JPH0594761A - Field emission type vacuum tube and manufacture thereof - Google Patents

Field emission type vacuum tube and manufacture thereof

Info

Publication number
JPH0594761A
JPH0594761A JP25524391A JP25524391A JPH0594761A JP H0594761 A JPH0594761 A JP H0594761A JP 25524391 A JP25524391 A JP 25524391A JP 25524391 A JP25524391 A JP 25524391A JP H0594761 A JPH0594761 A JP H0594761A
Authority
JP
Japan
Prior art keywords
cold cathode
substrate electrode
field emission
vacuum tube
anode layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25524391A
Other languages
Japanese (ja)
Inventor
Masao Urayama
雅夫 浦山
Tomokazu Ise
智一 伊勢
Yuji Maruo
祐二 丸尾
Yutaka Akagi
裕 赤木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP25524391A priority Critical patent/JPH0594761A/en
Publication of JPH0594761A publication Critical patent/JPH0594761A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a field emission type vacuum tube and a manufacturing method thereof by which reproducibility or an operational characteristic can be improved and mass productivity can be also improved by simplifying a manufacturing process or by downsizing a device. CONSTITUTION:Plural number of molybdenum conical cold cathodes as an electron emission source are formed on a substrate electrode 10 formed by using a (n) type silicon substrate. An insulating layer 12 of a silicon oxide film is laminated on the substrate electrode 10 around the cold cathodes 11. An anode layer 13 is provided so as to cover these cold cathodes 11 and the insulating layer 12. The anode layer 13 is laminated on the opposite surface to the substrate electrode 10 of the insulating layer 12, and a conical dent 14 is formed in a part opposed to the cold cathodes 11, and this dent 14, that is, a clearance between the anode layer 13 and the cold cathodes 11 is put in a vacuum condition. A material of the cold cathodes 11 is similarly used as a material of the anode layer 13.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電界放出の原理により
電子を放出する電子放出源を含んだ電界放出型真空管及
びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a field emission vacuum tube including an electron emission source that emits electrons according to the principle of field emission, and a method for manufacturing the same.

【0002】[0002]

【従来の技術】近年、集積回路又は薄膜の分野において
用いられている微細加工技術により、高電界において電
子を放出する電界放出型真空管製造技術の進歩はめざま
しく、特に極めて小型な構造を有する電界放出型冷陰極
が製造されている。この種の電界放出型冷陰極は、3極
管型の超小型電子管又は超小型電子銃を構成する主要部
品の内、最も基本的な電子放出デバイスである。
2. Description of the Related Art In recent years, the field emission type vacuum tube manufacturing technology for emitting electrons in a high electric field has made remarkable progress by the fine processing technology used in the field of integrated circuits or thin films, and in particular, the field emission having an extremely small structure. Molded cold cathodes are manufactured. This type of field emission cold cathode is the most basic electron emission device among the main components constituting a triode type micro electron tube or a micro electron gun.

【0003】多数の電子放出デバイスを含む電界放出型
真空管は、例えば微小3極管や薄型表示素子等の構成要
素として考案されたもので、電界放出型真空管の動作及
び製造方法は、スタンフォード リサーチ インスティ
チュート(Stanford Research Institute )のシー.エ
ー.スピント(C.A.Spindt)らによるジャーナル オブ
アプライド フィジックス( Journal of Applied P
hysics)の第47巻、12号、5248〜5263項(1976年12月)
に発表された研究報告及び米国特許第3,789,471 号によ
り公知である。
A field emission type vacuum tube including a large number of electron emission devices has been devised as a constituent element of, for example, a micro triode or a thin display element. The operation and manufacturing method of the field emission type vacuum tube are described in Stanford Research Inn. Sea of Stanford Research Institute. A. Journal of Applied Physics by CASpindt et al.
hysics) Vol. 47, No. 12, 5248-5263 (December 1976)
Known from U.S. Pat. No. 3,789,471.

【0004】このデバイスは、電界放出の原理により電
子を放出する冷陰極と、冷陰極に電界を印加して電子を
放出させるために正電圧を印加する電界印加電極である
ゲート電極とを備えており、その動作原理によりこれら
は真空中に保持する必要がある。
This device is provided with a cold cathode that emits electrons according to the principle of field emission, and a gate electrode that is a field application electrode that applies a positive voltage to apply an electric field to the cold cathode to emit electrons. However, due to its operating principle, it is necessary to keep them in a vacuum.

【0005】図5は、スピント(Spindt)等により提案
された従来の電界放出型真空管の構成を示し、図6は、
その製造方法を示す。
FIG. 5 shows the structure of a conventional field emission vacuum tube proposed by Spindt et al., And FIG. 6 shows
The manufacturing method will be described.

【0006】図5に示すように、基板電極30上には、電
子放出源である円錐状の冷陰極31が形成されている。こ
の図には1つの冷陰極しか示していないが、一般に、複
数の冷陰極31がリニアアレイ状又はマトリクス状に基板
電極上に形成される。冷陰極31の周囲には絶縁層32を介
して薄膜状のゲート電極33が形成されており、更に、こ
れらの冷陰極31、ゲート電極33を覆って陽極34が設けら
れている。陽極34と冷陰極31及びゲート電極33等との間
隙は真空状態となっている。
As shown in FIG. 5, a conical cold cathode 31 which is an electron emission source is formed on the substrate electrode 30. Although only one cold cathode is shown in this figure, a plurality of cold cathodes 31 are generally formed on the substrate electrode in a linear array or a matrix. A thin-film gate electrode 33 is formed around the cold cathode 31 via an insulating layer 32, and an anode 34 is provided so as to cover the cold cathode 31 and the gate electrode 33. The gap between the anode 34, the cold cathode 31, the gate electrode 33, etc. is in a vacuum state.

【0007】冷陰極31とゲート電極33との間及び冷陰極
31と陽極34との間に電圧が印加されると、それらの間に
高電界が発生し、電界放出の原理により冷陰極31から電
子が放出される。
Between the cold cathode 31 and the gate electrode 33 and the cold cathode
When a voltage is applied between the anode 31 and the anode 34, a high electric field is generated between them, and electrons are emitted from the cold cathode 31 by the principle of field emission.

【0008】次に、図6を参照してこの電界放出型真空
管の製造方法を説明すると、先ず、図6(A)に示すよ
うに基板電極30である半導体(例えばシリコン)の基板
の表面に絶縁層(例えばSiO2 )32a 及びゲート電極
層33a を順次積層する。次に、ゲート電極層33a の上に
レジストを塗布してこのレジストに所望のパターンを焼
き付け、現像処理を行って、図6(B)に示すようにレ
ジストパターン35を形成し、ゲート電極層33a の一部を
露出させる。
Next, the method of manufacturing this field emission vacuum tube will be described with reference to FIG. 6. First, as shown in FIG. 6A, the surface of the substrate of the semiconductor (for example, silicon) which is the substrate electrode 30 is formed. An insulating layer (eg, SiO 2 ) 32a and a gate electrode layer 33a are sequentially laminated. Next, a resist is applied on the gate electrode layer 33a, a desired pattern is baked on the resist, and development processing is performed to form a resist pattern 35 as shown in FIG. 6B. Expose part of.

【0009】レジストパターン35から露出したゲート電
極層33a 及び絶縁層32a を順次エッチングにより除去
し、微小な穴36を形成する。この穴36は図6(C)に示
すようにゲート電極層33a 及び絶縁層32a を貫通してお
り、基板電極30の表面によって一端を塞がれている。電
子放出部即ち冷陰極を構成する金属材料をこの穴36の開
口面に対して垂直に蒸着すると、図6(D)に示すよう
に円錐状の冷陰極31が穴36内の基板電極30上に形成され
る。この際、冷陰極31を構成する金属材料の層31a が穴
36の開口径を縮小しながらゲート電極層35上に堆積する
が、この堆積層31a をリフトオフ法により除去すると、
図6(E)に示すような電界放出型真空管が構成され
る。
The gate electrode layer 33a and the insulating layer 32a exposed from the resist pattern 35 are sequentially removed by etching to form minute holes 36. As shown in FIG. 6C, the hole 36 penetrates the gate electrode layer 33a and the insulating layer 32a and is closed at one end by the surface of the substrate electrode 30. When a metal material forming the electron emitting portion, that is, the cold cathode is vapor-deposited perpendicularly to the opening surface of the hole 36, a conical cold cathode 31 is formed on the substrate electrode 30 in the hole 36 as shown in FIG. Formed in. At this time, the layer 31a of the metal material that constitutes the cold cathode 31 has holes.
While depositing on the gate electrode layer 35 while reducing the opening diameter of 36, if this deposit layer 31a is removed by the lift-off method,
A field emission type vacuum tube as shown in FIG. 6 (E) is constructed.

【0010】更に、図6(F)に示すように複数の冷陰
極31及びゲート電極33等を、陽極34となるプレート状の
導体34で覆い、その内部の真空引きして封止し、集積型
の真空管を製造する。
Further, as shown in FIG. 6 (F), a plurality of cold cathodes 31, gate electrodes 33, etc. are covered with a plate-shaped conductor 34 serving as an anode 34, and the inside thereof is evacuated and sealed, and integrated. The mold vacuum tube is manufactured.

【0011】[0011]

【発明が解決しようとする課題】しかしながら、上記し
たように従来の電界放出型真空管では、素子の製造工程
と真空封止工程とが別々に行われ、素子の真空封止工程
に移行する前にリフトオフ等の工程を経るので、素子が
大気に触れて大気中に含まれるガスが電子放出源(冷陰
極)31の表面に吸着され、素子の動作特性や再現性が低
下するという問題点がある。更に、工程が複雑であるた
め量産性の障害ともなる。また、素子を形成した後同一
の真空槽内で真空封止を行うようにすることも可能であ
るが、製造装置の構成が複雑化及び大型化するという問
題が発生する。
However, as described above, in the conventional field emission type vacuum tube, the device manufacturing process and the vacuum sealing process are performed separately, and before the process is transferred to the device vacuum sealing process. Since a process such as lift-off is performed, the element comes into contact with the atmosphere, and the gas contained in the atmosphere is adsorbed on the surface of the electron emission source (cold cathode) 31 to deteriorate the operating characteristics and reproducibility of the element. .. Further, the process is complicated, which hinders mass productivity. Further, it is possible to perform vacuum sealing in the same vacuum chamber after forming the element, but there arises a problem that the structure of the manufacturing apparatus becomes complicated and increases in size.

【0012】従って、本発明は、電界放出型真空管の再
現性及び動作特性を向上することができ、また、製造工
程及び製造装置を簡略化、小型化して量産性を向上する
ことが可能な電界放出型真空管及びその製造方法を提供
するものである。
Therefore, according to the present invention, it is possible to improve the reproducibility and operating characteristics of the field emission type vacuum tube, and to simplify the manufacturing process and the manufacturing apparatus and downsize them to improve the mass productivity. A discharge type vacuum tube and a method for manufacturing the same are provided.

【0013】[0013]

【課題を解決するための手段】本発明によれば、基板電
極と、この基板電極に電気的に接続されており、基板電
極の上に形成された複数の電子放出源と、これらの電子
放出源が設けられた基板電極の面に対向して設けられか
つ電子放出源を真空封止する陽極層とを備えており、陽
極層の材料が電子放出源の材料と同一である電界放出型
真空管が提供される。
According to the present invention, a substrate electrode, a plurality of electron emission sources electrically connected to the substrate electrode and formed on the substrate electrode, and these electron emission sources are provided. A field emission vacuum tube provided with an anode layer facing the surface of the substrate electrode provided with the source and sealing the electron emission source in a vacuum, and the material of the anode layer is the same as the material of the electron emission source. Will be provided.

【0014】さらに、本発明によれば、半導体又は金属
から成る基板電極表面に、複数の電子放出源及び電子放
出源の上部を覆う陽極層を同一の蒸着源を用いた真空蒸
着法で形成し、電子放出源を真空封止する電界放出型真
空管の製造方法が提供される。
Further, according to the present invention, a plurality of electron emission sources and an anode layer covering the upper portions of the electron emission sources are formed on the surface of the substrate electrode made of a semiconductor or a metal by a vacuum vapor deposition method using the same vapor deposition source. Provided is a method of manufacturing a field emission vacuum tube for vacuum-sealing an electron emission source.

【0015】[0015]

【作用】電子放出源である冷陰極と陽極層とが同一の材
料で構成されているので、同一の工程で形成され得る。
具体的には、真空蒸着法を用い同一の蒸着源によって電
子放出源である冷陰極と陽極層とが同時に蒸着される。
更に、冷陰極と陽極層とを形成する際に、冷陰極の周囲
が陽極層によって真空封止される。従って、これによっ
て電界放出型真空管の冷陰極周囲が大気に触れて大気中
に含まれるガスが冷陰極の表面に吸着することを防止す
ることができる。
Since the cold cathode, which is the electron emission source, and the anode layer are made of the same material, they can be formed in the same step.
Specifically, a cold cathode and an anode layer, which are electron emission sources, are simultaneously vapor-deposited by the same vapor deposition source using a vacuum vapor deposition method.
Further, when forming the cold cathode and the anode layer, the periphery of the cold cathode is vacuum-sealed by the anode layer. Therefore, it is possible to prevent the gas around the cold cathode of the field emission vacuum tube from coming into contact with the atmosphere and adsorbing the gas contained in the atmosphere onto the surface of the cold cathode.

【0016】[0016]

【実施例】以下、図面を参照して本発明の実施例を説明
する。
Embodiments of the present invention will be described below with reference to the drawings.

【0017】図1は、本発明による電界放出型真空管の
一実施例の構成を示す要部側面断面図であり、図2はそ
の製造方法を示す要部側面断面図である。
FIG. 1 is a side sectional view of the essential part showing the structure of an embodiment of a field emission vacuum tube according to the present invention, and FIG. 2 is a sectional side view of the essential part showing the manufacturing method thereof.

【0018】図1に示すように、n型シリコン基板を用
いた基板電極10上には、電子放出源であるモリブデン金
属製の円錐状の冷陰極11が形成されている。図には1つ
の冷陰極しか示していないが、複数の冷陰極11がリニア
アレイ状又はマトリクス状に基板電極10上に形成され
る。冷陰極11の材料としては、熱的及び機械的に優れ、
並びに仕事関数の小さいものであれば、特にモリブデン
に限られるものではない。
As shown in FIG. 1, a conical cold cathode 11 made of molybdenum metal, which is an electron emission source, is formed on a substrate electrode 10 using an n-type silicon substrate. Although only one cold cathode is shown in the drawing, a plurality of cold cathodes 11 are formed on the substrate electrode 10 in a linear array or a matrix. The material of the cold cathode 11 is excellent in thermal and mechanical properties,
In addition, molybdenum is not particularly limited as long as it has a low work function.

【0019】冷陰極11の周囲の基板電極10上にはシリコ
ン酸化膜(SiO2 )の絶縁層12が積層されている。そ
して、これらの冷陰極11、絶縁層12を覆って陽極層13が
設けられている。陽極層13は絶縁層12の基板電極10と反
対側の面上に積層され、冷陰極11と対向する部分に円錐
状の窪み14が形成されおり、この窪み14即ち陽極層13と
冷陰極11との間隙は真空状態となっている。陽極層13の
材料は冷陰極11と同一のものが使用される。
An insulating layer 12 of a silicon oxide film (SiO 2 ) is laminated on the substrate electrode 10 around the cold cathode 11. An anode layer 13 is provided so as to cover the cold cathode 11 and the insulating layer 12. The anode layer 13 is laminated on the surface of the insulating layer 12 opposite to the substrate electrode 10, and a conical recess 14 is formed in a portion facing the cold cathode 11, and the recess 14 or the anode layer 13 and the cold cathode 11 are formed. The gap between and is in a vacuum state. The material of the anode layer 13 is the same as that of the cold cathode 11.

【0020】本実施例の電界放出型真空管は二極管で構
成されている。このような構成において、冷陰極11と陽
極層13との間にそれぞれマイナス、プラスの電圧が印加
されると、その間に高電界が発生し、電界放出の原理に
より冷陰極11から電子が放出されるので、微小な二極管
を構成することができる。
The field emission type vacuum tube of this embodiment is composed of a bipolar tube. In such a configuration, when a negative voltage and a positive voltage are applied between the cold cathode 11 and the anode layer 13, respectively, a high electric field is generated between them, and electrons are emitted from the cold cathode 11 by the principle of field emission. Therefore, it is possible to form a minute dipole tube.

【0021】次に、図2を参照して電界放出型真空管の
製造方法の一実施例について説明する。図2(A)〜
(E)の断面図は製造工程の各段階を示している。
Next, an embodiment of a method for manufacturing a field emission vacuum tube will be described with reference to FIG. 2 (A)-
The sectional view of (E) shows each stage of the manufacturing process.

【0022】先ず、図2(A)に示すように比抵抗ρ=
0.01〜0.02Ω・cmのn型シリコン基板10の表
面に、絶縁層12となる二酸化シリコン層12a を厚さが1
μmになるように熱酸化により形成する。この二酸化シ
リコン層12a の表面に、レジストをスピナを用いて塗布
してこのレジストに所望のパターンを焼き付け、現像処
理を行って、図2(B)に示すようにレジストパターン
15を形成し、二酸化シリコン層12a の一部を露出させ
る。
First, as shown in FIG. 2A, the specific resistance ρ =
On the surface of the n-type silicon substrate 10 having a thickness of 0.01 to 0.02 Ω · cm, a silicon dioxide layer 12a serving as an insulating layer 12 having a thickness of
It is formed by thermal oxidation so as to have a thickness of μm. A resist is applied to the surface of the silicon dioxide layer 12a by using a spinner, a desired pattern is baked on the resist, and development processing is performed to form a resist pattern as shown in FIG.
15 is formed to expose a part of the silicon dioxide layer 12a.

【0023】次に、反応性イオンエッチングにより二酸
化シリコン層12a の露出した領域をエッチングし、二酸
化シリコン層12a を貫通する穴16を形成し、基板電極で
あるシリコン基板10の表面を露出させて、図2(C)に
示す構造を得る。
Next, the exposed region of the silicon dioxide layer 12a is etched by reactive ion etching to form a hole 16 penetrating the silicon dioxide layer 12a to expose the surface of the silicon substrate 10 which is the substrate electrode. The structure shown in FIG. 2C is obtained.

【0024】絶縁層12上のレジストパターン15を酸素ガ
スによるアッシングにより除去した後、これら全体を真
空蒸着装置内に設置して冷陰極11及び陽極層13の材料で
あるモリブデンを蒸着源として、図2(D)に示す矢印
Aの示す方向から穴16の開口部に対してモリブデンを蒸
着すると、図2(E)に示すように円錐状の冷陰極11が
穴16内の基板電極10上に形成されるとともに、同時に、
モリブデンが穴16の開口径を縮小しながら二酸化シリコ
ン層12上に堆積して陽極層13が冷陰極11を真空封止する
ように形成される。この際、モリブデンが穴16の開口径
を縮小しながら二酸化シリコン層12上に積層されるの
で、冷陰極11が円錐状に形成される。この場合、冷陰極
11が基板電極10上に形成されて穴16の開口が塞がった
後、モリブデンを更に0.5μm程度堆積することによ
り真空封止を行う。
After removing the resist pattern 15 on the insulating layer 12 by ashing with oxygen gas, the whole structure is placed in a vacuum vapor deposition apparatus and molybdenum, which is a material of the cold cathode 11 and the anode layer 13, is used as a vapor deposition source. When molybdenum is vapor-deposited on the opening of the hole 16 from the direction indicated by the arrow A shown in 2 (D), a conical cold cathode 11 is formed on the substrate electrode 10 in the hole 16 as shown in FIG. 2 (E). As it is formed, at the same time,
Molybdenum is deposited on the silicon dioxide layer 12 while reducing the opening diameter of the hole 16, and the anode layer 13 is formed so as to vacuum-seal the cold cathode 11. At this time, since molybdenum is laminated on the silicon dioxide layer 12 while reducing the opening diameter of the hole 16, the cold cathode 11 is formed in a conical shape. In this case, the cold cathode
After 11 is formed on the substrate electrode 10 and the opening of the hole 16 is closed, molybdenum is further deposited by about 0.5 μm for vacuum sealing.

【0025】従って、上記実施例によれば、冷陰極11と
陽極層13とを同一の材料で同一の製造工程において形成
するので、素子全体が大気に触れて大気中のガスが電子
放出源すなわち冷陰極11の表面に吸着することを防止し
て、素子の再現性や動作特性を向上することができ、ま
た、製造工程及び製造装置を簡略化、小型化して量産性
を向上することができる。
Therefore, according to the above-described embodiment, since the cold cathode 11 and the anode layer 13 are formed of the same material in the same manufacturing process, the entire element comes into contact with the atmosphere and the gas in the atmosphere is the electron emission source. It is possible to prevent adsorption to the surface of the cold cathode 11 to improve the reproducibility and operating characteristics of the element, and also to simplify the manufacturing process and manufacturing apparatus and downsize them to improve mass productivity. ..

【0026】次に、図3及び図4を参照して本発明の他
の実施例を説明する。
Next, another embodiment of the present invention will be described with reference to FIGS.

【0027】図3は、電界放出型真空管の他の実施例の
構成を示す要部側面断面図であり、図4はその製造方法
を示す要部側面断面図である。
FIG. 3 is a side sectional view of a main part showing the structure of another embodiment of the field emission vacuum tube, and FIG. 4 is a side sectional view of the main part showing a manufacturing method thereof.

【0028】図3に示すように、n型シリコン基板を用
いた基板電極20上には、電子放出源であるモリブデン金
属製の円錐状の冷陰極21が形成されている。図には1つ
の冷陰極しか示していないが、複数の冷陰極21がリニア
アレイ状又はマトリクス状に基板電極20上に形成され
る。冷陰極11の材料としては、熱的及び機械的に優れ、
並びに仕事関数の小さいものであれば、特にモリブデン
に限られるものではない。
As shown in FIG. 3, a conical cold cathode 21 made of molybdenum metal which is an electron emission source is formed on a substrate electrode 20 using an n-type silicon substrate. Although only one cold cathode is shown in the drawing, a plurality of cold cathodes 21 are formed on the substrate electrode 20 in a linear array or a matrix. The material of the cold cathode 11 is excellent in thermal and mechanical properties,
In addition, molybdenum is not particularly limited as long as it has a low work function.

【0029】冷陰極21の周囲の基板電極20上にはシリコ
ン酸化膜(SiO2 )の絶縁層22が積層されている。絶
縁層22の基板電極20とは反対側の面上にはゲート電極層
23及び絶縁層24がこの順番で積層されている。そして、
これらの冷陰極21及び絶縁層24等を覆って陽極層25が設
けられている。陽極層25は絶縁層24の基板電極20と反対
側の面上に積層され、陽極層25の冷陰極21と対向する部
分に円錐状の窪み26が形成されおり、この窪み26即ち陽
極層25と冷陰極21との間隙は真空状態となっている。陽
極層25の材料は冷陰極21と同一のものが使用される。
An insulating layer 22 of a silicon oxide film (SiO 2 ) is laminated on the substrate electrode 20 around the cold cathode 21. A gate electrode layer is formed on the surface of the insulating layer 22 opposite to the substrate electrode 20.
23 and the insulating layer 24 are laminated in this order. And
An anode layer 25 is provided so as to cover the cold cathode 21, the insulating layer 24 and the like. The anode layer 25 is laminated on the surface of the insulating layer 24 opposite to the substrate electrode 20, and a conical recess 26 is formed in a portion of the anode layer 25 facing the cold cathode 21, and the recess 26, that is, the anode layer 25. The gap between the cold cathode 21 and the cold cathode 21 is in a vacuum state. The material of the anode layer 25 is the same as that of the cold cathode 21.

【0030】本実施例の真空管は三極管で構成されてい
る。冷陰極21にマイナスの電圧が印加され、ゲート電極
層23と陽極層25とに共にプラスの電圧が印加されると、
電界放出の原理により冷陰極21から電子が放出されるの
で、微小な三極管を構成することができる。
The vacuum tube of this embodiment is composed of a triode. When a negative voltage is applied to the cold cathode 21 and a positive voltage is applied to both the gate electrode layer 23 and the anode layer 25,
Electrons are emitted from the cold cathode 21 by the principle of field emission, so that a minute triode can be constructed.

【0031】次に、図4を参照して電界放出型真空管の
製造方法の一実施例について説明する。図4(A)〜
(E)の断面図は製造工程の各段階を示している。
Next, an embodiment of a method for manufacturing a field emission vacuum tube will be described with reference to FIG. FIG. 4 (A)-
The sectional view of (E) shows each stage of the manufacturing process.

【0032】先ず、図4(A)に示すように、比抵抗ρ
=0.01〜0.02Ω・cmのn型シリコン基板を用
いた基板電極20の表面に、絶縁層となる二酸化シリコン
層22a を厚さが1μmになるように熱酸化により形成
し、次いで、真空蒸着装置を用いて二酸化シリコン層22
a の上にゲート電極層となるモリブデン膜23a を厚さが
0.3μm程度で形成し、次に、同一の真空蒸着装置の
チャンバ内で絶縁層となる二酸化シリコン膜24a を厚さ
が0.5μm程度で堆積する。
First, as shown in FIG. 4A, the specific resistance ρ
= 0.01 to 0.02 Ω · cm, a silicon dioxide layer 22a serving as an insulating layer is formed on the surface of the substrate electrode 20 using an n-type silicon substrate by thermal oxidation so as to have a thickness of 1 μm. Silicon dioxide layer 22 using vacuum deposition equipment
A molybdenum film 23a to be a gate electrode layer is formed to a thickness of about 0.3 μm on a, and then a silicon dioxide film 24a to be an insulating layer is formed to a thickness of 0. Deposition is about 5 μm.

【0033】次に、第1の実施例と同様に、図4(B)
に示すように、二酸化シリコン膜24a の表面に、レジス
トをスピナを用いて塗布してこのレジストに所望のパタ
ーンを焼き付け、現像処理を行ってレジストパターン27
を形成し、最上層の二酸化シリコン膜24a の一部を露出
させる。そして、反応性イオンエッチングにより露出し
た領域をエッチングし、図4(C)に示すような穴28を
二酸化シリコン膜24a、モリブデン膜23a 及び二酸化シ
リコン層22a を貫通して形成し、基板電極20表面を露出
させる。即ち、穴28の一端は基板電極20表面は塞がれて
おり、他端は図中上部へと開口している。そして、絶縁
層24上のレジストパターン27を酸素ガスによるアッシン
グにより除去する。
Next, as in the first embodiment, FIG.
As shown in FIG. 7, a resist is applied to the surface of the silicon dioxide film 24a using a spinner, a desired pattern is baked on the resist, and a developing process is performed to form a resist pattern
Is formed to expose a part of the uppermost silicon dioxide film 24a. Then, the exposed region is etched by reactive ion etching to form a hole 28 as shown in FIG. 4C through the silicon dioxide film 24a, the molybdenum film 23a and the silicon dioxide layer 22a, and the surface of the substrate electrode 20. Expose. That is, the surface of the substrate electrode 20 is closed at one end of the hole 28 and is opened at the other end to the upper part in the figure. Then, the resist pattern 27 on the insulating layer 24 is removed by ashing with oxygen gas.

【0034】図4(C)で形成したものを真空蒸着装置
内に設置して、冷陰極21及び陽極層25の材料であるモリ
ブデンを蒸着源として、図4(D)に示す矢印Bの示す
方向から穴28の開口部に対してモリブデンを蒸着する
と、図4(E)に示すように円錐状の冷陰極21が穴28内
の基板電極20上に形成されるとともに、モリブデンの陽
極層25が穴28の開口径を縮小しながら絶縁層24に堆積し
て、冷陰極21を真空封止するように形成される。この
際、モリブデンが穴28の開口径を縮小しながら絶縁層24
上に積層されるので、冷陰極21が円錐状に形成される。
この場合、冷陰極21が基板電極20上に形成されて穴28の
開口が塞がった後、モリブデンを0.5μm程度堆積す
ることにより真空封止を行う。
The structure formed in FIG. 4C is set in a vacuum evaporation system, and molybdenum, which is the material of the cold cathode 21 and the anode layer 25, is used as the evaporation source, as shown by the arrow B in FIG. 4D. When molybdenum is vapor-deposited from the direction toward the opening of the hole 28, a conical cold cathode 21 is formed on the substrate electrode 20 in the hole 28 as shown in FIG. Are deposited on the insulating layer 24 while reducing the opening diameter of the hole 28, and are formed so as to vacuum-seal the cold cathode 21. At this time, molybdenum reduces the opening diameter of the hole 28 while insulating layer 24
Since it is stacked on top, the cold cathode 21 is formed in a conical shape.
In this case, after the cold cathode 21 is formed on the substrate electrode 20 to close the opening of the hole 28, vacuum sealing is performed by depositing molybdenum to about 0.5 μm.

【0035】従って、上記実施例においても同様に、冷
陰極21と陽極層25とを同一の材料で同一の製造工程にお
いて形成するので、素子全体が大気に触れて大気中のガ
スが電子放出源すなわち冷陰極21の表面に吸着すること
を防止して、素子の再現性や動作特性を向上することが
でき、また、製造工程及び製造装置を簡略化、小型化し
て量産性を向上することができる。
Therefore, also in the above embodiment, since the cold cathode 21 and the anode layer 25 are formed of the same material and in the same manufacturing process, the entire element is exposed to the atmosphere and the gas in the atmosphere emits the electron emission source. That is, it is possible to prevent adsorption to the surface of the cold cathode 21 to improve the reproducibility and operating characteristics of the element, and also to simplify the manufacturing process and manufacturing apparatus and downsize them to improve mass productivity. it can.

【0036】上記実施例において、基板電極としてn型
シリコン基板を使用したが、これに限られるものではな
く、p型シリコン基板等の半導体材料又は支持体を介し
て形成された導体薄膜を使用してもよい。また、絶縁層
として二酸化シリコンを使用したが、同等の性能を有す
る材料であればこれに限られるものではない。
Although the n-type silicon substrate is used as the substrate electrode in the above embodiment, the present invention is not limited to this, and a semiconductor thin film such as a p-type silicon substrate or a conductive thin film formed through a support is used. May be. Further, although silicon dioxide is used as the insulating layer, the material is not limited to this as long as the material has equivalent performance.

【0037】[0037]

【発明の効果】以上説明したように、本発明は、電子放
出源である冷陰極と陽極層とが同一の材料で構成されて
いるので、同一の工程で形成され得る。具体的には、真
空蒸着法を用い同一の蒸着源によって電子放出源である
冷陰極と陽極層とが同時に蒸着される。更に、冷陰極と
陽極層とを形成する際に、冷陰極の周囲が陽極層によっ
て真空封止される。従って、電界放出型真空管の冷陰極
周囲が大気に触れて大気中に含まれるガスが冷陰極の表
面に吸着することを防止することができる。これによっ
て、電界放出型真空管の再現性や動作特性を向上するこ
とができ、また、電界放出型真空管の製造工程や装置を
簡略化、小型化して量産性を向上することができる。
As described above, according to the present invention, the cold cathode, which is an electron emission source, and the anode layer are made of the same material, so that they can be formed in the same process. Specifically, a cold cathode and an anode layer, which are electron emission sources, are simultaneously vapor-deposited by the same vapor deposition source using a vacuum vapor deposition method. Further, when forming the cold cathode and the anode layer, the periphery of the cold cathode is vacuum-sealed by the anode layer. Therefore, it is possible to prevent the gas contained in the atmosphere from being adsorbed on the surface of the cold cathode by contacting the atmosphere around the cold cathode of the field emission vacuum tube. As a result, the reproducibility and operating characteristics of the field emission vacuum tube can be improved, and the manufacturing process and apparatus of the field emission vacuum tube can be simplified and miniaturized to improve mass productivity.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る電界放出型真空管の一実施例の要
部側面断面図である。
FIG. 1 is a side sectional view of an essential part of an embodiment of a field emission vacuum tube according to the present invention.

【図2】図1に示す電界放出型真空管の製造方法を示す
要部側面断面図である。
FIG. 2 is a side sectional view of an essential part showing a method for manufacturing the field emission vacuum tube shown in FIG.

【図3】本発明に係る電界放出型真空管の他の実施例の
要部側面断面図である。
FIG. 3 is a side sectional view of a main part of another embodiment of the field emission vacuum tube according to the present invention.

【図4】図3に示す電界放出型真空管の製造方法を示す
要部側面断面図である。
FIG. 4 is a side sectional view of an essential part showing the method for manufacturing the field emission vacuum tube shown in FIG.

【図5】従来の電界放出型真空管の一例の要部側面断面
図である。
FIG. 5 is a side sectional view of a main part of an example of a conventional field emission vacuum tube.

【図6】図5の電界放出型真空管の製造方法を示す要部
側面断面図である。
FIG. 6 is a side sectional view of an essential part showing the method for manufacturing the field emission vacuum tube of FIG.

【符号の説明】[Explanation of symbols]

11、21 冷陰極 12、22、24 絶縁層 23 ゲート電極 13、25 陽極層 11, 21 Cold cathode 12, 22, 24 Insulation layer 23 Gate electrode 13, 25 Anode layer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 赤木 裕 大阪府大阪市阿倍野区長池町22番22号 シ ヤープ株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yu Akagi 22-22 Nagaike-cho, Abeno-ku, Osaka-shi, Osaka

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 基板電極と、該基板電極に電気的に接続
されており、該基板電極の上に形成された複数の電子放
出源と、該電子放出源が形成された側の前記基板電極の
表面に対向して設けられかつ前記電子放出源を真空封止
する陽極層とを備えており、該陽極層の材料が前記電子
放出源の材料と同一であることを特徴とする電界放出型
真空管。
1. A substrate electrode, a plurality of electron emission sources electrically connected to the substrate electrode and formed on the substrate electrode, and the substrate electrode on the side where the electron emission source is formed. A field emission type which is provided so as to face the surface of the electron emission source and which seals the electron emission source in vacuum, and the material of the anode layer is the same as the material of the electron emission source. Vacuum tube.
【請求項2】 半導体又は金属から成る基板電極表面
に、複数の電子放出源及び該電子放出源の上部を覆う陽
極層を同一の蒸着源を用いた真空蒸着法で形成し、前記
電子放出源を真空封止することを特徴とする電界放出型
真空管の製造方法。
2. A plurality of electron emission sources and an anode layer covering the tops of the electron emission sources are formed on a surface of a substrate electrode made of a semiconductor or a metal by a vacuum vapor deposition method using the same vapor deposition source, and the electron emission sources are formed. A method for manufacturing a field emission vacuum tube, which comprises vacuum-sealing.
JP25524391A 1991-10-02 1991-10-02 Field emission type vacuum tube and manufacture thereof Pending JPH0594761A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25524391A JPH0594761A (en) 1991-10-02 1991-10-02 Field emission type vacuum tube and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25524391A JPH0594761A (en) 1991-10-02 1991-10-02 Field emission type vacuum tube and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH0594761A true JPH0594761A (en) 1993-04-16

Family

ID=17276029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25524391A Pending JPH0594761A (en) 1991-10-02 1991-10-02 Field emission type vacuum tube and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH0594761A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009532836A (en) * 2006-04-05 2009-09-10 コミツサリア タ レネルジー アトミーク Method for protecting a cavity opened in the surface of a microstructure element
CN104396103A (en) * 2012-08-09 2015-03-04 立山科学工业株式会社 Electrostatic protection element and method for manufacturing same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03194829A (en) * 1989-12-22 1991-08-26 Nec Corp Micro vacuum triode and manufacture thereof
JPH03261040A (en) * 1990-03-09 1991-11-20 Mitsubishi Electric Corp Micro vacuum tube and its manufacture
JPH04292832A (en) * 1991-03-20 1992-10-16 Sony Corp Micro vacuum element

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03194829A (en) * 1989-12-22 1991-08-26 Nec Corp Micro vacuum triode and manufacture thereof
JPH03261040A (en) * 1990-03-09 1991-11-20 Mitsubishi Electric Corp Micro vacuum tube and its manufacture
JPH04292832A (en) * 1991-03-20 1992-10-16 Sony Corp Micro vacuum element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009532836A (en) * 2006-04-05 2009-09-10 コミツサリア タ レネルジー アトミーク Method for protecting a cavity opened in the surface of a microstructure element
CN104396103A (en) * 2012-08-09 2015-03-04 立山科学工业株式会社 Electrostatic protection element and method for manufacturing same

Similar Documents

Publication Publication Date Title
US5663608A (en) Field emission display devices, and field emisssion electron beam source and isolation structure components therefor
US4983878A (en) Field induced emission devices and method of forming same
US5445550A (en) Lateral field emitter device and method of manufacturing same
JP3216688B2 (en) Improved micro field emission device having insulated gate electrode for preventing breakdown and method of realizing the same
US3735186A (en) Field emission cathode
US5684356A (en) Hydrogen-rich, low dielectric constant gate insulator for field emission device
US5578900A (en) Built in ion pump for field emission display
JPH01502307A (en) Ultra-high speed integrated microelectron tube
WO1991003066A1 (en) Self-aligned gate process for fabricating field emitter arrays
KR100618531B1 (en) Electron emission device, electron source, and image display having dipole layer
US5844360A (en) Field emmission display with an auxiliary chamber
JPH05205644A (en) Vacuum microelectronic device and manufacture thereof
US5378182A (en) Self-aligned process for gated field emitters
US6137212A (en) Field emission flat panel display with improved spacer architecture
JPH06223707A (en) Silicon field emission device and its manufacture
JPH06215689A (en) Manufacture of silicon electron emission device
US4986787A (en) Method of making an integrated component of the cold cathode type
JP3024539B2 (en) Electron beam excited light emitting device
JPH0594761A (en) Field emission type vacuum tube and manufacture thereof
EP0564926B1 (en) Cold cathode
JP3186578B2 (en) Field emission device and method of manufacturing the same
CN114334582A (en) Method for manufacturing field emission device structure and field emission device structure
JP2606406Y2 (en) Vacuum sealing device and display device
Gotoh et al. Fabrication of gated niobium nitride field emitter array
JPH03194829A (en) Micro vacuum triode and manufacture thereof