JPH0595994A - Production of porous crystallized glass - Google Patents

Production of porous crystallized glass

Info

Publication number
JPH0595994A
JPH0595994A JP3292461A JP29246191A JPH0595994A JP H0595994 A JPH0595994 A JP H0595994A JP 3292461 A JP3292461 A JP 3292461A JP 29246191 A JP29246191 A JP 29246191A JP H0595994 A JPH0595994 A JP H0595994A
Authority
JP
Japan
Prior art keywords
glass
porous
crystallized glass
slurry
glass powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3292461A
Other languages
Japanese (ja)
Inventor
Shiyunsuke Komatsuya
俊介 小松谷
Takehiro Shibuya
武宏 渋谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP3292461A priority Critical patent/JPH0595994A/en
Publication of JPH0595994A publication Critical patent/JPH0595994A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/11Glass compositions containing silica with 40% to 90% silica, by weight containing halogen or nitrogen
    • C03C3/112Glass compositions containing silica with 40% to 90% silica, by weight containing halogen or nitrogen containing fluorine
    • C03C3/115Glass compositions containing silica with 40% to 90% silica, by weight containing halogen or nitrogen containing fluorine containing boron
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C11/00Multi-cellular glass ; Porous or hollow glass or glass particles
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C12/00Powdered glass; Bead compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/11Glass compositions containing silica with 40% to 90% silica, by weight containing halogen or nitrogen
    • C03C3/112Glass compositions containing silica with 40% to 90% silica, by weight containing halogen or nitrogen containing fluorine
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/0007Compositions for glass with special properties for biologically-compatible glass

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Materials For Medical Uses (AREA)
  • Prostheses (AREA)

Abstract

PURPOSE:To provide a method for producing a porous crystallized glass having high mechanical strength and being integrated with a bioorganization in a short time. CONSTITUTION:At first, a slurry is prepd. by mixing 30% ethanol and 3% polyvinyl butyral(PVB) to 100wt.% glass powder having a compsn. of 22-50% SiO2, 8-30% P2O5, 20-53% CaO, 1-16% MgO, 0.1-2% F2, 0-9% Al2O3, and 0-5% B2O3. Then, after a urethane foam is impregnated with the slurry and is dried, it is heat-treated to remove the urethane foam and PVB by burning and to sinter and crystallize the glass powder.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、多孔質結晶化ガラスの
製造方法に関し、より詳しくは骨の欠損部を補填するた
めに使用される多孔質結晶化ガラスの製造方法に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a porous crystallized glass, and more particularly to a method for producing a porous crystallized glass used for filling a bone defect.

【0002】[0002]

【従来の技術】従来、欠損した骨の補填には、患者本人
の正常部位から採取した海綿状の自家骨、いわゆる海綿
骨が用いられていたが、この方法では、損傷箇所以外の
骨組織を切除するため患者の苦痛が大きいこと、またそ
の手術を行うにあたって多大な労力を要すること、自家
骨の採取量に限界があること等の問題を有している。
2. Description of the Related Art Conventionally, cancellous autologous bones, so-called cancellous bones, collected from a normal site of a patient have been used to replace a defective bone. There are problems that the patient's pain is great due to the excision, a great deal of labor is required to perform the operation, and the amount of autogenous bone collected is limited.

【0003】このような事情から、人工的に海綿骨様の
補填材を作製することが試みられている。その代表的例
として、水酸化アパタイト等の多孔質セラミックスが提
案されている。水酸化アパタイトは生体親和性がよく、
しかも高い生体活性を有し、欠損箇所へ補填後、気孔内
部に新生骨が増生、侵入し、生体組織と一体化しやすい
補填材である。しかしこの補填材は、材料自身の機械的
強度が十分でないことからその使用部位が著しく制限さ
れるという欠点を有する。
Under these circumstances, it has been attempted to artificially produce a cancellous bone-like filling material. As a typical example, porous ceramics such as hydroxyapatite have been proposed. Hydroxyapatite has good biocompatibility,
Moreover, it is a filling material having high bioactivity and, after filling in a defective portion, new bone grows and penetrates into the pores and is easily integrated with living tissue. However, this filling material has a drawback that its use site is significantly limited because the mechanical strength of the material itself is not sufficient.

【0004】そこで、機械的強度の高い補填材として、
アパタイト(Ca10(PO46 O)、ウオラストナイ
ト(CaO・SiO2 )等の結晶を析出した多孔質結晶
化ガラスが特公平2−49260号において開示されて
いる。
Therefore, as a supplementary material having high mechanical strength,
Japanese Patent Publication No. 2-49260 discloses a porous crystallized glass in which crystals such as apatite (Ca 10 (PO 4 ) 6 O) and wollastonite (CaO · SiO 2 ) are deposited.

【0005】[0005]

【発明が解決しようとする課題】上記特公平2−492
60号に開示の多孔質結晶化ガラスは、ガラス粉末と可
燃性物質粒子を均一に混合して成形した後、加熱して可
燃性物質粒子を燃焼除去するとともに、ガラス粉末を焼
結、結晶化させることにより作製される。
[Patent Document 1] Japanese Patent Publication No. 2-492
The porous crystallized glass disclosed in No. 60 is obtained by uniformly mixing and molding glass powder and combustible substance particles, and then burning the combustible substance particles by heating to sinter and crystallize the glass powder. It is produced by

【0006】しかしながら、このような方法で作製され
る多孔質結晶化ガラスは、骨欠損部に補填しても気孔内
部への体液の流通性が悪いために新生骨が増生、侵入し
にくく、生体組織と一体化するのに長時間を要する。ま
た可燃性物質を多量に用いるため、その燃焼除去の際に
ガラスが変質し、焼結性が低下する。このため得られた
結晶化ガラスの強度が低いという問題を有している。
However, since the porous crystallized glass produced by such a method has a poor fluidity of the body fluid into the pores even if it is filled in the bone defect portion, new bone is unlikely to grow and invade, so It takes a long time to integrate with the tissue. Further, since a large amount of combustible substance is used, the glass is altered when it is burnt and removed, and the sinterability decreases. Therefore, there is a problem that the strength of the obtained crystallized glass is low.

【0007】本発明の目的は、機械的強度が高く、しか
も生体組織と短時間に一体化する多孔質結晶化ガラスの
製造方法を提供することである。
An object of the present invention is to provide a method for producing a porous crystallized glass which has high mechanical strength and can be integrated with living tissue in a short time.

【0008】[0008]

【課題を解決するための手段】本発明者等は種々の研究
を行った結果、新生骨の増生、侵入を容易にするために
は、材料自身に生体親和性や生体活性があることの他
に、海綿骨と同様の構造、即ち、三次元的に連続した外
部連通孔を有する三次元網状構造でなければならないこ
とを見いだし、本発明を提案するに至った。
As a result of various studies, the present inventors have found that the material itself has biocompatibility and bioactivity in order to facilitate the growth and invasion of new bone. Furthermore, they have found that the structure must be similar to that of cancellous bone, that is, a three-dimensional network structure having three-dimensionally continuous external communication holes, and have proposed the present invention.

【0009】即ち、本発明の多孔質結晶化ガラスの製造
方法は、重量百分率で、SiO2 22〜50%、P2
5 8〜30%、CaO 20〜53%、MgO 1〜1
6%、F2 0.1〜2%、Al23 0〜9%、B2
3 0〜5%の組成を有するガラス粉末を、有機溶剤、バ
インダーと混合してスラリーにし、該スラリーを三次元
網状構造を有する有機質多孔体に含浸させ、乾燥させた
後、熱処理することによって該有機質多孔体及びバイン
ダーを燃焼除去するとともに、該ガラス粉末を焼結、結
晶化させることを特徴とする。
That is, in the method for producing a porous crystallized glass of the present invention, the weight percentage is SiO 2 22 to 50%, P 2 O.
5 8~30%, CaO 20~53%, MgO 1~1
6%, F 2 0.1-2%, Al 2 O 3 0-9%, B 2 O
A glass powder having a composition of 30 to 5% is mixed with an organic solvent and a binder to form a slurry, and the slurry is impregnated into an organic porous body having a three-dimensional network structure, dried, and then heat-treated. It is characterized in that the organic porous material and the binder are burned and removed, and the glass powder is sintered and crystallized.

【0010】[0010]

【作用】本発明の多孔質結晶化ガラスの製造方法によれ
ば、体液が流通しやすい三次元網状構造を有する多孔体
が形成される。また、生体親和性を有するアパタイト
と、機械的強度が高く、生体活性を有するウオラストナ
イトや機械的強度の高いジオプサイド(CaO・MgO
・2SiO2 )が析出するため、得られる多孔質結晶化
ガラスはこれらの特性に優れている。しかも可燃性物質
の使用量が少なく、ガラスの変質が起こらない。
According to the method for producing a porous crystallized glass of the present invention, a porous body having a three-dimensional network structure in which body fluid can easily flow is formed. Further, biocompatible apatite, wollastonite having high mechanical strength and bioactivity, and diopside (CaO.MgO) having high mechanical strength.
.2SiO 2 ) is deposited, and thus the obtained porous crystallized glass is excellent in these characteristics. Moreover, the amount of flammable substances used is small, and the glass does not deteriorate.

【0011】以下に、本発明において使用するガラス粉
末の組成を上記のように限定した理由を述べる。
The reason why the composition of the glass powder used in the present invention is limited as described above will be described below.

【0012】SiO2 はウオラストナイトやジオプサイ
ドの構成成分であり、その含有量は22〜50%であ
る。SiO2 が22%より少ないとこれらの結晶が少量
しか析出せず、結晶化ガラスの機械的強度が不十分とな
り、50%より多いとガラス融液の粘度が高くなってガ
ラスの溶融が困難になるとともに、アパタイト結晶の析
出量が少なくなる。
SiO 2 is a constituent of wollastonite and diopside, and its content is 22 to 50%. If the SiO 2 content is less than 22%, only a small amount of these crystals will precipitate, and the mechanical strength of the crystallized glass will be insufficient. If the SiO 2 content is more than 50%, the viscosity of the glass melt will increase, making it difficult to melt the glass. In addition, the precipitation amount of apatite crystals decreases.

【0013】P25 はアパタイトの構成成分であり、
その含有量は8〜30%である。P25 が8%より少
ないと失透性が高くなってガラスの溶融が困難になると
ともに、アパタイトが少量しか析出しなくなる。また3
0%より多いとウオラストナイトやジオプサイドの析出
量が少なくなる。
P 2 O 5 is a constituent of apatite,
Its content is 8-30%. When P 2 O 5 is less than 8%, the devitrification becomes high and the glass becomes difficult to melt, and only a small amount of apatite precipitates. Again 3
If it is more than 0%, the amount of wollastonite and diopside deposited will be small.

【0014】CaOはアパタイト、ウオラストナイト及
びジオプサイドの構成成分であり、その含有量は20〜
53%である。CaOが20%より少ないとこれらの結
晶が少量しか析出せず、53%より多いと融液がガラス
になり難い。
CaO is a constituent of apatite, wollastonite and diopside, and the content thereof is 20-.
53%. If the content of CaO is less than 20%, only a small amount of these crystals precipitates, and if the content of CaO is more than 53%, it is difficult for the melt to become glass.

【0015】MgOはジオプサイドの構成成分であり、
その含有量は1〜16%である。MgOが1%より少な
いと融液がガラスになり難く、16%より多いとアパタ
イトやウオラストナイトが少量しか析出しなくなる。
MgO is a constituent of diopside,
Its content is 1 to 16%. If MgO is less than 1%, it is difficult for the melt to become glass, and if it is more than 16%, only a small amount of apatite or wollastonite is precipitated.

【0016】F2 は核形成成分であり、その含有量は
0.1〜2%である。F2 が0.1%より少ないと核形
成が不十分であり、2%より多いと結晶化速度が速くな
って焼結性が悪くなる。
F 2 is a nucleating component, and its content is 0.1-2%. When F 2 is less than 0.1%, the nucleation is insufficient, and when it is more than 2%, the crystallization rate is increased and the sinterability is deteriorated.

【0017】Al23 の含有量は0〜9%である。A
23 が9%より多いと生体親和性が悪くなる。
The content of Al 2 O 3 is 0 to 9%. A
If l 2 O 3 is more than 9%, the biocompatibility becomes poor.

【0018】B23 の含有量は0〜5%である。B2
3 が5%より多いと生体組織との一体化に長時間を要
する。なお、本発明において使用するガラス粉末は上記
成分の他に、Li2 O、Na2 O、K2 O、SrO、T
iO2 、ZrO2 、Nb25 、Ta25 の群から選
ばれる1種又は2種以上を合量で10%以下含有するこ
とができる。
The content of B 2 O 3 is 0 to 5%. B 2
When O 3 is more than 5%, it takes a long time to integrate with living tissue. The glass powder used in the present invention includes Li 2 O, Na 2 O, K 2 O, SrO and T in addition to the above components.
One or two or more selected from the group consisting of iO 2 , ZrO 2 , Nb 2 O 5 and Ta 2 O 5 can be contained in a total amount of 10% or less.

【0019】次に、本発明の多孔質結晶化ガラスの製造
方法を説明する。
Next, a method for producing the porous crystallized glass of the present invention will be described.

【0020】まず、上記組成よりなるガラス粉末を有機
溶剤、バインダーと混合してスラリーにする。通常、分
散媒としては水を使用するが、上記した系のガラスは耐
水性が悪く、水と接すると侵食されて焼結性が低下する
ため、水の代わりに有機溶剤を使用する。有機溶剤とし
ては乾燥し易いように沸点が200℃以下のもの、特に
メタノール、エタノール、プロパノール、ブタノール等
のアルコール類を単独又は混合して使用するのが好まし
い。またバインダーには種々のものが使用できるが、特
にポリビニルブチラール(PVB)が好ましい。また有
機溶剤及びバインダーの混合量は、ガラス粉末100重
量%に対して、各々20〜100%、0.5〜4%が好
ましい。次に、スラリーを三次元網状構造を有する有機
質多孔体(例えばウレタンフォーム)に含浸させ、乾燥
させる。その後、これらを熱処理して有機質多孔体及び
バインダーを燃焼除去するとともに、ガラス粉末を焼
結、結晶化させることにより、三次元網状構造を有する
多孔質結晶化ガラスを得ることができる。
First, a glass powder having the above composition is mixed with an organic solvent and a binder to form a slurry. Usually, water is used as the dispersion medium. However, the glass of the above-mentioned system has poor water resistance and is corroded by contact with water to reduce the sinterability. Therefore, an organic solvent is used instead of water. As the organic solvent, one having a boiling point of 200 ° C. or lower, particularly alcohols such as methanol, ethanol, propanol and butanol, is preferably used alone or in combination so as to be easily dried. Although various binders can be used, polyvinyl butyral (PVB) is particularly preferable. Further, the mixing amounts of the organic solvent and the binder are preferably 20 to 100% and 0.5 to 4% with respect to 100% by weight of the glass powder. Next, the slurry is impregnated into an organic porous body having a three-dimensional network structure (for example, urethane foam) and dried. Thereafter, these are heat-treated to burn and remove the organic porous material and the binder, and the glass powder is sintered and crystallized to obtain a porous crystallized glass having a three-dimensional network structure.

【0021】なお、得られる結晶化ガラスの平均孔径及
び気孔率は、使用する有機質多孔体を適宜選択すること
により、また含浸させるスラリーの量を調整することに
より所望の値を得ることが可能であるが、以下の理由か
ら平均孔径は20〜2000μm、気孔率は66〜95
体積%が好ましい。即ち、平均孔径が20μmより小さ
いと新生骨が侵入できず、2000μmより大きいと十
分な機械的強度が得られない。気孔率が66%より小さ
いと十分な量の新生骨が侵入せず、また独立気孔を含み
やすくなる。一方、気孔率が95%より大きいと多孔体
の骨格構造が崩れやすくなり、十分な機械的強度が得ら
れない。
The average pore diameter and porosity of the obtained crystallized glass can be obtained at desired values by appropriately selecting the organic porous material to be used and by adjusting the amount of the slurry to be impregnated. However, the average pore size is 20 to 2000 μm and the porosity is 66 to 95 for the following reasons.
Volume% is preferred. That is, if the average pore size is smaller than 20 μm, new bone cannot penetrate, and if it is larger than 2000 μm, sufficient mechanical strength cannot be obtained. When the porosity is less than 66%, a sufficient amount of new bone does not penetrate and it is easy to include independent pores. On the other hand, when the porosity is higher than 95%, the skeleton structure of the porous body is likely to collapse, and sufficient mechanical strength cannot be obtained.

【0022】[0022]

【実施例】以下、本発明の多孔質結晶化ガラスの製造方
法を実施例及び比較例に基づいて説明する。
EXAMPLES The method for producing the porous crystallized glass of the present invention will be described below based on Examples and Comparative Examples.

【0023】(実施例)表1は本発明の実施例(試料N
o.1〜5)を示すものである。
(Example) Table 1 shows an example of the present invention (Sample N).
o. 1 to 5).

【0024】[0024]

【表1】 [Table 1]

【0025】試料No.1〜5は次のようにして調製し
た。表中の組成になるようにガラス原料を調合し、白金
坩堝にいれて1400〜1600℃で3時間溶融し、ロ
ール成形した後、ボールミルにて粉砕し、200メッシ
ュの篩で分級した。このガラス粉末100重量%に対し
て、エタノール(一級)30%、PVB3%を混合して
スラリーとし、ウレタンフォームに含浸して乾燥させた
後、1時間に30〜300℃の割合で昇温し、1000
〜1200℃で焼成することにより三次元網状構造を有
する試料を得た。
Sample No. 1-5 were prepared as follows. Glass raw materials were blended so as to have the composition shown in the table, put in a platinum crucible, melted at 1400 to 1600 ° C. for 3 hours, roll-molded, pulverized with a ball mill, and classified with a 200-mesh sieve. To 100% by weight of this glass powder, 30% of ethanol (first grade) and 3% of PVB were mixed to form a slurry, which was impregnated in urethane foam and dried, and then heated at a rate of 30 to 300 ° C. for 1 hour. , 1000
A sample having a three-dimensional network structure was obtained by firing at ˜1200 ° C.

【0026】表から明らかなように、各試料は平均孔径
が150〜400μm、気孔率が68〜80%であっ
た。またX線回折により析出結晶を求めたところ、試料
No.1がアパタイトとウオラストナイトを析出してお
り、試料No.2〜5はさらにジオプサイドを析出して
いた。
As is apparent from the table, each sample had an average pore diameter of 150 to 400 μm and a porosity of 68 to 80%. Further, when the precipitated crystal was obtained by X-ray diffraction, the sample No. Sample No. 1 has apatite and wollastonite precipitated. In Nos. 2 to 5, diopside was further precipitated.

【0027】次に各試料を10×10×10mmの大き
さに切断し、オートグラフにより圧縮強度を測定したと
ころ、表に示すように121〜167kg/cm2 の値
を示した。また、犬の大腿骨に人為的に骨欠損部(4φ
×10mm)を形成し、各試料を充填して術後の経過を
観察したところ、2週間後、すべての試料において気孔
内部に新生骨の形成が認められた。
Next, each sample was cut into a size of 10 × 10 × 10 mm, and the compressive strength was measured by an autograph. As shown in the table, values of 121 to 167 kg / cm 2 were shown. In addition, the bone defect (4φ
(10 mm) was formed, each sample was filled and the post-operative course was observed. After 2 weeks, formation of new bone was observed inside the pores in all the samples.

【0028】(比較例1)湿式法により合成した水酸化
アパタイトを乾燥させ、800℃で仮焼した後、粉砕
し、200メッシュの篩で分級した。次に、この水酸化
アパタイト粉末100重量%に対して、エタノール(一
級)30%、PVB3%を混合してスラリーとし、ウレ
タンフォームに含浸させ、乾燥させた後、1時間に30
℃の割合で昇温し、1200℃で焼成した。このように
して得られた試料は三次元網状構造を有し、平均孔径が
200μm、気孔率が70%であった。
Comparative Example 1 Hydroxyapatite synthesized by the wet method was dried, calcined at 800 ° C., pulverized and classified with a 200 mesh sieve. Next, 100% by weight of this hydroxyapatite powder was mixed with 30% of ethanol (first grade) and 3% of PVB to form a slurry, which was impregnated in urethane foam and dried, and then 30% per hour.
The temperature was raised at a rate of ° C and firing was performed at 1200 ° C. The sample thus obtained had a three-dimensional network structure and had an average pore diameter of 200 μm and a porosity of 70%.

【0029】この試料の圧縮強度及び新生骨の形成速度
を実施例と同様にして測定したところ、3週間後に気孔
内部に新生骨の形成が認められた。しかしながら試料の
圧縮強度は20kg/cm2 と低かった。
When the compressive strength and the rate of new bone formation of this sample were measured in the same manner as in the example, formation of new bone was observed within the pores after 3 weeks. However, the compressive strength of the sample was as low as 20 kg / cm 2 .

【0030】(比較例2)表の試料No.1の組成を有
するガラスを粉砕して200メッシュの篩で分級した
後、粒径200μmのポリメチルメタクリレート(PM
MA)のビーズに少量のパラフィンを加えたものを、ガ
ラス粉末に対して60重量%加えて加熱混合し、ビーズ
表面をガラス粉末で薄く被覆した。次いで、これを金型
に入れ、600kg/cm2 の圧力を加えて成形し、1
時間に30℃の割合で昇温し、1200℃で焼成して試
料を得た。このようにして得られた試料は、独立した球
状の気孔や、球状の気孔が球の接点で連結したような連
続気孔を有する多孔体であり、三次元網状構造を有する
ものではなかった。また平均孔径200μm、気孔率7
0%であり、アパタイト及びウオラストナイトを析出し
ていた。
(Comparative Example 2) Sample No. in the table. Glass having a composition of 1 was crushed and classified with a 200-mesh sieve, and then polymethylmethacrylate (PM
(MA) beads to which a small amount of paraffin was added were added to the glass powder in an amount of 60% by weight and mixed by heating, and the surface of the beads was thinly coated with the glass powder. Then, this is put into a mold, and a pressure of 600 kg / cm 2 is applied to mold it.
The temperature was raised at a rate of 30 ° C. per hour, and the sample was baked at 1200 ° C. to obtain a sample. The sample thus obtained was a porous body having independent spherical pores or continuous pores in which spherical pores were connected at the contact points of the spheres, and did not have a three-dimensional network structure. The average pore diameter is 200 μm and the porosity is 7
It was 0%, and apatite and wollastonite were precipitated.

【0031】この試料の圧縮強度及び新生骨の形成速度
を実施例と同様の方法で測定したところ、圧縮強度は1
10kg/cm2 であり、試料No.1に比べて36k
g/cm2 も低かった。また3週間を経過しても気孔内
部には新生骨の形成がほとんど認められなかった。
The compressive strength and the rate of new bone formation of this sample were measured in the same manner as in the example, and the compressive strength was 1
10 kg / cm 2 and sample No. 36k compared to 1
The g / cm 2 was also low. Even after 3 weeks, formation of new bone was hardly observed inside the stomata.

【0032】[0032]

【発明の効果】以上説明したように、本発明の多孔質結
晶化ガラスの製造方法によれば、機械的強度が高く、し
かも新生骨が増生、侵入しやすい三次元網状構造を有す
る多孔質結晶化ガラスを作製することが可能である。
As described above, according to the method for producing a porous crystallized glass of the present invention, the porous crystal has a high mechanical strength and has a three-dimensional network structure in which new bone is likely to grow and penetrate. It is possible to make fog glass.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 重量百分率で、SiO2 22〜50%、
25 8〜30%、CaO 20〜53%、MgO
1〜16%、F2 0.1〜2%、Al230〜9%、
23 0〜5%の組成を有するガラス粉末を、有機溶
剤、バインダーと混合してスラリーにし、該スラリーを
三次元網状構造を有する有機質多孔体に含浸させ、乾燥
させた後、熱処理することによって該有機質多孔体及び
バインダーを燃焼除去するとともに、該ガラス粉末を焼
結、結晶化させることを特徴とする多孔質結晶化ガラス
の製造方法。
1. SiO 2 22 to 50% by weight,
P 2 O 5 8~30%, CaO 20~53%, MgO
1-16%, F 2 0.1-2%, Al 2 O 3 0-9%,
The glass powder having a B 2 O 3 0~5% of the composition, an organic solvent, is mixed with a binder to the slurry, the slurry is impregnated into an organic porous body having a three-dimensional network structure, dried, heat-treated A method for producing a porous crystallized glass, which comprises burning and removing the organic porous material and the binder, and sintering and crystallizing the glass powder.
JP3292461A 1991-10-11 1991-10-11 Production of porous crystallized glass Pending JPH0595994A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3292461A JPH0595994A (en) 1991-10-11 1991-10-11 Production of porous crystallized glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3292461A JPH0595994A (en) 1991-10-11 1991-10-11 Production of porous crystallized glass

Publications (1)

Publication Number Publication Date
JPH0595994A true JPH0595994A (en) 1993-04-20

Family

ID=17782109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3292461A Pending JPH0595994A (en) 1991-10-11 1991-10-11 Production of porous crystallized glass

Country Status (1)

Country Link
JP (1) JPH0595994A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019121992A1 (en) * 2017-12-19 2019-06-27 Coorstek Membrane Sciences As Sealing compositions
US11731897B2 (en) 2017-12-19 2023-08-22 Coorstek Membrane Sciences As Sealing compositions

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019121992A1 (en) * 2017-12-19 2019-06-27 Coorstek Membrane Sciences As Sealing compositions
CN111741932A (en) * 2017-12-19 2020-10-02 库斯泰克膜科技有限公司 Sealing composition
US11731897B2 (en) 2017-12-19 2023-08-22 Coorstek Membrane Sciences As Sealing compositions

Similar Documents

Publication Publication Date Title
Bohner et al. β-tricalcium phosphate for bone substitution: Synthesis and properties
US9656900B2 (en) Methods to fabricate nano-macro porous glass using a water soluble pore former
JP4358374B2 (en) Method for producing biological implant material
Boccaccini et al. Sintering, crystallisation and biodegradation behaviour of Bioglass®-derived glass–ceramics
US4652534A (en) High-strength glass ceramic containing apatite crystals and a large quantity of wollastonite crystals and process for producing same
DE68909712T2 (en) Biomedical material and process for its manufacture.
US20080038534A1 (en) Porous Bioactive Glass And Preparation Method Thereof
DE102004050095A1 (en) Ca0-Mg0-SiO2-based biologically active glass and sintered calcium phosphate glass
Boccardi et al. Bioactive glass-ceramic scaffolds: Processing and properties
JPS6222632B2 (en)
JPH075397B2 (en) Method for producing continuous porous porous sintered body mainly composed of glass ceramics
Ramlee et al. Sol-gel derived bioactive glass scaffolds incorporated with polyvinyl-alcohol and pluronic P123 polymers using sponge replication technique
DE10063119B4 (en) Process for the preparation of a synthetic filling material and temporary bone defect filler
US9775721B2 (en) Resorbable interbody device
JPH0595994A (en) Production of porous crystallized glass
CN107601902B (en) Rubidium-containing bioglass ceramic and preparation method thereof
US9125967B2 (en) Fluorapatite glass-ceramics
JP2001046489A (en) Bone prosthesis
JPH04193742A (en) Manufacture of porous crystallized glass
JPH04193741A (en) Porous crystallized glass
JPH0531166A (en) Biologically active composite implant material
JPH0555150B2 (en)
Adam et al. Preparation and characterization of macroporous bioactive glass ceramic made via sol-gel route and powder sintering method
JP3063781B2 (en) Crystallized glass porous implant material
JPH0249260B2 (en)