が上死点
位置でそれらを連絡する連絡通路21が互いに接
線方向に形成されると共に、それ等にスワールチ
ヤンバ22が形成されている。
In the conventional example, as shown in FIG. 5, the piston top 1 is deeply recessed to form the main combustion chamber 2 of a so-called MAN-M type engine, and a small, approximately spherical auxiliary combustion chamber 3 is formed within the cylinder head 20. A communication passage 21 communicating between the combustion chambers 2 and 3 is formed in the cylinder head 20. On the other hand, as shown in FIG. 6, the conventional example also has a piston 6
A main combustion chamber 2 and a sub-combustion chamber 3 are formed inside and inside the cylinder head 20, respectively, and a communication passage 21 connecting them at the top dead center position of the piston 6 is formed tangentially to each other, and a swirl chamber is formed therebetween. 22 is formed.

これら従来例及び従来例の副燃焼室3に
は、それぞれ副燃焼室3内及び主燃焼室2内に臨
んで燃料噴射ノズル4が設けられ、機関が低負荷
運転にある時には副燃焼室3内に、高負荷運転時
には主燃焼室2内に燃料を主に噴射させる燃料噴
射を行なわせ、低負荷時に於ける空燃比(燃料/
空気)を上げて過剰燃焼させ、これによる燃焼未
燃物(HC)の生成を抑制しようとするものであ
る。
The sub-combustion chamber 3 of these conventional examples and the conventional example is provided with a fuel injection nozzle 4 facing into the sub-combustion chamber 3 and the main combustion chamber 2, respectively, and when the engine is in low-load operation, the sub-combustion chamber 3 is During high-load operation, fuel injection is performed to mainly inject fuel into the main combustion chamber 2, and the air-fuel ratio (fuel/fuel ratio) during low-load operation is controlled.
The aim is to raise the amount of air (air) and cause excessive combustion, thereby suppressing the production of unburned matter (HC).

しかしながら上記従来例及び従来例に於い
ては、低負荷時に於ける燃焼未燃物(HC)の発
生を抑制すると共に、高負荷時においては上記連
絡通路21より主燃焼室2内に噴射される燃料噴
霧が副燃焼室3内で着火燃焼する燃焼ガスによつ
て着火されるために、貫徹力を失い、その結果主
燃焼室2内が不完全燃焼に陥つてスモーク発生に
至り燃焼効率を低減させていた。
However, in the above-mentioned conventional examples and conventional examples, the generation of unburned substances (HC) is suppressed during low loads, and at the same time, the generation of unburned substances (HC) is injected into the main combustion chamber 2 from the communication passage 21 during high loads. Since the fuel spray is ignited by the combustion gas that ignites and burns in the auxiliary combustion chamber 3, it loses its penetrating power, resulting in incomplete combustion in the main combustion chamber 2, resulting in smoke generation and reducing combustion efficiency. I was letting it happen.

さらに、この欠点を解消すべく第7図に示す従
来例の提案がなされており、この提案は、ピス
トン6及びシリンダヘツド20の少なくとも一方
に形成され吸気スワールSが導入されるキヤビテ
イ24と、渦流生成用絞り孔25を介して前記キ
ヤビテイ24に連通した渦流副室26と噴射燃料
の一部を前記キヤビテイ24の内壁24aに、残
部を前記絞り孔25を介して渦流副室26に噴射
供給する燃料噴射ノズル4を備え、渦流副室26
における急速燃焼とキヤビテイ24に於ける燃料
蒸発を利用した緩速燃焼とを併用し、前記絞り孔
25は前記キヤビテイ24に対してスワールS方
向に開口させ、燃焼噴射方向に向く副絞り孔と、
キヤビテイ24に対しスワール方向を向く主絞り
孔とを有する内燃機関の燃焼室を構成するもので
燃焼室の一部をピストン圧縮工程によつて押し込
み渦流が形成される渦流形式の前記渦室とし、噴
射燃料の一部をその副室26内で急速燃焼させる
と共に残りの噴射燃料をキヤビテイ24の内壁2
4aに噴射し、そのキヤビテイ24内に前記副室
26内で急速燃焼した燃焼ガスを噴出させて大き
な空気流動を発生させ、もつてキヤビテイ24の
内壁24aに付着した燃料をフイルム状に引き延
し、及びその結果生じる燃料蒸発促進を行なつて
緩速燃焼させようとしたものである。
Furthermore, in order to eliminate this drawback, a conventional example shown in FIG. A portion of the injected fuel is injected and supplied to the swirl sub-chamber 26 communicating with the cavity 24 through the generation throttle hole 25 to the inner wall 24a of the cavity 24, and the remainder is injected and supplied to the swirl sub-chamber 26 through the throttle hole 25. Equipped with a fuel injection nozzle 4, a swirl subchamber 26
Rapid combustion in the cavity 24 and slow combustion utilizing fuel evaporation in the cavity 24 are used together, the throttle hole 25 is opened in the swirl S direction with respect to the cavity 24, and a sub throttle hole faces in the combustion injection direction;
The combustion chamber of an internal combustion engine has a main throttle hole facing in the swirl direction with respect to the cavity 24, and a part of the combustion chamber is pushed in by the piston compression process to form a vortex flow type vortex chamber, A part of the injected fuel is rapidly combusted within the auxiliary chamber 26, and the remaining injected fuel is burned on the inner wall 2 of the cavity 24.
4a, and the combustion gas rapidly combusted in the auxiliary chamber 26 is ejected into the cavity 24 to generate a large air flow, thereby stretching the fuel adhering to the inner wall 24a of the cavity 24 into a film. , and the resulting fuel evaporation is promoted to achieve slow combustion.

[発明が解決しようとする問題点] しかしながら、上記の如く構成された従来例
は前記キヤビテイ24下に形成された前記副室2
6内の急速燃焼ガス流と、これによる発生熱によ
つてキヤビテイ24の内壁24aに噴射される燃
料の蒸発が過剰に成し得る可能性を有して居り、
これが高負荷時に於てはさらに顕著に現われると
考えられる。即ちキヤビテイ24内の燃料蒸発が
促進される事は着火性に優れた予混合気を多大に
生成することであり、これが上記副室26よりの
燃焼ガスによつて着火されると急激な燃焼がキヤ
ビテイ24内でも起ることになり燃焼室圧力が増
大しそれによつて騒音が異常に高くなる欠点を有
していた。
[Problems to be Solved by the Invention] However, in the conventional example configured as described above, the subchamber 2 formed under the cavity 24
There is a possibility that excessive evaporation of the fuel injected onto the inner wall 24a of the cavity 24 may occur due to the rapid combustion gas flow within the combustion chamber 6 and the heat generated thereby.
It is thought that this phenomenon becomes even more noticeable under high loads. In other words, promoting fuel evaporation in the cavity 24 generates a large amount of premixture with excellent ignitability, and when this is ignited by the combustion gas from the pre-chamber 26, rapid combustion occurs. This also occurs within the cavity 24, resulting in an increase in combustion chamber pressure, which has the disadvantage of causing abnormally high noise.

[発明の目的] 本発明は上記問題点を解消すべく創案されたも
ので、本発明の目的は、低負荷から高負荷運転に
至る広範囲にわたつて着火遅れなく緩慢燃焼を達
成し、青白煙、燃焼未燃物(HC)及び騒音を低
減できる静粛なる直噴式デイーゼルエンジン燃焼
室を提供することにある。
[Object of the Invention] The present invention was devised to solve the above-mentioned problems, and an object of the present invention is to achieve slow combustion without ignition delay over a wide range of operations from low load to high load, and to reduce blue and white smoke. An object of the present invention is to provide a quiet direct injection diesel engine combustion chamber that can reduce combusted unburned matter (HC) and noise.

[発明の概要] 本発明は上記目的を達成すべく、ピストン頂部
に深く窪ませられて設けられた主燃焼室と、該主
燃焼室に隣接させてピストン頂部に浅く窪ませら
れて設けられその容積が上記主燃焼室に対して小
さく形成された副燃焼室と、副燃焼室と主燃焼室
とを互いに連通すべく副燃焼室と主燃焼室との間
の互いの側壁上部をその上方から窪ませて設けら
れたバンクと、機関のあらゆる使用負荷時に副燃
焼室内にそのスワールの順方向にかつその副燃焼
室の中心より外側の内壁へ向けて微粒子化燃料を
噴出する噴射ノズルであつて、その噴出方向が副
燃焼室の内壁に微粒子化燃料を衝突させてその副
燃焼室の内壁に燃料膜を形成し得るように定めら
れた副噴射ノズルと、中負荷以上で主燃焼室内に
そのスワールの順方向にかつ主燃焼室の中心より
外側の内壁へ向けて上記粒子化燃料より燃料の粒
子径が大きい霧化燃料を噴出する噴射ノズルであ
つて、その噴出方向が主燃焼室の内壁にその燃料
噴霧を衝突させてその主燃焼室の内壁に燃料膜を
形成し得るように定められた主噴射ノズルとを備
え、低負荷時には、一方の燃料噴射ノズルから副
燃焼室内に噴射される微粒化された燃料噴霧の一
部を、その副燃料室内に生成されてこれに閉じこ
められたスワールによつて瞬時に蒸発させて、着
火遅れなく急激燃焼させると共に、その燃料噴霧
の残部を副燃焼室の内壁に衝突させて、副燃焼室
の内壁に沿つて流れる燃料フイルムを形成し、こ
れが徐々に緩慢燃焼されることにより青白煙、燃
焼未燃物(HC)及び騒音を低減し、さらに中・
高負荷時には主燃焼室内にも他方の燃料噴射ノズ
ルから上記燃料噴霧より粒径の大きな燃料噴霧が
噴射され、この一部が主燃焼室内に生成されたス
ワールにより蒸発されると共に上記副燃焼室内の
燃焼ガスによつてバンク部を介して着火され上記
燃焼噴霧の残部が主燃焼室の内壁に沿つて流れる
燃料フイルムがその火炎を徐々に伝播されて緩慢
燃焼されるもので、これにより青白煙、燃焼未燃
物(HC)及び騒音を大巾に低減しようとするも
のである。
[Summary of the Invention] In order to achieve the above object, the present invention includes a main combustion chamber that is deeply recessed in the top of the piston, and a main combustion chamber that is shallowly recessed in the top of the piston adjacent to the main combustion chamber. A sub-combustion chamber formed to have a smaller volume than the main combustion chamber, and an upper part of the side wall between the sub-combustion chamber and the main combustion chamber from above in order to communicate the sub-combustion chamber and the main combustion chamber with each other. A recessed bank and an injection nozzle that injects atomized fuel in the forward direction of its swirl into the sub-combustion chamber and toward the inner wall outside the center of the sub-combustion chamber during all operating loads of the engine. , an auxiliary injection nozzle whose jetting direction is determined so that the atomized fuel collides with the inner wall of the auxiliary combustion chamber to form a fuel film on the inner wall of the auxiliary combustion chamber; An injection nozzle that injects atomized fuel having a fuel particle size larger than the atomized fuel in the forward direction of the swirl and toward the inner wall outside the center of the main combustion chamber, the injection direction being the inner wall of the main combustion chamber. and a main injection nozzle designed to cause the fuel spray to collide with the main combustion chamber to form a fuel film on the inner wall of the main combustion chamber.During low load, the fuel is injected from one fuel injection nozzle into the sub-combustion chamber. A part of the atomized fuel spray is instantly evaporated by the swirl generated and confined within the sub-fuel chamber, causing rapid combustion without ignition delay, and the remainder of the fuel spray is used for sub-combustion. The fuel collides with the inner wall of the chamber to form a fuel film that flows along the inner wall of the auxiliary combustion chamber, and this gradually burns slowly, reducing blue-white smoke, unburned matter (HC), and noise.・
When the load is high, a fuel spray with a larger particle size than the above fuel spray is injected from the other fuel injection nozzle into the main combustion chamber, and part of this is evaporated by the swirl generated in the main combustion chamber, and a part of it is evaporated into the sub-combustion chamber. The fuel film is ignited by the combustion gas through the bank part, and the remainder of the combustion spray flows along the inner wall of the main combustion chamber.The flame is gradually propagated through the fuel film, resulting in slow combustion, resulting in blue-white smoke, The aim is to significantly reduce unburned matter (HC) and noise.

[実施例] 以下、本発明の好適一実施例を添付図面に基づ
いて具体的に説明する。
[Embodiment] Hereinafter, a preferred embodiment of the present invention will be specifically described based on the accompanying drawings.

第1図乃至第3図に示される如くピストン頂部
1には、これにより窪まされて主燃焼室2と副燃
焼室3とが、それぞれ上部を開放された例えば円
形断面形状をなすように形成されている。また、
主燃焼室2と副燃焼室3とは、互いの周側壁2
a,3aの一部を開放して上方より窪ませたバン
ク16が形成されている。副燃焼室3と主燃焼室
2と容積比は、副燃焼室3より主燃焼室2が大容
積に形成され、具体的には上記主燃焼室2の円形
断面が副燃焼室3の円形断面より大径に形成され
ると共に、主燃焼室2より副燃焼室3が浅く窪ま
されている。
As shown in FIGS. 1 to 3, the piston top 1 is recessed to form a main combustion chamber 2 and a sub-combustion chamber 3, each having a circular cross-sectional shape, for example, with an open top. ing. Also,
The main combustion chamber 2 and the sub-combustion chamber 3 have mutual peripheral walls 2
A bank 16 is formed by opening part of a and 3a and recessing it from above. The volume ratio of the auxiliary combustion chamber 3 to the main combustion chamber 2 is such that the main combustion chamber 2 has a larger volume than the auxiliary combustion chamber 3, and specifically, the circular cross section of the main combustion chamber 2 is the same as the circular cross section of the auxiliary combustion chamber 3. The auxiliary combustion chamber 3 is formed to have a larger diameter and is recessed shallower than the main combustion chamber 2.

このように形成された上記主燃焼室2と、副燃
焼室3とのバンク16の近傍には、夫々に第1
図、第2図に示す如く、それに臨むように図示し
ない燃料噴射ポンプに接続された夫々の燃料噴射
ノズル4a,4bが設けられる。
In the vicinity of the bank 16 of the main combustion chamber 2 and the auxiliary combustion chamber 3 formed in this way, a first
As shown in FIG. 2, fuel injection nozzles 4a and 4b, which are connected to a fuel injection pump (not shown), are provided facing the fuel injection nozzles 4a and 4b, respectively.

具体的に副燃焼室3には、その副燃焼室3内に
生成されて、これに閉じ込められたスワールSの
下流側に臨んで且つ副燃焼室3の内壁3aに臨む
一方の副ノズルである燃料噴射ノズル4aが設け
られる。この一方の燃料噴射ノズル4aの噴口1
7は、その噴口径を、副燃焼室3内に生成され
て、これに閉じこめられるスワールSにより、瞬
時に蒸発燃焼される即ち着火性の良い予混気Fを
形成しやすい粒径の微粒化燃料を副燃焼室3内に
噴出する噴口径d1に設定される。
Specifically, in the sub-combustion chamber 3, there is one sub-nozzle that faces the downstream side of the swirl S generated in the sub-combustion chamber 3 and confined therein, and faces the inner wall 3a of the sub-combustion chamber 3. A fuel injection nozzle 4a is provided. Nozzle port 1 of this one fuel injection nozzle 4a
7, the diameter of the nozzle is reduced to a particle size that is easily evaporated and combusted by the swirl S generated in the sub-combustion chamber 3 and confined therein, that is, it is easy to form a premix F with good ignitability. The nozzle diameter d 1 is set to inject fuel into the sub-combustion chamber 3 .

他方、主燃焼室2には、その主燃焼室2内に生
成されて、これに閉じ込められたスワールSの下
流側に、且つ主燃焼室2の内壁2aに臨む他方の
主ノズルである燃料噴射ノズル4bが設けられ
る。この他方の燃料噴射ノズル4bの噴口18
は、その噴口径を、主燃焼室2内のスワールSに
対して比較的貫徹力を大きく設定し、また、噴射
される燃料の一部がスワールSによつて蒸発さ
れ、残部が主燃焼室2の内壁2aに衝突し、その
内壁2aに沿つて流れる燃料フイルムHを形成す
るように、即ち上記一方の燃料噴射ノズル4aの
噴口径d1に対して大きな噴口径d2に形成される。
On the other hand, in the main combustion chamber 2, the other main nozzle, ie, the fuel injection port, faces the inner wall 2a of the main combustion chamber 2 and is located downstream of the swirl S generated within the main combustion chamber 2 and confined therein. A nozzle 4b is provided. Nozzle port 18 of this other fuel injection nozzle 4b
The nozzle diameter is set to have a relatively large penetration force with respect to the swirl S in the main combustion chamber 2, and a part of the injected fuel is evaporated by the swirl S, and the remainder is injected into the main combustion chamber. In other words, the nozzle diameter d 2 is larger than the nozzle diameter d 1 of the one fuel injection nozzle 4a so as to form a fuel film H that collides with the inner wall 2a of the second fuel injection nozzle and flows along the inner wall 2a .

また、上記夫々の燃料噴射ノズル4a,4b
は、例えば夫々ニードル弁等のリフト量により、
その噴射量が調整され、夫々が機関状態(機関負
荷、機関回転数)に応じて制御されるように構成
される。
In addition, each of the fuel injection nozzles 4a, 4b
For example, depending on the lift amount of the needle valve, etc.,
The injection amount is adjusted and each is configured to be controlled according to the engine state (engine load, engine rotation speed).

具体的には、夫々の燃料噴射ノズル4a,4b
の噴射量は第4図に示すように制御されるもので
ある。
Specifically, each fuel injection nozzle 4a, 4b
The injection amount is controlled as shown in FIG.

図示されるように、曲線aは、一方の燃料噴射
ノズル4aから噴射される燃料のノズル開閉時間
(sec)とそのニードル弁等のリフト量との関係を
示し、t0で開弁し、負荷に応じてt1、t2、t3で閉
弁する。曲線bは、他方の噴射ノズル4bから噴
出される燃料の噴射ノズル4aの開閉時間(sec)
とそのニードル弁のリフト量との関係を示し、時
間t2で開弁し、t4、t5、t6で閉弁することを示す。
As shown in the figure, curve a shows the relationship between the nozzle opening/closing time (sec) of fuel injected from one fuel injection nozzle 4a and the lift amount of the needle valve, etc., and the valve opens at t 0 and the load The valve closes at t 1 , t 2 , and t 3 depending on the time. Curve b represents the opening/closing time (sec) of the injection nozzle 4a for fuel injected from the other injection nozzle 4b.
The relationship between the amount of lift and the lift amount of the needle valve is shown, and it is shown that the valve opens at time t 2 and closes at t 4 , t 5 , and t 6 .

一方の噴射ノズル4aの噴口17は、その噴口
径d1が小さく設定されているので、噴射の期間は
長くなり負荷を増すにつれてその噴射量が増大す
るようにされる。すなわち、アイドリング時には
t0からt1に至る時間の噴射量a1(mm3)に設定される
が、負荷を増すにつれてt0〜t2の噴射量a2(軽負
荷)にされ、中負荷時にはt0〜t3の噴射量a3の他
に他方の噴射ノズル4bからもb1,b2の噴射量で
噴射され、さらに高負荷になるにつれてb2の噴射
量となり最大負荷でb3の最大噴射量に設定され
る。
Since the injection port 17 of one of the injection nozzles 4a is set to have a small injection diameter d1 , the injection period is lengthened and the injection amount increases as the load increases. In other words, when idling
The injection amount is set to a 1 (mm 3 ) for the time from t 0 to t 1 , but as the load increases, the injection amount is changed to a 2 (light load) for t 0 to t 2 , and at medium load, the injection amount is set to a 1 (mm 3 ) for the time from t 0 to t 1 . In addition to the injection amount a 3 at t 3 , injection amounts b 1 and b 2 are also injected from the other injection nozzle 4b, and as the load becomes higher, the injection amount becomes b 2 , and at the maximum load, the maximum injection amount is b 3 . is set to

尚、第4図に示す噴射量制御を機関状態を検
知、判断するCPU等によつて電気的に制御する
ことは当然可能である。
It is of course possible to electrically control the injection amount shown in FIG. 4 by a CPU or the like that detects and judges the engine state.

以下、本発明の作用について添付図面に基づい
て説明する。
Hereinafter, the operation of the present invention will be explained based on the accompanying drawings.

第1図乃至第3図に示される如く、図示しない
スワールポートから供給されるスワールSは、圧
縮されながらも、夫々主・副燃焼室2,3内に生
成され閉じ込められる。
As shown in FIGS. 1 to 3, swirl S supplied from a swirl port (not shown) is generated and confined within the main and sub-combustion chambers 2 and 3, respectively, while being compressed.

ゆえに、機関が始動時(アイドリング時)また
は低負荷時には、一方の燃料噴射ノズル4aの噴
口17から第4図にa1,a2で示した如く機関状態
に応じて副燃焼室3内に微粒化燃料噴霧が噴出さ
れる。その燃料噴霧は、副燃焼室3の内壁3aに
衝突されて、さらに微粒化して、その内壁3aに
沿つて流れる燃料フイルムHを形成することにな
る。
Therefore, when the engine is started (idling) or under low load, particulates are released from the nozzle 17 of one fuel injection nozzle 4a into the auxiliary combustion chamber 3, as shown by a 1 and a 2 in FIG. 4, depending on the engine condition. fuel spray is ejected. The fuel spray collides with the inner wall 3a of the sub-combustion chamber 3, becomes further atomized, and forms a fuel film H that flows along the inner wall 3a.

ここで、噴出された燃料噴霧の一部は、粒径が
小さいため上記スワールSによつて瞬時に蒸発さ
れて着火燃焼しやすい予混合気Fを生成し、残部
は上記副燃焼室3の内壁3aに沿つて分布する燃
料フイルムHに生成された後、壁面蒸発する。
Here, a part of the ejected fuel spray has a small particle size and is instantly evaporated by the swirl S to generate a premixture F that is easily ignited and combusted, and the remainder is left on the inner wall of the sub-combustion chamber 3. After being formed into a fuel film H distributed along 3a, it evaporates on the wall surface.

従つて、予混合気Fが自発着火されて急激燃焼
されることにより、その火炎が副燃焼室3内の着
火位置より、副燃焼室3の内壁3aに向つて伝播
され、その内壁3aに沿つて流れる燃料フイルム
Fを、徐々に且つ速やかに燃焼することになる。
Therefore, as the premixture F is spontaneously ignited and combusted rapidly, the flame is propagated from the ignition position in the sub-combustion chamber 3 toward the inner wall 3a of the sub-combustion chamber 3, and is spread along the inner wall 3a. The flowing fuel film F is gradually and quickly burned.

このように、一方の燃料噴射ノズル4aの噴口
17からの噴霧は副燃焼室3の内壁3aに向けら
れているので、多くの燃料は内壁3aに沿つて分
布される。さらに着火した熱エネルギで壁面に分
布された燃料は徐々に蒸発燃焼する。副燃焼室3
は主燃焼室2とバンク16を介して隔てられてお
り、また副燃焼室3内のスワールSによつて副燃
焼室3内に燃焼ガスの大半が閉じ込められ副燃焼
室3内の燃焼は急激に達成され、それによつて燃
焼温度が上昇し、青白煙の発生及び燃焼未燃物
(HC)の生成を抑制できることになる。このた
めに低負荷時には、副燃焼室3内の燃焼平均温度
が上昇し、その結果、青白煙の発生及び燃焼未燃
物(HC)の生成を抑制できる。
In this way, since the spray from the nozzle 17 of one fuel injection nozzle 4a is directed toward the inner wall 3a of the sub-combustion chamber 3, most of the fuel is distributed along the inner wall 3a. Furthermore, the ignited thermal energy causes the fuel distributed on the wall surface to gradually evaporate and burn. Sub-combustion chamber 3
is separated from the main combustion chamber 2 by the bank 16, and most of the combustion gas is trapped in the sub-combustion chamber 3 by the swirl S in the sub-combustion chamber 3, causing rapid combustion in the sub-combustion chamber 3. As a result, the combustion temperature increases, and the generation of blue-white smoke and unburned matter (HC) can be suppressed. Therefore, when the load is low, the average combustion temperature in the sub-combustion chamber 3 increases, and as a result, the generation of blue-white smoke and the generation of unburned matter (HC) can be suppressed.

さらに、中・高負荷時に於いては、第4図で説
明したように上記他方の燃料噴射ノズル4bの噴
口18よりも燃料噴霧が主燃焼室2の内壁2aに
向けて、且つスワールSの下流方向に向けて第1
図、第2図に示す如く燃料が噴射され、上記副燃
焼室3と同様に燃料フイルムHと予混合気Fを生
成する。この時、副燃焼室3内の燃焼ガスの一部
がバンク16を介して主燃焼室2内の予混合気F
に火炎伝播し、さらに燃料フイルムHが着火され
て燃焼されることになる。しかしながら、他方の
燃料噴射ノズル4bの噴口18より噴射される燃
料は一方の燃料噴射ノズル4aの噴口17より噴
射される燃料噴霧よりは大径であり、貫徹力が大
きいため、蒸発燃料とスワールSとが混合して生
成される予混合気Fを過剰に生成しない。このた
め、これが着火しても主燃焼室2内は急激燃焼と
は成り得ない。従つて、予混合気Fが着火するこ
とによつて発生された熱により残りの燃料フイル
ムHを速やかに蒸発せしめこの蒸気が燃焼してい
き、緩慢に燃焼されることになり、これによつて
急激な主燃焼室2内の圧力上昇は抑制され、さら
に騒音を低減できる。また第4図に示す如く高負
荷になる程他方の燃料噴射ノズル4bの噴口18
より噴射される燃料は増加し、最大では90%以上
噴射されることになるので上記作用は確実に達成
され、副燃焼室3より流入する火炎によつて確実
に着火されることになる。
Furthermore, under medium to high load conditions, as explained in FIG. 1st toward the direction
As shown in FIG. 2, fuel is injected, and a fuel film H and a premixture F are produced in the same manner as in the sub-combustion chamber 3 described above. At this time, part of the combustion gas in the auxiliary combustion chamber 3 passes through the bank 16 to the premixture F in the main combustion chamber 2.
The flame propagates, and the fuel film H is further ignited and burned. However, the fuel injected from the nozzle 18 of the other fuel injection nozzle 4b has a larger diameter than the fuel spray injected from the nozzle 17 of the one fuel injection nozzle 4a, and has a larger penetrating force. Preliminary mixture F, which is generated by mixing the two, is not excessively generated. Therefore, even if it ignites, rapid combustion cannot occur within the main combustion chamber 2. Therefore, the heat generated by the ignition of the premixture F quickly evaporates the remaining fuel film H, and this vapor is combusted, resulting in slow combustion. A sudden rise in pressure within the main combustion chamber 2 is suppressed, and noise can be further reduced. Also, as shown in FIG. 4, the higher the load, the more the injection port 18 of the other fuel injection nozzle 4b
Since the amount of fuel injected increases and reaches a maximum of 90% or more, the above effect is reliably achieved and the flame flowing from the sub-combustion chamber 3 reliably ignites.

[発明の効果] 以上詳述したように、本発明によれば次のごと
き優れた効果を発揮する。
[Effects of the Invention] As detailed above, the present invention provides the following excellent effects.

(1) 副燃焼室で比較的急速燃焼を行わせ主燃焼室
で緩慢蒸発燃焼を行わせることができるように
したので、あらゆる使用負荷において、良好な
燃焼が可能となり、青白煙、燃焼未燃物
(HC)、燃焼騒音を大巾に低下させることがで
きる。
(1) By making it possible to perform relatively rapid combustion in the auxiliary combustion chamber and slow evaporative combustion in the main combustion chamber, good combustion is possible under all operating loads, resulting in no blue-white smoke or combusted or unburned smoke. (HC), combustion noise can be significantly reduced.

(2) 低セタン価またはアルコールが混合された低
質燃料を使用できる。
(2) Low quality fuels with low cetane number or alcohol blends can be used.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の好適一実施例を示す図、第2
図は本発明の主燃焼室と副燃焼室に燃料を噴射す
る燃料噴射ノズルの噴射方向を示す概略断面図、
第3図はピストン頂部に形成された本発明の実施
例の主燃焼室と副燃焼室とを示す概略斜視図、第
4図は第1図、第2図に示された燃料噴射ノズル
の噴射量制御図、第5図、第6図及び第7図は従
来例を示す図である。 図中、1はピストン頂部、2は主燃焼室、3は
副燃焼室、4a,4bは燃料噴射ノズル、16は
バンク、17,18は噴口である。
FIG. 1 is a diagram showing a preferred embodiment of the present invention, and FIG.
The figure is a schematic cross-sectional view showing the injection direction of the fuel injection nozzle that injects fuel into the main combustion chamber and the sub-combustion chamber of the present invention,
FIG. 3 is a schematic perspective view showing the main combustion chamber and sub-combustion chamber of the embodiment of the present invention formed at the top of the piston, and FIG. 4 is the injection of the fuel injection nozzle shown in FIGS. 1 and 2. The quantity control diagrams, FIG. 5, FIG. 6, and FIG. 7 are diagrams showing conventional examples. In the figure, 1 is a piston top, 2 is a main combustion chamber, 3 is a sub-combustion chamber, 4a, 4b are fuel injection nozzles, 16 is a bank, and 17, 18 are nozzles.

Claims (1)

【特許請求の範囲】[Claims] 1 ピストン頂部に深く窪ませられて設けられた
主燃焼室と、該主燃焼室に隣接させてピストン頂
部に浅く窪ませられて設けられその容積が上記主
燃焼室に対して小さく形成された副燃焼室と、副
燃焼室と主燃焼室とを互いに連通すべく副燃焼室
と主燃焼室との間の互いの側壁上部をその上方か
ら窪ませて設けられたバンクと、機関のあらゆる
使用負荷時に副燃焼室内にそのスワールの順方向
にかつその副燃焼室の中心より外側の内壁へ向け
て微粒子化燃料を噴出する噴射ノズルであつて、
その噴出方向が副燃焼室の内壁に微粒子化燃料を
衝突させてその副燃焼室の内壁に燃料膜を形成し
得るように定められた副噴射ノズルと、中負荷以
上で主燃焼室内にそのスワールの順方向にかつ主
燃焼室の中心より外側の内壁へ向けて上記微粒子
化燃料より燃料の粒子径が大きい霧化燃料を噴出
する噴射ノズルであつて、その噴出方向が主燃焼
室の内壁にその燃料噴霧を衝突させてその主燃焼
室の内壁に燃料膜を形成し得るように定められた
主噴射ノズルとを備えたことを特徴とする直噴式
デイーゼルエンジン燃焼室。
1. A main combustion chamber that is deeply recessed at the top of the piston, and a sub-combustion chamber that is adjacent to the main combustion chamber and that is shallowly recessed at the top of the piston and whose volume is smaller than that of the main combustion chamber. The combustion chamber, the bank provided by recessing the upper part of the side wall between the auxiliary combustion chamber and the main combustion chamber from above to communicate the auxiliary combustion chamber and the main combustion chamber with each other, and any operating load of the engine. An injection nozzle that injects atomized fuel into a sub-combustion chamber in the forward direction of its swirl and toward an inner wall outside the center of the sub-combustion chamber,
A sub-injection nozzle whose injection direction is determined so that the atomized fuel collides with the inner wall of the sub-combustion chamber to form a fuel film on the inner wall of the sub-combustion chamber, and a swirl inside the main combustion chamber under medium load or higher. an injection nozzle that injects atomized fuel having a fuel particle size larger than the atomized fuel in the forward direction of the main combustion chamber and toward the inner wall outside the center of the main combustion chamber; A direct injection diesel engine combustion chamber comprising a main injection nozzle configured to cause the fuel spray to collide with each other to form a fuel film on the inner wall of the main combustion chamber.
JP10843185A 1985-05-22 1985-05-22 Direct injection type diesel engine combustion chamber Granted JPS61268818A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10843185A JPS61268818A (en) 1985-05-22 1985-05-22 Direct injection type diesel engine combustion chamber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10843185A JPS61268818A (en) 1985-05-22 1985-05-22 Direct injection type diesel engine combustion chamber

Publications (2)

Publication Number Publication Date
JPS61268818A JPS61268818A (en) 1986-11-28
JPH059616B2 true JPH059616B2 (en) 1993-02-05

Family

ID=14484598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10843185A Granted JPS61268818A (en) 1985-05-22 1985-05-22 Direct injection type diesel engine combustion chamber

Country Status (1)

Country Link
JP (1) JPS61268818A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57148019A (en) * 1981-03-09 1982-09-13 Mazda Motor Corp Fuel injector for diesel engine
JPS589922B2 (en) * 1976-08-10 1983-02-23 三菱電機株式会社 fiber optic connector

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS589922U (en) * 1981-07-13 1983-01-22 日産自動車株式会社 direct injection diesel engine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS589922B2 (en) * 1976-08-10 1983-02-23 三菱電機株式会社 fiber optic connector
JPS57148019A (en) * 1981-03-09 1982-09-13 Mazda Motor Corp Fuel injector for diesel engine

Also Published As

Publication number Publication date
JPS61268818A (en) 1986-11-28

Similar Documents

Publication Publication Date Title
US4852525A (en) Combustion chamber in internal combustion engine
JPH07332141A (en) Compressive ignition type gasoline engine
JPH0768904B2 (en) High compression ratio spark ignition type lean internal combustion engine
US4709672A (en) Combustion chamber for an internal-combustion engine
JP6249083B1 (en) Premixed compression ignition engine
JPS62214216A (en) Combustion chamber of internal combustion engine
JP6252662B1 (en) Premixed compression ignition engine
JP4428273B2 (en) In-cylinder direct injection internal combustion engine
JPS62135611A (en) Combustion chamber of internal combustion engine
JPS61265322A (en) Combustion chamber of internal-combustion engine
JPH059616B2 (en)
JPH07332140A (en) Compressive ignition type internal combustion engine
JPS6189919A (en) Combustion chamber of direct injection type diesel engine
JPS6189920A (en) Combustion chamber of direct injection type diesel engine
JPH0540269Y2 (en)
JPH0621562B2 (en) Combustion chamber of internal combustion engine
JP3468055B2 (en) Lean-burn internal combustion engine
JPH0531211Y2 (en)
GB2163486A (en) Fuel injection i.c. engine
JPH063136B2 (en) Combustion chamber of internal combustion engine
JPS6355321A (en) Combustion chamber of internal combustion engine
JPS6143216A (en) Combustion chamber of diesel engine
JPS62153515A (en) Combustion chamber for internal combustion engine
JPS62129515A (en) Combustion chamber for internal combustion engine
JPS6245926A (en) Combustion chamber for double cell type internal combustion engine