JPH059496B2 - - Google Patents

Info

Publication number
JPH059496B2
JPH059496B2 JP25247484A JP25247484A JPH059496B2 JP H059496 B2 JPH059496 B2 JP H059496B2 JP 25247484 A JP25247484 A JP 25247484A JP 25247484 A JP25247484 A JP 25247484A JP H059496 B2 JPH059496 B2 JP H059496B2
Authority
JP
Japan
Prior art keywords
phase
cobalt
nickel
alloy
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP25247484A
Other languages
Japanese (ja)
Other versions
JPS61130431A (en
Inventor
Akira Yazawa
Tomio Sakagaki
Kazuo Sezaki
Kenji Matsuda
Kazuo Kanazawa
Mitsuo Hayashi
Katsuo Katada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP59252474A priority Critical patent/JPS61130431A/en
Priority to US06/802,248 priority patent/US4657585A/en
Publication of JPS61130431A publication Critical patent/JPS61130431A/en
Publication of JPH059496B2 publication Critical patent/JPH059496B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

「産業上の利用分野」 本発明は、原子力発電プラントの固体廃棄物の
減容除染(あるいは処理)、マンガン団塊製錬等
におけるコバルト・ニツケル等の分離または鉄合
金の濃縮等に有利な合金からのコバルト・ニツケ
ル等を分離する方法に関するものである。 「従来の技術とその問題点」 一般に、鉄合金からコバルト・ニツケル等の鉄
系金属を分離することは技術的に困難であるとさ
れている。 このような技術は、例えば、原子力発電プラン
トの解体、撤去に伴う不燃性固体廃棄物の処理、
マンガン団塊製錬等におけるコバルト・ニツケル
の分離または鉄合金の濃縮処理等を実施する場合
に、重要な技術とされている。 原子力発電プラントにおいて発生する不燃性廃
棄物の例を挙げると、空調用フイルタ、保温材、
金属類、コンクリート等の他、寿命のきた原子力
発電プラントの解体、撤去に伴つて発生する大量
の不燃性廃棄物が予測される。これらは、単に容
積を減少させるだけではなく、廃棄物に混合、付
着している放射性物質を取り除く、いわゆる除染
もできる方法を開発することが極めて重要であ
り、その開発が急がれている。 また、鉱物資源に乏しい我が国では、深海底鉱
物等の未利用資源の活用、あるいはスクラツプの
再利用が必要である。このような技術の開発に際
して、例えば鉄合金からコバルト・ニツケル等の
鉄系金属を効率良く分離することが要求されてい
る。 従来、上記鉄系金属を分離する方法は、例えば
FeとCoが元素の周期率表において、同じ属の
隣に同士であることからも知られているように、
物理的性質及び化学的性質が非常に似ており、例
えばコバルトが付着、あるいは混合した炭素鋼や
ステンレス鋼からコバルトを分離する場合におけ
る有効な方法は、まだ提案されていない。 「発明の目的」 本発明は、一種の高温溶媒抽出法によつて、当
初の鉄合金等を極低濃度コバルト・ニツケルの鉄
合金と、コバルト・ニツケルが濃縮された鉄合金
とに分別する方法を提供するものであり、また、
原子力発電プラントからの固体廃棄物中の放射性
コバルトを鉄合金から有効に分離して、極低濃度
コバルト鉄合金とすることと、濃縮コバルト鉄合
金の容積を大幅に低減することとを可能とする有
用な手段を提供し、さらに、マンガン団塊等の低
品位鉱やスクラツプの乾式処理に適用することに
より、コバルトやニツケルの湿式精錬・採取に必
要な薬剤や用水の低減等を達成することを目的と
するものである。 「発明の構成及び作用」 これらの目的の達成のため、本発明では、第1
図に示すように、 『鉄合金を錫等の溶融浴に溶解させる工程』 『珪素の添加工程』 『Fe−Si相分離工程』 『珪素の再添加工程』 『Co・Ni−Si相分離工程』 『Siの除去工程』 『Co・Ni・Feを含む鉄合金の再溶解工程』 等を有機的に結合させているものである。 そして、『鉄合金を錫等の溶融浴に溶解させ
る工程』においては、コバルト・ニツケル・鉄か
らなる合金等を、矢印で示すように投入して、そ
の10倍以上の重量を有する錫・鉛・その合金等の
溶融浴に溶解させ、 『珪素の添加工程』においては、実線で示す
ように、Siの添加によつて、Pb,Sn中のFeの溶
解度を減少せしめることにより、Fe−Si相とし
てを溶融浴から浮上させるとともに、Co・Niを
溶融浴の中に残すようになし、 『Fe−Si相分離工程』においては、浮上状
態の〔Fe−Si相〕を矢印で示すように、混合物
として分離回収し、 『珪素の再添加工程』においては、矢印で示
すように珪素を溶融浴に再度添加して、Pb,Sn
に対応するCo・Niそれぞれの溶解度を減少せし
めて、実線で示すように〔Co・Ni−Si相〕の生
成を促進し、また、前記分離工程で残された少量
のFeに対してもSiと結合化を図つて、これらの
混合物を溶融浴から浮上させ、 『Co・Ni−Si相分離工程』においては、矢
印で示すように、浮上状態の〔Fe・Co・Ni・Si
厚合物〕を分離して回収し、 『Siの除去工程』においては、低温酸化法等
の従来技術を利用して、〔Fe・Co・Ni・Si混合
物〕から、Siを酸化させてSiO2とする等により
除去し、 『Co・Ni.Fe合金の再溶解工程』において
は、〔Fe・Co・Ni混合物〕を矢印で示すように、
溶融浴に再度投入して溶解させ、からの操作を
繰り返すものである。なお、の工程を省略し、
前記の工程でに使用する合金を〔Fe・Co・
Ni・Si混合物〕に添加し、Siの有効利用を図る
こともできる。 また、第1図中破線は、実線よりも相対的に弱
い結合力を表している。 このように、本発明では、溶融浴中の各合属の
溶解度の差を利用して2液相を生成せしめ、該2
相に対するFe・Co・Ni相互の分配比の差により
分離あるいは濃縮を図るものである。 この原理を第2図及び第3図により補足説明す
る。第2図はFe−Sn二元系状態図、第3図はFe
−Sn−Si三元系状態図である。第2図から温度
範囲が1200〜1400℃ではFeがSnに約12%まで溶
け込むことが理解できよう。また、第3図から
1350℃においては、第1表に示すように、例えば
〔a〕という2液相共存と、〔b〕という2液相共
存を実現できることが理解でき、〔a〕では、Sn
の中のFeが、ほとんど〔Fe−Si相〕として分離
されることが理解できる。そして、〔b〕ではSn
中のFeがすべて〔Fe−Si−Sn相〕として分離さ
れる。
"Industrial Application Field" The present invention is an alloy that is advantageous for volume reduction and decontamination (or treatment) of solid waste from nuclear power plants, separation of cobalt and nickel, etc., and concentration of iron alloys in manganese nodule smelting, etc. This article relates to a method for separating cobalt, nickel, etc. from "Prior Art and its Problems" Generally, it is considered technically difficult to separate iron-based metals such as cobalt and nickel from iron alloys. Such technology is used, for example, to treat non-combustible solid waste associated with the dismantling and removal of nuclear power plants,
It is considered to be an important technology when separating cobalt and nickel or concentrating iron alloys in manganese nodule smelting. Examples of non-combustible waste generated at nuclear power plants include air conditioning filters, heat insulation materials,
In addition to metals, concrete, etc., a large amount of non-combustible waste is expected to be generated as a result of the dismantling and removal of nuclear power plants that have reached the end of their service life. It is extremely important to develop a method that not only reduces the volume of waste but also removes the radioactive materials mixed with and attached to the waste, so-called decontamination, and this development is urgently needed. . In addition, in Japan, which is poor in mineral resources, it is necessary to utilize unused resources such as deep-sea minerals or reuse scrap. In developing such technology, it is required to efficiently separate iron-based metals such as cobalt and nickel from iron alloys. Conventionally, methods for separating the above-mentioned iron-based metals include, for example,
As is known from the fact that Fe and Co are next to each other in the same genus on the periodic table of elements,
No effective method has yet been proposed for separating cobalt from carbon steel or stainless steel, which have very similar physical and chemical properties, such as carbon steel or stainless steel to which cobalt is attached or mixed. ``Object of the Invention'' The present invention is a method of separating an original iron alloy, etc. into an iron alloy with extremely low concentration of cobalt and nickel and an iron alloy with a concentrated cobalt and nickel by a kind of high-temperature solvent extraction method. and also,
It is possible to effectively separate radioactive cobalt in solid waste from nuclear power plants from iron alloys to produce extremely low concentration cobalt-iron alloys, and to significantly reduce the volume of concentrated cobalt-iron alloys. By providing a useful method and applying it to the dry processing of low-grade ores such as manganese nodules and scrap, the aim is to reduce the amount of chemicals and water required for hydrometallurgical smelting and extraction of cobalt and nickel. That is. "Structure and operation of the invention" In order to achieve these objectives, the present invention provides the first
As shown in the figure, ``Process of dissolving iron alloy in a molten bath of tin, etc.'' ``Silicon addition process'' ``Fe-Si phase separation process'' ``Silicon re-addition process'' ``Co/Ni-Si phase separation process '' ``Si removal process'' ``Remelting process of iron alloys containing Co, Ni, and Fe'' etc. are organically combined. In the process of dissolving iron alloys in a molten bath of tin, etc., alloys made of cobalt, nickel, iron, etc. are charged in the direction shown by the arrows, and tin and lead, which are more than 10 times the weight of the alloys, are added as shown by the arrows.・In the ``silicon addition step,'' as shown by the solid line, Fe-Si is dissolved in a molten bath of the alloy, etc. In the ``Fe-Si phase separation process'', the ``Fe-Si phase'' in the floating state is floated from the molten bath, while leaving Co and Ni in the molten bath. In the ``silicon re-addition step,'' silicon is added to the molten bath again as shown by the arrow to form Pb, Sn.
As shown by the solid line, the solubility of Co and Ni corresponding to the In the ``Co-Ni-Si phase separation process,'' as shown by the arrow, the floating state [Fe-Co-Ni-Si
In the ``Si removal process,'' conventional techniques such as low-temperature oxidation methods are used to oxidize Si from the [Fe, Co, Ni, and Si mixture] to form SiO. 2 , etc., and in the "Remelting process of Co/Ni.Fe alloy", [Fe/Co/Ni mixture] is removed as shown by the arrow.
The procedure is repeated by pouring it into the melting bath again and dissolving it, and repeating the process. In addition, the step of is omitted,
The alloy used in the above process is [Fe・Co・
It can also be added to a Ni/Si mixture to make effective use of Si. Moreover, the broken line in FIG. 1 represents a bonding force that is relatively weaker than the solid line. As described above, in the present invention, two liquid phases are generated by utilizing the difference in solubility of each metal in the melt bath, and the two liquid phases are generated.
Separation or concentration is achieved based on the difference in the distribution ratio of Fe, Co, and Ni to the phases. This principle will be supplementarily explained with reference to FIGS. 2 and 3. Figure 2 is the Fe-Sn binary system phase diagram, Figure 3 is Fe
-Sn-Si ternary system phase diagram. From Figure 2, it can be seen that Fe dissolves into Sn up to about 12% in the temperature range of 1200 to 1400°C. Also, from Figure 3
At 1350°C, as shown in Table 1, it is possible to realize, for example, the coexistence of two liquid phases [a] and the coexistence of two liquid phases [b].
It can be seen that most of the Fe in is separated as [Fe-Si phase]. And in [b] Sn
All the Fe inside is separated as [Fe-Si-Sn phase].

【表】 本発明では、この原理を利用するとともに、こ
の〔a〕の〔Sn−Fe相〕と〔Fe−Si相〕の間の
Co・Niの分配比が、Feのそれよりも大きいこと
を利用するものである。 「第1の実施例」 第4図に示すように、Ar雰囲気下において、
1000KgのSnを1350℃に保持し、1%Coを含む
〔Fe・Co合金〕を100Kg投入し、充分撹拌して溶
解せしめた後、Si23.1Kgを添加溶解すると、0.85
%Feと0.10%Siを含むSn相1008.4Kgの上に、79%
Fe・20%Si・1%sSnからなる〔Fe−Si相〕
115.7Kgが浮上した。該〔Fe−Si相〕のCo含有量
は0.54%であり、当初の半分に脱コバルトされた
鉄合金である。該〔Fe−Si相〕を出湯分離した
後、Sn浴に、さらにSi5.4Kgを添加溶解すると、
0.12%Siの他は、Fe・Coをほとんど含まないSn
相998.8Kgの上に、58%Fe・33.8Si・8.2%Snから
なる〔Fe−Si相〕15.4Kgが浮上した。該〔Fe−Si
相〕のCo含有量は、2.38%であり、当初の約2.5
倍にコバルトが濃縮された鉄合金が得られた。 「第2の実施例」 第5図に示すように、Ar雰囲気下において、
1000KgのSnを1350℃に保持し、Fe・1%Co・1
%Ni合金を30Kg投入し、充分撹拌して溶解せし
めた後、Si12.0Kgを添加溶解すると、Sn相1002.5
Kgと〔Fe−Si相〕39.4Kgが2液共存状態となつ
た。このFe−Si相のCo・Niの含有量は、それぞ
れ0.46%・0.12%であつた。この〔Fe−Si相〕に
〔〕を付記する。〔Fe−Si相〕()を傾注操作
によつて、Sn相と分離した後、Sn浴に、さらに
Si1.7Kgを添加したところ、999.8KgのsSn相と4.56
Kgの〔Fe−Si相〕が共存状態となつた。この
〔Fe−Si相〕を〔Fe−Si相〕()とすると、該
〔Fe−Si相〕()のCo・Ni含有量は、それぞれ
2.63%・5.50%であつた。 〔Fe−Si相〕()をSn相と分離した後に、
〔Fe−Si相〕()をSn浴に戻し、さらに〔Fe−
Si相〕()でSiが27.8%になるようにSiを調整
すると、1002.4KgのSn相と35.3Kgの〔Fe−Si相〕
()が共存状態となつた。該〔Fe−Si相〕()
のCo・Niの含有量は、それぞれ0.29%・0.02%で
あつた。〔Fe−Si相〕()をSn相と分離した後、
Sn浴に1.7KgのSiを添加したところ、〔Fe−Si相〕
()が浮上した。この〔Fe−Si相〕()の
Co・Ni含有量は、それぞれ1.67%・0.90%であつ
た。〔Fe−Si相〕()を分離して、〔Fe−Si相〕
()をSn浴に戻し、〔Fe−Si相〕()を生成せ
しめ、〔Fe−Si相〕()を分離したSn浴に、
再々度Si1.7Kgを添加して、〔Fe−Si相〕()を
浮上させるという操作を繰り返すと、0.10%Co・
0.0004%nNiの〔Fe−Si相〕()27.2Kgと、0.59
%Co・0.002%の〔Fe−Si相〕()4.56Kgが得ら
れた。即ち、溶媒抽出操作4回でコバルトを10分
の1、ニツケル10000分の4に低減した鉄合金を
得ることができた。また、〔Fe−Si相〕()に
は、当初、鉄合金中のニツケル分0.30Kgの23%の
0.25Kg、コバルト分0.30Kgの40%の0.12Kgが回収
され、〔Fe−Si相〕()を含めると、ニツケル
は97.0%、コバルトは65.4%回収された。 「第3の実施例」 本発明者等は、鉄合金からの脱コバルト・脱ニ
ツケル及びその反応工程の中で、副次的、必然的
に発生するコバルト・ニツケルの濃縮について、
錫と鉛の効果を検討し、第2表に示した結果を得
た。
[Table] In the present invention, this principle is utilized and the relationship between the [Sn-Fe phase] and [Fe-Si phase] of [a] is
This takes advantage of the fact that the distribution ratio of Co/Ni is larger than that of Fe. "First Example" As shown in Figure 4, under an Ar atmosphere,
Holding 1000Kg of Sn at 1350℃, adding 100Kg of [Fe/Co alloy] containing 1% Co, stirring thoroughly to dissolve it, then adding and dissolving 23.1Kg of Si, the result is 0.85
79% on Sn phase 1008.4Kg with %Fe and 0.10%Si
[Fe-Si phase] consisting of Fe, 20%Si, 1%sSn
115.7Kg surfaced. The Co content of the [Fe-Si phase] is 0.54%, and it is an iron alloy in which cobalt has been removed to half of the original content. After the [Fe-Si phase] is tapped and separated, 5.4 kg of Si is further added and dissolved in the Sn bath.
Other than 0.12%Si, Sn contains almost no Fe or Co.
On top of 998.8 kg of phase, 15.4 kg of [Fe-Si phase] consisting of 58% Fe, 33.8 Si, and 8.2% Sn surfaced. [Fe-Si
The Co content of the phase] was 2.38%, which was about 2.5% at the beginning.
An iron alloy with double the cobalt concentration was obtained. "Second Example" As shown in Figure 5, under an Ar atmosphere,
1000Kg of Sn is kept at 1350℃, Fe・1%Co・1
After adding 30 kg of %Ni alloy and dissolving it by stirring thoroughly, 12.0 kg of Si was added and dissolved, resulting in a Sn phase of 1002.5
Kg and [Fe-Si phase] 39.4Kg coexisted in two liquids. The Co and Ni contents of this Fe-Si phase were 0.46% and 0.12%, respectively. Add [ ] to this [Fe-Si phase]. [Fe-Si phase] () is separated from the Sn phase by tilting operation, and then added to the Sn bath.
When 1.7Kg of Si was added, 999.8Kg of sSn phase and 4.56
The [Fe-Si phase] of Kg became coexisting. If this [Fe-Si phase] is called [Fe-Si phase] (), the Co and Ni contents of the [Fe-Si phase] () are respectively
They were 2.63% and 5.50%. After separating [Fe-Si phase] () from Sn phase,
[Fe-Si phase] () is returned to the Sn bath, and then [Fe-
If Si is adjusted so that Si is 27.8% in [Si phase] (), 1002.4Kg of Sn phase and 35.3Kg of [Fe-Si phase]
() has become coexisting. [Fe-Si phase] ()
The contents of Co and Ni were 0.29% and 0.02%, respectively. After separating the [Fe-Si phase] () from the Sn phase,
When 1.7Kg of Si was added to the Sn bath, [Fe-Si phase]
() emerged. This [Fe-Si phase] ()
The Co and Ni contents were 1.67% and 0.90%, respectively. [Fe-Si phase] () is separated and [Fe-Si phase]
Return () to the Sn bath to generate [Fe-Si phase] (), and return [Fe-Si phase] () to the separated Sn bath.
By repeating the operation of adding 1.7 kg of Si again and floating the [Fe-Si phase] (), 0.10% Co・
0.0004% nNi [Fe-Si phase] () 27.2Kg and 0.59
%Co・0.002% [Fe-Si phase] () 4.56 kg was obtained. That is, an iron alloy in which cobalt content was reduced to 1/10 and nickel content to 4/10,000 was obtained through four solvent extraction operations. In addition, [Fe-Si phase] () initially contained 23% of the nickel content of 0.30 kg in the iron alloy.
0.25Kg and 0.12Kg, which is 40% of the cobalt content of 0.30Kg, were recovered, and including the [Fe-Si phase] (), 97.0% of nickel and 65.4% of cobalt were recovered. “Third Example” The present inventors have described the following regarding the concentration of cobalt and nickel that are incidentally and inevitably generated during the removal of cobalt and nickel from iron alloys and the reaction process thereof.
The effects of tin and lead were investigated and the results shown in Table 2 were obtained.

【表】【table】

【表】【table】

【表】 即ち、脱コバルトは、50%Sn−50%Pbで、ま
た脱ニツケルは100%Pbで最も効率良く実施でき
ることになる。第3表は、100%Pb浴を用いて脱
ニツケルを行なつた後、シリコンを添加すること
によつて、Pb中のNiの溶解度を減じ、Ni−Si合
金としてニツケルを回収できることを示すもので
ある。
[Table] In other words, cobalt removal can be carried out most efficiently with 50% Sn-50% Pb, and nickel removal can be carried out most efficiently with 100% Pb. Table 3 shows that by adding silicon after denickeling using a 100% Pb bath, the solubility of Ni in Pb can be reduced and nickel can be recovered as a Ni-Si alloy. It is.

【表】 第2表及び第3表の組み合わせから明らかなよ
うに、この脱ニツケル・ニツケル回収法によれ
ば、1回の操作でFe−Ni合金から、93%の高い
効率で脱ニツケルができ、Pb浴にNi−30%Si以
上になるようにシリコンを添加すると、Pb浴か
らほぼ100%の高い効率でNiを回収できる。 そして、本発明の方法をNi・Coの回収に適用
する場合、Co・Niを含む鉄合金に加炭して融点
を下げ、100%Pb浴に溶解せしめ、2液共存とし
て浮上するFe相を50Sn−50Pb浴に移した後、Pb
浴、Pb−Sn浴に所要量のシリコンを添加すると、
Pb浴からはNi−Si合金が、またPb−Sn浴からは
コバルトが減少させられたFe−Si合金が浮上す
る。該Fe−Si相を除いたSn−Pb浴に、再びシリ
コンを添加すると、コバルトが濃縮されたFe−
Si相が得られる。これらのNi−Si合金及びFe−
Si合金を低温酸化によつて脱シリコンした後、湿
式精錬工程に送ると、必要な薬剤は少なくてす
み、輸送コスト、ハンドリング設備やコストの低
廉化が達成できるものである。即ち、本発明の方
法を適用することにより、資源産出地もしくは洋
上製錬所において、Ni・Coを含む低品位鉱をス
ラグとNi・Coを含む鉄合金とに分離し、有価金
属分の輸送コスト、残渣処理に伴うコストを低減
できる方法を提供することができる。 なお、同様の操作によつて、フエロニツケル中
のNi品位の濃縮や、ステンレス鋼スクラツプの
脱鉄と、Co・Niの濃縮等を行なうことができる
ことは、勿論である。 「その他の応用可能性」 マンガン団塊の製錬において、高炉や電炉のよ
うな冶金炉で還元溶融すると、酸化マンガンを主
体とするスラグと、Co・Ni・Cuを含む銑鉄が得
られることが報告されているが、この鉄合金から
Co・Ni・Cuを回収するために従来提案されてい
る方法、つまり、酸化、硫化工程と酸化加圧浸出
を含む湿式精錬工程を組み合わせた複雑な方法に
代えて、本発明を応用することができる。 「発明の効果」 以上説明したように、本発明は、コバルト・ニ
ツケルを含む鉄合金等を、その10倍以上の錫・
鉛・その合金等の溶融浴に溶解させ、該溶融浴に
対するFeの溶解度を調整する2種類の濃度のシ
リコン添加を行なつて、これら金属の分配比の差
により目的とする金属の抽出、あるいは濃度の調
整を実施するものであるから、次のような優れた
効果を奏する。 大量の2次廃棄物を発生することなく、原子
力発電プラントにおける低汚染鉄合金スクラツ
プの減容処理ができる。 減容処理ばかりではなく、Fe分の再利用を
可能とする除染ができる。 錫、錫−鉛合金に対する鉄の溶解度の変化を
シリコンの添加量によつて調整するため、温度
を変える方法に比較して、熱エネルギ消費量や
溶解炉寿命の点で優れている。 錫、鉛、錫−鉛合金は繰り返し使用できる。 乾式精錬であるため、設備生産性が高い。 Fe・Co・Niを含むマンガン団塊等の低品位
鉱の有価金属の濃縮あるいは抽出に利用でき、
輸送コスト、薬剤消費量、設備面積等を大幅に
低減でき、また、残渣処理の点で湿式法に比べ
て有利な条件で乾式溶練の実用化が可能とな
る。 フエロニツケルのニツケル分の濃縮、高合金
鋼やステンレス鋼のスクラツプからの脱鉄、
Co・Niの濃縮あるいは回収にも利用できる。
[Table] As is clear from the combination of Tables 2 and 3, this nickel removal and nickel recovery method can remove nickel from Fe-Ni alloy with a high efficiency of 93% in one operation. If silicon is added to the Pb bath so that the ratio is Ni-30%Si or more, Ni can be recovered from the Pb bath with a high efficiency of almost 100%. When the method of the present invention is applied to the recovery of Ni and Co, the iron alloy containing Co and Ni is carburized to lower the melting point, and then dissolved in a 100% Pb bath to remove the Fe phase that emerges as two liquids coexist. After transferring to 50Sn−50Pb bath, Pb
When the required amount of silicon is added to the Pb-Sn bath,
A Ni-Si alloy floats from the Pb bath, and a cobalt-depleted Fe-Si alloy floats from the Pb-Sn bath. When silicon is added again to the Sn-Pb bath from which the Fe-Si phase has been removed, the Fe-Si phase is enriched with cobalt.
A Si phase is obtained. These Ni-Si alloys and Fe-
If the Si alloy is desiliconized by low-temperature oxidation and then sent to the hydrometallurgy process, fewer chemicals are required, and transportation costs, handling equipment, and costs can be reduced. That is, by applying the method of the present invention, low-grade ore containing Ni and Co is separated into slag and iron alloy containing Ni and Co at resource producing areas or offshore smelters, and the valuable metals are transported. It is possible to provide a method that can reduce costs and costs associated with residue treatment. It goes without saying that similar operations can be used to enrich Ni in ferronickel, to remove iron from stainless steel scrap, to enrich Co and Ni, and the like. "Other application possibilities" It has been reported that when manganese nodules are smelted and melted by reduction in a metallurgical furnace such as a blast furnace or electric furnace, slag mainly composed of manganese oxide and pig iron containing Co, Ni, and Cu can be obtained. However, from this iron alloy
The present invention can be applied in place of the conventionally proposed method for recovering Co, Ni, and Cu, which is a complex method that combines oxidation, sulfidation, and hydrometallurgical processes including oxidative pressure leaching. can. "Effects of the Invention" As explained above, the present invention enables iron alloys containing cobalt and nickel to be used in a manner that is more than 10 times that of tin and nickel.
Silicon is dissolved in a molten bath of lead or its alloys, etc., and silicon is added at two concentrations to adjust the solubility of Fe in the molten bath, and the target metal can be extracted or Since the concentration is adjusted, the following excellent effects can be achieved. It is possible to reduce the volume of low-contamination iron alloy scrap in nuclear power plants without generating large amounts of secondary waste. In addition to volume reduction processing, it can also perform decontamination that enables the reuse of Fe components. Since changes in the solubility of iron in tin and tin-lead alloys are adjusted by the amount of silicon added, this method is superior in terms of thermal energy consumption and melting furnace life compared to methods that change the temperature. Tin, lead, and tin-lead alloys can be used repeatedly. Because it is a pyrometallurgical process, equipment productivity is high. It can be used to concentrate or extract valuable metals from low-grade ores such as manganese nodules containing Fe, Co, and Ni.
Transportation costs, chemical consumption, facility area, etc. can be significantly reduced, and dry smelting can be put to practical use under more advantageous conditions than wet methods in terms of residue treatment. Concentrating the nickel content of ferro-nickel, removing iron from high-alloy steel and stainless steel scrap,
It can also be used to concentrate or recover Co/Ni.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の鉄合金からコバルト・ニツケ
ル等を分離する方法を模式的に示した工程図、第
2図及び第3図は本発明の原理を説明するための
Fe−Sn二元系状態図及びFe−Sn−Si三元系状態
図、第4図は本発明の第1の実施例の工程図、第
5図は本発明の第2の実施例の工程図である。
Figure 1 is a process diagram schematically showing the method of separating cobalt, nickel, etc. from the iron alloy of the present invention, and Figures 2 and 3 are diagrams for explaining the principle of the present invention.
Fe-Sn binary system phase diagram and Fe-Sn-Si ternary system phase diagram, FIG. 4 is a process diagram of the first embodiment of the present invention, and FIG. 5 is a process diagram of the second embodiment of the present invention. It is a diagram.

Claims (1)

【特許請求の範囲】 1 コバルト・ニツケル・鉄等からなる合金をそ
の10倍以上の重量を有する錫・鉛・その合金等の
溶融浴に溶解させる工程と、該溶融浴に珪素を添
加してFe−Si相を浮上させ分離する工程とを有
することを特徴とする合金からコバルト・ニツケ
ル等を分離する方法。 2 コバルト・ニツケル・鉄等からなる合金をそ
の10倍以上の重量を有する錫・鉛・その合金等の
溶融浴に溶解させる工程と、該溶融浴に珪素を添
加してFe−Si相を浮上させ分離する工程と、該
工程の後に珪素を溶融浴に添加してCo・Ni−Si
相を浮上させ分離する工程とを有することを特徴
とする合金からコバルト・ニツケル等を分離する
方法。 3 コバルト・ニツケル・鉄等からなる合金をそ
の10倍以上の重量を有する錫・鉛・その合金等の
溶融浴に溶解させる工程と、該溶融浴に珪素を添
加してFe−Si相を浮上させ分離する工程と、該
工程の後に珪素を溶融浴に添加してCo・Ni−Si
相を浮上させ分離する工程と、分離したCo・
Ni・Si混合物からSiを除去する工程とを有する
ことを特徴とする合金からコバルト・ニツケル等
を分離する方法。 4 コバルト・ニツケル・鉄等からなる合金をそ
の10倍以上の重量を有する錫・鉛・その合金等の
溶融浴に溶解させる工程と、該溶融浴に珪素を添
加してFe−Si相を浮上させ分離する工程と、該
工程の後に珪素を溶融浴に添加してCo・Ni−Si
相を浮上させ分離する工程と、分離したCo・
Ni・Si混合物のSiを調整する工程と、Siを調整
したCo・Ni混合物を再度錫・鉛・その合金等の
溶融浴に溶解させる工程とを有することを特徴と
する合金からコバルト・ニツケル等を分離する方
法。
[Claims] 1. A step of dissolving an alloy consisting of cobalt, nickel, iron, etc. in a molten bath of tin, lead, their alloys, etc. having a weight of 10 times or more, and adding silicon to the molten bath. A method for separating cobalt, nickel, etc. from an alloy, comprising a step of floating and separating an Fe-Si phase. 2 A process in which an alloy consisting of cobalt, nickel, iron, etc. is dissolved in a molten bath of tin, lead, their alloys, etc. having a weight more than 10 times that of the alloy, and silicon is added to the molten bath to float the Fe-Si phase. After this step, silicon is added to the molten bath to separate Co・Ni−Si.
1. A method for separating cobalt, nickel, etc. from an alloy, comprising a step of floating and separating the phases. 3 The process of dissolving an alloy consisting of cobalt, nickel, iron, etc. into a molten bath of tin, lead, their alloys, etc. having a weight more than 10 times that of cobalt, and adding silicon to the molten bath to float the Fe-Si phase. After this step, silicon is added to the molten bath to separate Co・Ni−Si.
The process of floating and separating the phases and the separated Co.
A method for separating cobalt, nickel, etc. from an alloy, comprising the step of removing Si from a Ni/Si mixture. 4 A process in which an alloy consisting of cobalt, nickel, iron, etc. is dissolved in a molten bath of tin, lead, their alloys, etc. having a weight more than 10 times that of the alloy, and silicon is added to the molten bath to float the Fe-Si phase. After this step, silicon is added to the molten bath to separate Co・Ni−Si.
The process of floating and separating the phases and the separated Co.
Cobalt, nickel, etc. from alloys characterized by the steps of adjusting the Si in the Ni/Si mixture and redissolving the Co/Ni mixture with the adjusted Si in a molten bath of tin, lead, alloys thereof, etc. How to separate.
JP59252474A 1984-11-29 1984-11-29 Method for separating cobalt, nickel or the like from alloy Granted JPS61130431A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP59252474A JPS61130431A (en) 1984-11-29 1984-11-29 Method for separating cobalt, nickel or the like from alloy
US06/802,248 US4657585A (en) 1984-11-29 1985-11-27 Method for separating cobalt, nickel and the like from alloys

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59252474A JPS61130431A (en) 1984-11-29 1984-11-29 Method for separating cobalt, nickel or the like from alloy

Publications (2)

Publication Number Publication Date
JPS61130431A JPS61130431A (en) 1986-06-18
JPH059496B2 true JPH059496B2 (en) 1993-02-05

Family

ID=17237881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59252474A Granted JPS61130431A (en) 1984-11-29 1984-11-29 Method for separating cobalt, nickel or the like from alloy

Country Status (1)

Country Link
JP (1) JPS61130431A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2392621A2 (en) 2010-06-01 2011-12-07 FUJIFILM Corporation Pigment dispersion composition, red colored composition, colored curable composition, color filter for a solid state imaging device and method for producing the same, and solid state imaging device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105567999B (en) * 2015-12-31 2018-07-17 郴州丰越环保科技有限公司 A method of recycling valuable metal from zinc hydrometallurgy purified cobalt nickel slag

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2392621A2 (en) 2010-06-01 2011-12-07 FUJIFILM Corporation Pigment dispersion composition, red colored composition, colored curable composition, color filter for a solid state imaging device and method for producing the same, and solid state imaging device

Also Published As

Publication number Publication date
JPS61130431A (en) 1986-06-18

Similar Documents

Publication Publication Date Title
Agrawal et al. Problems, prospects and current trends of copper recycling in India: An overview
CN110004352B (en) Method for preparing copper-chromium-containing wear-resistant cast iron by utilizing reduction of molten depleted copper slag
US3682623A (en) Copper refining process
US4489046A (en) Method for working-up arsenic-containing waste
CN109280774A (en) A method of rare precious metal is extracted and is enriched with from spent catalyst
CN110106433B (en) Comprehensive utilization method of molten depleted copper slag and zinc slag
US4561887A (en) Process for recovering metals from solution through solvent extraction and pyrometallurgical reduction
CN112176190A (en) Method for recovering cobalt, copper and iron from waste cobalt-containing lithium ion battery
Diaz et al. Emerging applications of ZINCEX and PLACID technologies
CN107502748A (en) A kind of method of Bellamya aeruginosa pressurization Strengthen education
JPS59150028A (en) Recovery of metal values from alloy scraps
JPH0324238A (en) Lead smelting method
JPH059496B2 (en)
Meng et al. Low-temperature melting and centrifugation of lead and tin from metal-rich particles of crushed waste printed circuit boards
CN107312931B (en) Method that is a kind of while recycling noble metal and prepare HIGH-PURITY SILICON
Khojiev et al. Development of Promising Technologies in the Production of Non-Ferrous Metals and Improvement of Existing Technologies
US4657585A (en) Method for separating cobalt, nickel and the like from alloys
US3857699A (en) Process for recovering non-ferrous metal values from reverberatory furnace slags
CN108251637A (en) A kind of method of harmful element in oxidizing roasting curing process copper ashes
JP6542560B2 (en) Method of treating non-ferrous smelting slag
JPH0517291B2 (en)
US4108638A (en) Process for separating nickel, cobalt and copper
Cui et al. Pyrometallurgical recovery of valuable metals from flue dusts of copper smelter through lead alloy
JPS5950734B2 (en) How to recover non-ferrous metals
RU2261929C2 (en) Method of combined processing of copper-nickel cobalt-containing sulfide materials at different copper-to-nickel ratio

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term