JPH0594816A - Impregnating method for battery - Google Patents

Impregnating method for battery

Info

Publication number
JPH0594816A
JPH0594816A JP3276318A JP27631891A JPH0594816A JP H0594816 A JPH0594816 A JP H0594816A JP 3276318 A JP3276318 A JP 3276318A JP 27631891 A JP27631891 A JP 27631891A JP H0594816 A JPH0594816 A JP H0594816A
Authority
JP
Japan
Prior art keywords
battery
electrolyte
electrolytic solution
cans
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3276318A
Other languages
Japanese (ja)
Other versions
JP3122854B2 (en
Inventor
Kenji Otsuka
健司 大塚
Ikuro Arimatsu
郁朗 有松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP03276318A priority Critical patent/JP3122854B2/en
Publication of JPH0594816A publication Critical patent/JPH0594816A/en
Application granted granted Critical
Publication of JP3122854B2 publication Critical patent/JP3122854B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Filling, Topping-Up Batteries (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To impregnate an electrolyte to numerous batteries rapidly and securely while avoiding a moisture absorption by soaking battery cans in the electrolyte making their opening ends face downward in a reduced pressure condition, and then increasing the pressure. CONSTITUTION:Numerous battery cans 4 of nonaqueous secondary batteries in which a positive electrode and a negative electrode are housed through a separator respectively are set in an impregnation tank 1 making their opening ends face downward, and the electrolyte passage of an electrolyte tank 6 is cut off to evacuate the air in the tank 1. Then, the cans 4 are lowered by an up and down movement mechanism 2, the opening ends of the cans 4 are soaked in the electrolyte to a specific depth, an air of the dew point -50 deg.C is fed, and the pressure is increased to 2kgG/cm<2>. As a result, the electrolyte is sucked up into the cans 4, and the electrolyte is impregnated rapidly and securely without absorbing the moisture.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電池の含浸方法に関す
る。
FIELD OF THE INVENTION The present invention relates to a method for impregnating a battery.

【0002】更に詳しくは、非水系二次電池の製造工程
における電解液の含浸方法に関する。
More specifically, it relates to a method of impregnating an electrolytic solution in a manufacturing process of a non-aqueous secondary battery.

【0003】[0003]

【従来の技術】近年、例えば特開昭62−90863号
公報に開示されている様なリチウムイオンを脱ドープ
し、かつドープし得るリチウム−遷移金属複合酸化物を
正極活物質として用い、リチウムイオンをドープし、か
つ脱ドープし得る炭素質材料を負極活物質として用いる
ことを特徴とする電池が、小型、軽量、高容量で、しか
も安全な二次電池として注目されている。当該電池は、
起電力が最高4V程度であり、従来のニッケル−カドミ
ウム電池に比べ3倍以上もある。このため、水系の電解
液は電気分解を起こすため使用できず、非水系の電解液
を用いる必要がある。
2. Description of the Related Art In recent years, for example, a lithium-transition metal composite oxide capable of dedoping and doping lithium ions as disclosed in JP-A-62-90863 has been used as a positive electrode active material. A battery characterized by using a carbonaceous material that can be doped and dedoped as a negative electrode active material has been attracting attention as a secondary battery that is small, lightweight, has a high capacity, and is safe. The battery is
The electromotive force is about 4 V at maximum, which is three times or more that of the conventional nickel-cadmium battery. Therefore, the aqueous electrolytic solution cannot be used because it causes electrolysis, and it is necessary to use the non-aqueous electrolytic solution.

【0004】一般に、非水系の電解液はイオン伝導性が
低いため、この種の電池では電極表面積を広くして、一
定時間により多くの電流を取り出せる高出力性を維持す
る必要があり、このためには薄いポリオレフィン系の多
孔質膜あるいは不織布をセパレーターとして用いること
が有効である。
In general, since the non-aqueous electrolyte solution has low ionic conductivity, it is necessary to increase the electrode surface area in this type of battery to maintain high output power capable of extracting more current for a certain period of time. For this purpose, it is effective to use a thin polyolefin porous film or a non-woven fabric as a separator.

【0005】しかしながら、非水系の電解液は非常に極
性が高く、表面張力が大きいため、無極性のポリオレフ
ィン系のセパレーターには湿りにくく、当該電池におい
ては電解液を電極、セパレーターよりなる電極体に均一
に含浸させる工程に非常に長時間がかかっていた。
However, since the non-aqueous electrolyte has a very high polarity and a large surface tension, it is difficult for the non-polar polyolefin-based separator to get wet, and in the battery, the electrolyte is used as an electrode body composed of an electrode and a separator. The process of uniform impregnation took a very long time.

【0006】特開平2−244568号公報に開示され
ている様に、界面活性剤を添加することが、含浸速度を
上げるためには有効であるが、それでも通常の含浸方法
では十分な含浸効果は期待できない。特開平2−172
158号公報には缶開口部に液溜りを設置する真空加圧
含浸方法が開示されているが、液溜り部と缶との密着を
保つのが難しく、量産のためには複雑な機構が必要とな
る。また、ディスペンサーによる定量分注方式も可能で
あるが、装置、配管が複雑で、量産には不向きである。
As disclosed in JP-A-2-244568, addition of a surfactant is effective for increasing the impregnation rate, but still, a sufficient impregnation effect is not obtained by a usual impregnation method. I can't expect. JP-A-2-172
Japanese Patent No. 158 discloses a vacuum pressure impregnation method in which a liquid reservoir is installed in a can opening, but it is difficult to maintain close contact between the liquid reservoir and the can, and a complicated mechanism is required for mass production. Becomes A dispenser can be used for quantitative dispensing, but it is not suitable for mass production because the device and piping are complicated.

【0007】更に、非水系電解液は吸湿性が強く、しか
も混入した水は当該電池の特性を著しく損ねるため、含
浸操作は十分迅速に行なわなければならない。
Furthermore, the non-aqueous electrolyte has a strong hygroscopic property, and the mixed water significantly impairs the characteristics of the battery. Therefore, the impregnation operation must be carried out sufficiently quickly.

【0008】[0008]

【発明が解決しようとする課題】本発明は正、負の電極
をセパレーターを介して対向配置し電池缶に収納してな
る非水系二次電池の製造方法において、電解液を吸湿を
避けて迅速、確実に含浸することを目的とする。
DISCLOSURE OF THE INVENTION The present invention provides a method for producing a non-aqueous secondary battery in which positive and negative electrodes are arranged opposite to each other with a separator interposed between them and housed in a battery can. The purpose is to ensure impregnation.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するた
め、本発明は正、負の電極をセパレーターを介して対向
配置し、電池缶に収納してなる非水系二次電池の製造過
程において、該電池缶を、減圧下で開口端を下向きにし
て電解液に浸漬し、次いで加圧することを特徴とする。
In order to achieve the above object, the present invention is directed to a non-aqueous secondary battery manufacturing process in which positive and negative electrodes are arranged so as to face each other with a separator interposed therebetween and housed in a battery can. The battery can is characterized in that it is immersed in an electrolytic solution under reduced pressure with its open end facing downward, and then pressurized.

【0010】以下、本発明を詳細に説明する。The present invention will be described in detail below.

【0011】まず電池缶を減圧、加圧可能な含浸タンク
に入れ、好ましくは30mmHg以下の減圧下に置くこ
とにより、電池缶内の空気は除去される。
First, the air in the battery can is removed by placing the battery can in an impregnation tank capable of depressurizing and pressurizing, and by placing it under a reduced pressure of preferably 30 mmHg or less.

【0012】更に、電池缶の開口端を下向きにして前記
含浸タンクに電解液を導くか予め電解液を貯えた前記タ
ンクの電解液中に、前記電池缶を下ろすかして、当該電
池缶の開口部を電解液に浸漬し、次いで加圧することに
より、電解液は減圧状態の電池缶内へ迅速に侵入する。
一定時間後、前記含浸タンク内の電解液をタンク外に排
出するか、電池缶を電解液より引き上げることにより、
電池缶開口端側に留った余剰な電解液は回収され、迅速
な含浸が完了する。
[0012] Further, the electrolytic can is introduced into the impregnation tank with the open end of the battery can facing downward, or the battery can is lowered into the electrolytic solution of the tank in which the electrolytic solution is stored in advance, and By immersing the opening in the electrolytic solution and then applying pressure, the electrolytic solution rapidly penetrates into the battery can under reduced pressure.
After a certain period of time, the electrolyte solution in the impregnation tank is discharged to the outside of the tank, or the battery can is pulled up from the electrolyte solution,
Excessive electrolytic solution remaining on the open end side of the battery can is recovered, and rapid impregnation is completed.

【0013】本発明によれば、前記含浸タンクの漏れを
無くし、かつ加圧用の気体を予め除湿しておくことによ
り、前記の電解液が吸湿する問題も解決できる。更に、
電解液を、常にモレキューラーシーブスのような乾燥剤
と接触させ、より一層の除湿を行なうことが好ましい。
According to the present invention, leakage of the impregnation tank is eliminated, and the gas for pressurization is dehumidified in advance, so that the problem that the electrolytic solution absorbs moisture can be solved. Furthermore,
It is preferable that the electrolytic solution is always brought into contact with a desiccant such as molecular sieves to further dehumidify.

【0014】電解液に浸漬される電池缶の部分が、電池
缶の開口端近傍に限られる場合、電池缶外壁への電解液
の付着を少なくすることができるため、含浸終了後に電
池缶外壁に付着した電解液を拭き取る手間が大幅に省け
る。浸漬される部分が少ないほど電池缶外壁に付着する
電解液の量は少なくできるが、浸漬部分が少なすぎる
と、加圧中に加圧気体が電池缶内に侵入し、含浸不足の
原因となる。最も好ましい浸漬深さは、電池缶の開口端
より5〜10mmである。
When the portion of the battery can to be immersed in the electrolytic solution is limited to the vicinity of the open end of the battery can, it is possible to reduce the adhesion of the electrolytic solution to the outer wall of the battery can. The time and effort required to wipe off the attached electrolyte solution can be greatly saved. The less the immersed part, the smaller the amount of electrolyte that adheres to the outer wall of the battery can, but if the immersed part is too small, the pressurized gas will enter the battery can during pressurization, causing insufficient impregnation. .. The most preferable immersion depth is 5 to 10 mm from the open end of the battery can.

【0015】含浸が終了し、電解液溜りより離れた状態
の電池缶に、余剰な電解液が残っている場合には、余剰
な電解液は、電池缶の重量を減らすために除去すべきで
ある。更に、電池が異常な高電圧で充電されるなどして
電池缶内に気体が発生した場合、余剰な電解液を除いた
後の空間は気体溜りとしても有効に働く。本発明は、含
浸後に電池缶開口部を電解液溜りより離し、再度減圧に
することにより、余剰の電解液を排出する方法を併用す
ることが特に好ましい。
When the excess electrolytic solution remains in the battery can that has been separated from the electrolytic solution reservoir after the impregnation, the excessive electrolytic solution should be removed to reduce the weight of the battery can. is there. Furthermore, when gas is generated in the battery can due to the battery being charged with an abnormally high voltage, the space after removing the excess electrolytic solution effectively functions as a gas reservoir. In the present invention, it is particularly preferable to use a method in which the excess electrolytic solution is discharged by separating the opening of the battery can from the electrolytic solution reservoir after the impregnation and reducing the pressure again.

【0016】電解液含浸後に電池缶外壁に付着した電解
液を除去することが必要である場合には、電池缶外壁に
付着した電解液が圧縮気体を高速で吹き付けると液滴と
なって集り、更には霧状に飛散する性質を利用して、圧
縮気体を電池缶外壁に吹きつけることが有効である。圧
縮気体の流速は500m/秒程度が好ましく、直径0.
5mm程度のノズル口から電池缶に向って、斜め下方向
に吹き付けるのが効率的である。吹き付ける圧縮気体を
予め除湿しておくことにより、吸湿を防止できより迅速
に次の工程に進むことができる。
When it is necessary to remove the electrolytic solution adhering to the outer wall of the battery can after impregnation with the electrolytic solution, the electrolytic solution adhering to the outer wall of the battery can gathers as droplets when a compressed gas is blown at high speed, Furthermore, it is effective to blow the compressed gas to the outer wall of the battery can by utilizing the property of scattering in the form of mist. The flow velocity of the compressed gas is preferably about 500 m / sec and the diameter is 0.
It is efficient to spray it obliquely downward from the nozzle opening of about 5 mm toward the battery can. By dehumidifying the compressed gas to be blown in advance, moisture absorption can be prevented and the process can proceed to the next step more quickly.

【0017】本発明の含浸方法を適用できる電池の構造
は特に限定されるものではないが、正、負の電極とセパ
レーターを介して対向配置し、ロール状に巻き上げてな
る電極体を円筒型の電池缶に挿入したもの、前記電極体
を押しつぶして、扁平な円筒状あるいは角型の電池缶に
挿入したもの、正、負の電極をセパレーターを介して対
向配置して折り込み、扁平な円筒状あるいは角型の電池
缶に挿入したものなどが一例として挙げられる。
The structure of the battery to which the impregnation method of the present invention can be applied is not particularly limited, but a positive electrode electrode, a negative electrode, and a negative electrode, which are opposed to each other with a separator interposed therebetween, and are wound up in a roll shape to have a cylindrical shape. Inserted into a battery can, crushing the electrode body, inserted into a flat cylindrical or rectangular battery can, positive and negative electrodes are placed facing each other via a separator and folded to form a flat cylindrical or For example, the one inserted into a rectangular battery can is given.

【0018】本発明に使用する電池のセパレーターとし
ては特に限定されないが、ポリエチレンあるいはポリプ
ロビレン製セパレーターを使用した場合に、本発明の効
果が顕著である。具体的には、例えばポリプロピレンの
多孔性フィルム、ポリエチレンの多孔性フィルム、ポリ
プロピレンの不織布、ポリエチレンの不織布、あるい
は、これらのラミネート品などが挙げられる。
The separator of the battery used in the present invention is not particularly limited, but the effect of the present invention is remarkable when a polyethylene or polypropylene separator is used. Specifically, for example, a porous film of polypropylene, a porous film of polyethylene, a nonwoven fabric of polypropylene, a nonwoven fabric of polyethylene, or a laminated product of these is used.

【0019】又、非水系の電解液としては、例えばエー
テル類、ケトン類、ラクトン類、ニトリル類、アミン
類、アミド類、硫黄化合物、塩素化炭化水素類、エステ
ル類、カーボネート類、ニトロ化合物、リン酸エステル
系化合物、スルホラン系化合物等を用いることができる
が、これらのうちでもエーテル類、ケトン類、ニトリル
類、塩素化炭化水素類、カーボネート類、スルホラン系
化合物が好ましい。更に好ましくは環状カーボネート類
である。
Examples of non-aqueous electrolytes include ethers, ketones, lactones, nitriles, amines, amides, sulfur compounds, chlorinated hydrocarbons, esters, carbonates, nitro compounds, Phosphate ester compounds, sulfolane compounds and the like can be used, and among these, ethers, ketones, nitriles, chlorinated hydrocarbons, carbonates and sulfolane compounds are preferable. More preferred are cyclic carbonates.

【0020】これらの代表例としては、テトラヒドロフ
ラン、2−メチルテトラヒドロフラン、1,4−ジオキ
サン、アニソール、モノグライム、アセトニトリル、プ
ロピオニトリル、4−メチル−2−ペンタノン、ブチロ
ニトリル、バレロニトリル、ベンゾニトリル、1,2−
ジクロロエタン、γ−ブチロラクトン、ジメトキシエタ
ン、メチルフォルメイト、プロピレンカーボネート、エ
チレンカーボネート、ビニレンカーボネート、ジメチル
ホルムアミド、ジメチルスルホキシド、ジメチルチオホ
ルムアミド、スルホラン、3−メチル−スルホラン、リ
ン酸トリメチル、リン酸トリエチルおよびこれらの混合
溶媒等をあげることができるが、必ずしもこれらに限定
されるものではない。
As typical examples of these, tetrahydrofuran, 2-methyltetrahydrofuran, 1,4-dioxane, anisole, monoglyme, acetonitrile, propionitrile, 4-methyl-2-pentanone, butyronitrile, valeronitrile, benzonitrile, 1 , 2-
Dichloroethane, γ-butyrolactone, dimethoxyethane, methyl formate, propylene carbonate, ethylene carbonate, vinylene carbonate, dimethylformamide, dimethylsulfoxide, dimethylthioformamide, sulfolane, 3-methyl-sulfolane, trimethyl phosphate, triethyl phosphate, and triethyl phosphate thereof. Examples of the mixed solvent include, but are not necessarily limited to, these.

【0021】非水電解液の電解質としては特に限定され
ないが、一例を示せば、LiClO4 ,LiBF4 ,L
iAsF6 ,CF3 SO3 Li,LiPF6 ,LiI,
LiAlCl4 ,NaClO4 ,NaBF4 ,NaI,
(n−Bu)4+ ClO4,(n−Bu)4+ BF4
,KPF6 等が挙げられる。
The electrolyte of the non-aqueous electrolyte is not particularly limited, but as an example, LiClO 4 , LiBF 4 , L
iAsF 6 , CF 3 SO 3 Li, LiPF 6 , LiI,
LiAlCl 4 , NaClO 4 , NaBF 4 , NaI,
(N-Bu) 4 N + ClO 4 , (n-Bu) 4 N + BF 4
, KPF 6 and the like.

【0022】[0022]

【実施例】次に、実施例によって本発明をさらに詳細に
説明するが、これらは本発明の範囲を制限しない。
The present invention will now be described in more detail by way of examples, which do not limit the scope of the present invention.

【0023】実施例1 正極は、活物質のLiCoSn0.022 に対して5%の
炭素系導電助剤を加えてなるコンパウンドに、ポリビニ
リデンフルオライドの5%DMF溶液を同量加えて分散
液とし、これを厚み15μmのアルミニウム箔の両面に
それぞれ300g/m2 で均一に添着し乾燥する。
Example 1 A positive electrode was prepared by adding the same amount of a 5% DMF solution of polyvinylidene fluoride to a compound prepared by adding 5% of a carbon-based conductive auxiliary agent to LiCoSn 0.02 O 2 as an active material, and a dispersion liquid. The aluminum foil having a thickness of 15 μm is uniformly applied at 300 g / m 2 on each side and dried.

【0024】また、負極は、活物質として平均粒子径1
0μmのニードルコークスにポリビニリデンフルオライ
ドの5%DMF溶液を同量加えて分散液とし、これを厚
み10μmのステンレススチール304箔の両面にそれ
ぞれ150g/m2 で均一に添着し、乾燥する。
The negative electrode has an average particle size of 1 as an active material.
The same amount of 5% polyvinylidene fluoride DMF solution was added to 0 μm needle coke to obtain a dispersion, which was uniformly attached at 150 g / m 2 on both sides of a stainless steel 304 foil with a thickness of 10 μm, and dried.

【0025】これらの正極、負極を40mmの巾にサイ
ジングし、リードタブをつけた後、厚み35μmのポリ
エチレン製微多孔膜セパレーターを介して、うず巻き状
のコイルを作成する。
After sizing these positive and negative electrodes to a width of 40 mm and attaching a lead tab, a spiral coil is made through a polyethylene microporous membrane separator having a thickness of 35 μm.

【0026】コイルの直径は15.5mmであり、これ
を内径15.6mm、長さ49.5mmのステンレスス
チール缶に挿入する。
The coil has a diameter of 15.5 mm and is inserted into a stainless steel can having an inner diameter of 15.6 mm and a length of 49.5 mm.

【0027】電解液はLiBF4 1モル/lのプロピレ
ンカーボネート、エチレンカーボネート、γ−ブチロラ
クトンの3成分溶液である。
The electrolytic solution is a three-component solution of 1 mol / l LiBF 4 , propylene carbonate, ethylene carbonate and γ-butyrolactone.

【0028】図1、2はそれぞれ、本実施例に用いた含
浸装置、液滴除去機構の概念図である。
1 and 2 are conceptual diagrams of an impregnating device and a droplet removing mechanism used in this embodiment, respectively.

【0029】電池缶4はワーク保持治具3に保持され、
含浸タンク1の中に電池缶4の開口端を下向きにしてセ
ットされる。この状態で電池缶4の開口端は未だ含浸タ
ンク1の底部に溜った電解液には触れていない。電解液
は電解液タンク6よりポンプ7により脱水カラム5を通
して供給され、余剰分は自然流下で電解液タンク6に戻
って、電解液タンク1内のレベルを一定に保っている。
The battery can 4 is held by the work holding jig 3,
The battery can 4 is set in the impregnation tank 1 with the open end of the battery can 4 facing downward. In this state, the open end of the battery can 4 has not yet touched the electrolytic solution accumulated at the bottom of the impregnation tank 1. The electrolytic solution is supplied from the electrolytic solution tank 6 through the dehydration column 5 by the pump 7, and the surplus returns to the electrolytic solution tank 6 under a natural flow to keep the level in the electrolytic solution tank 1 constant.

【0030】電池缶4をセットした後、電解液の流路を
遮断し、含浸タンク1を30Paまで排気し、電池缶内
の空気を除去する。約2分後、昇降機構2を作動させて
電池缶4を下降させ、図1のように、電池缶4の開口端
を開口端より5mmの深さまで電解液に浸ける。次い
で、排気経路を遮断し、含浸タンク1に露点−50℃の
空気を送り込み、2kgG/cm2 まで加圧して約5分
間保持する。この間に、電解液は電池缶4に吸い上げら
れ、迅速な含浸が行なわれる。
After setting the battery can 4, the flow path of the electrolytic solution is shut off, the impregnation tank 1 is evacuated to 30 Pa, and the air in the battery can is removed. After about 2 minutes, the elevating mechanism 2 is operated to lower the battery can 4, and the open end of the battery can 4 is immersed in the electrolytic solution to a depth of 5 mm from the open end as shown in FIG. Then, the exhaust path is shut off, and air having a dew point of -50 ° C is sent to the impregnation tank 1 to pressurize it to 2 kgG / cm 2 and hold it for about 5 minutes. During this time, the electrolytic solution is sucked up by the battery can 4 and is quickly impregnated.

【0031】次に含浸タンク1を常圧に戻し、更に30
mmHgまで減圧して、電池缶内の余剰電解液を排出す
る。次いで含浸タンク1を常圧に戻し、電池缶4をワー
ク保持治具3と共に図2に示す液滴除去機構に移す。液
滴除去機構には、電池缶4の開口端中央に向って、露点
−50℃の空気を吹き出すノズル8が設けられており、
電池缶4セット後約30秒間、電池缶4の開口端外壁に
付着した電解液に対して、直径0.5mmのノズル8よ
り6l/分の空気を吹き付ける。この際、均一に空気が
当る様にワーク保持治具3を平行移動すると、より効果
的である。電池缶4外壁に付着した電解液は空気流によ
って吹き寄せられ、大きな液滴となって電池缶4の開口
端に集まり、遂には霧状に飛散する。飛散した電解液は
液滴除去装置の下部に取り付けられたミストセパレータ
ーで集められ、廃棄される。
Next, the impregnation tank 1 is returned to normal pressure, and further 30
The pressure is reduced to mmHg, and the excess electrolytic solution in the battery can is discharged. Next, the impregnation tank 1 is returned to normal pressure, and the battery can 4 is moved together with the work holding jig 3 to the droplet removing mechanism shown in FIG. The droplet removing mechanism is provided with a nozzle 8 that blows air with a dew point of −50 ° C. toward the center of the open end of the battery can 4.
About 30 seconds after the battery can 4 is set, 6 l / min of air is blown from the nozzle 8 having a diameter of 0.5 mm to the electrolytic solution attached to the outer wall of the open end of the battery can 4. At this time, it is more effective to move the work holding jig 3 in parallel so that the air is uniformly hit. The electrolytic solution adhering to the outer wall of the battery can 4 is blown by the air flow, becomes large droplets, collects at the open end of the battery can 4, and finally scatters in a mist. The scattered electrolytic solution is collected by a mist separator attached to the lower part of the droplet removing device and discarded.

【0032】次いで電池缶を封口すれば、電池が完成す
る。
Then, the battery can is sealed to complete the battery.

【0033】100ケの電池を含浸したところ、含浸液
量は4.15〜4.51g/セルの範囲に入っており、
電池としての性能も良好であった。含浸直後の電池を解
体したところ、電解液はセパレーター全面に均一に染み
ていた。
When 100 batteries were impregnated, the amount of impregnating liquid was in the range of 4.15 to 4.51 g / cell,
The performance as a battery was also good. Immediately after the impregnation, the battery was disassembled, and the electrolytic solution was uniformly stained on the entire surface of the separator.

【0034】[0034]

【発明の効果】以上説明の如く、本発明の含浸方法によ
れば、量産時においても、電解液含浸量のバラツキを非
常に小さくでき、更にセパレーター全面に均一な含浸が
可能となる。しかも、含浸を非常に迅速に行なえるた
め、電池特性へ悪影響を及ぼす電解液の吸湿をも防止で
きる。
As described above, according to the impregnation method of the present invention, the dispersion of the impregnated amount of the electrolytic solution can be made extremely small even during mass production, and further the entire surface of the separator can be uniformly impregnated. In addition, since the impregnation can be performed very quickly, it is possible to prevent moisture absorption of the electrolytic solution, which adversely affects the battery characteristics.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例で用いた含浸装置の概念図FIG. 1 is a conceptual diagram of an impregnation device used in an example.

【図2】実施例で用いた液滴除去機構の概念図FIG. 2 is a conceptual diagram of a droplet removing mechanism used in the examples.

【符号の説明】[Explanation of symbols]

1 含浸タンク 2 昇降機構 3 ワーク保持治具 4 電池缶 5 脱水カラム 6 電解液タンク 7 ポンプ 8 ノズル 1 Impregnation tank 2 Lifting mechanism 3 Work holding jig 4 Battery can 5 Dehydration column 6 Electrolyte tank 7 Pump 8 Nozzle

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 正、負の電極をセパレーターを介して対
向配置し、電池缶に収納してなる非水系二次電池の製造
過程において、該電池缶を、減圧下で開口端を下向きに
して電解液に浸漬し、次いで加圧することを特徴とする
電池の含浸方法。
1. In a process of manufacturing a non-aqueous secondary battery, in which positive and negative electrodes are opposed to each other with a separator interposed therebetween and housed in a battery can, the battery can is placed under reduced pressure with its open end facing downward. A method for impregnating a battery, which comprises immersing the battery in an electrolytic solution and then applying pressure.
JP03276318A 1991-09-30 1991-09-30 Battery impregnation method Expired - Lifetime JP3122854B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03276318A JP3122854B2 (en) 1991-09-30 1991-09-30 Battery impregnation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03276318A JP3122854B2 (en) 1991-09-30 1991-09-30 Battery impregnation method

Publications (2)

Publication Number Publication Date
JPH0594816A true JPH0594816A (en) 1993-04-16
JP3122854B2 JP3122854B2 (en) 2001-01-09

Family

ID=17567784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03276318A Expired - Lifetime JP3122854B2 (en) 1991-09-30 1991-09-30 Battery impregnation method

Country Status (1)

Country Link
JP (1) JP3122854B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001110452A (en) * 1999-10-07 2001-04-20 Sony Corp Manufacturing method of nonaqueous electrolytic battery
JP2002110252A (en) * 2000-09-28 2002-04-12 At Battery:Kk Method of producing battery
KR100634151B1 (en) * 1999-10-29 2006-10-16 엔이씨 도킨 도치기 가부시키가이샤 Apparatus for injecting liquid into container and method therefor
JP2013258019A (en) * 2012-06-12 2013-12-26 Murata Mfg Co Ltd Injection method of electrolyte
JP2018116778A (en) * 2017-01-16 2018-07-26 トヨタ自動車株式会社 Manufacturing method of electrode

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001110452A (en) * 1999-10-07 2001-04-20 Sony Corp Manufacturing method of nonaqueous electrolytic battery
KR100634151B1 (en) * 1999-10-29 2006-10-16 엔이씨 도킨 도치기 가부시키가이샤 Apparatus for injecting liquid into container and method therefor
JP2002110252A (en) * 2000-09-28 2002-04-12 At Battery:Kk Method of producing battery
JP2013258019A (en) * 2012-06-12 2013-12-26 Murata Mfg Co Ltd Injection method of electrolyte
JP2018116778A (en) * 2017-01-16 2018-07-26 トヨタ自動車株式会社 Manufacturing method of electrode

Also Published As

Publication number Publication date
JP3122854B2 (en) 2001-01-09

Similar Documents

Publication Publication Date Title
JP4499088B2 (en) Lithium secondary battery using separator membrane partially coated with gel polymer
WO2014017567A1 (en) Secondary battery
WO2016031335A1 (en) Lithium metal secondary battery
US20050053840A1 (en) Lithium secondary battery comprising fine fibrous porous polymer membrane and fabrication method thereof
US20100330268A1 (en) Batteries, electrodes for batteries, and methods of their manufacture
US20120183859A1 (en) Negative electrode, electrode assembly and electric storage device
US20210028499A1 (en) Method for producing a lithium-ion cell
EP3534433A1 (en) Laminate and secondary battery
KR20230093402A (en) Positvie electrode for rechargeable lithium battery, negative electrode for rechargeable lithium battery, and rechargeable lithium battery including same
CN114207865A (en) Method for manufacturing electrode film of lithium ion battery and method for manufacturing lithium ion battery
US20220320482A1 (en) Power storage device and method for manufacturing lithium ion rechargeable battery
JP6976097B2 (en) Alkali metal ion doping method
JP3122854B2 (en) Battery impregnation method
JP2003036850A (en) Nonaqueous electrolytic secondary battery and its manufacturing method
JP6377586B2 (en) Electrode, electrode manufacturing method, and nonaqueous electrolyte battery
JP6457272B2 (en) Method for reducing uneven charging of secondary battery and method for manufacturing secondary battery
US20220077448A1 (en) Doping system and doping method
CN101212038A (en) Li-ion secondary battery and pole plate processing method
JP2005209514A (en) Dryer for electrode film, electrode for non aqueous electrolysis secondary battery, and non aqueous electrolysis secondary battery
JP6739343B2 (en) Method for manufacturing lithium-ion secondary battery
US20230045995A1 (en) Method of manufacturing electrode, method of manufacturing power storage device, and electrode manufacturing apparatus
JP2001143755A (en) Non-aqueous electrolyte secondary cell
JP5017769B2 (en) Nonaqueous electrolyte secondary battery
US20230198097A1 (en) Porous film, separator for secondary battery, and secondary battery
JP7107809B2 (en) Positive electrode for secondary battery

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000912

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081027

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081027

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091027

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091027

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091027

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091027

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101027

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101027

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111027

Year of fee payment: 11

EXPY Cancellation because of completion of term