JPH059473B2 - - Google Patents

Info

Publication number
JPH059473B2
JPH059473B2 JP58187723A JP18772383A JPH059473B2 JP H059473 B2 JPH059473 B2 JP H059473B2 JP 58187723 A JP58187723 A JP 58187723A JP 18772383 A JP18772383 A JP 18772383A JP H059473 B2 JPH059473 B2 JP H059473B2
Authority
JP
Japan
Prior art keywords
acid
parts
meth
water
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58187723A
Other languages
Japanese (ja)
Other versions
JPS6081253A (en
Inventor
Tetsuo Aihara
Yosei Nakayama
Koichi Umeyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Paint Co Ltd
Original Assignee
Kansai Paint Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Paint Co Ltd filed Critical Kansai Paint Co Ltd
Priority to JP58187723A priority Critical patent/JPS6081253A/en
Publication of JPS6081253A publication Critical patent/JPS6081253A/en
Publication of JPH059473B2 publication Critical patent/JPH059473B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Emulsifying, Dispersing, Foam-Producing Or Wetting Agents (AREA)
  • Colloid Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)
  • Paints Or Removers (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は新規な分散剤を用いた易分散性及び分
散安定性にすぐれた水性顔料分散液に関する。 従来、顔料を含むエマルジヨン塗料及び水溶性
樹脂塗料等の水性塗料において、製造時の顔料の
難分散性や貯蔵中の顔料の凝集・沈降に基づく塗
面の着色効果の低下、フラツデイング(浮き)、
フローテイング(浮きまだら)、光沢の低下など
好ましからざる現象が起こることはよく知られて
いる。このため、一般には顔料を予じめ分散剤で
分散した水性顔料分散液を調製しておき、このも
のを被着色水性塗料に混合・分散して水性塗料の
着色が行なわれている。 従来の該水性顔料分散液には界面活性剤の如き
低分子量化合物が分散剤として使用されている
が、該分散剤による幣害、すなわち塗膜性能また
は塗膜状態が低下する二次的な悪影響が避けられ
ず、最近では分散剤としてオリゴマーまたは中程
度の分子量を有する重合体を用いて塗膜性能等の
低下を抑えているのが実情である。 しかしながら、分散剤としてオリゴマーや重合
体を用いる場合、その使用量が低分子界面活性剤
に比較して多量となり、また、得られる水性顔料
分散液の使用が水性塗料に用いられる結合剤の種
類によつて制限を受ける等の欠点がある。このこ
とは塗料の製造面での合理化に逆行し、そのため
各種の水性塗料に共通な水性顔料分散液の開発が
強く要望されている。 そこで、本発明者らは少量で顔料の易分散がで
き、各種の水性樹脂と相溶性を有し、しかもそれ
自体高分子で水性塗料の塗膜性能の低下をきたす
ことのない理想的な分散剤の開発を、特に困難な
水系において行なうことを目的に鋭意研究した結
果、本発明を完成するに至つたのである。 かくして、本発明に従えば、 顔料、分散剤及び水性媒体からなる水性顔料分
散液において、該分散剤が (A) 合成飽和脂肪酸又は置換もしくは未置換の安
息香酸で変性された(メタ)アクリル系単量体
3〜98重量部 (B) ラジカル重合性含窒素単量体 2〜97重量部 (C) α,β−エチレン性不飽和カルボン酸
0.5〜20重量部 及び (D) 上記(A),(B),(C)以外のα,β−エチレン性不
飽和単量体 0〜91重量部 を共重合することにより得られる重合体の水溶性
化物であることを特徴とする水性顔料分散液が提
供される。 本発明の水性顔料分散液の分散剤として使用さ
れる重合体は、側鎖の親油性基が、親水性の含窒
素単量体及びα,β−エチレン性不飽和カルボン
酸を含む主鎖と分離した形態で結合した構造を有
しているために顔料分散能力が非常に高い。さら
に、該重合体は含窒素単量体に由来する塩基性と
カルボン酸による酸性の両成分を含むので、酸性
顔料及び塩基性顔料等広範囲の顔料を分散するこ
とが可能であるという利点を有している。また、
該分散剤は顔料分散能が非常に優れていることに
加え酸価が比較的低いことすなわちカルボキシル
基の絶対量が少ないことにより、耐食性、付着性
等の性能において著しく優れ良好な着色塗膜を得
ることができる。 以下、本発明の水性顔料分散液に用いられる分
散剤についてさらに詳細に説明する。 合成飽和脂肪酸又は置換もしくは未置換の安息香
酸で変性された(メタ)アクリル系単量体(A): 本発明において使用される合成飽和脂肪酸又は
置換もしくは未置換の安息香酸で変性された(メ
タ)アクリル系単量体(以下「酸変性(メタ)ア
クリル系単量体」という)(A)において、変性剤と
して使用される合成飽和脂肪酸は、天然の油脂も
しくは脂肪酸又は石油原料から、オゾン酸化法、
パラフイン液空気酸化法、オキソ法、Koch法な
どの方法によつて人工的に誘導される炭素原子数
が4〜24個、好ましくは5〜18個の直鎖状もしく
は分岐鎖状の飽和脂肪酸カルボン酸であり、代表
的な合成飽和脂肪酸としては、ネオペンタン酸、
2−エチチル酪酸、ヘプタン酸、2−エチルヘキ
サン酸、イソオクタン酸、ノナン酸、イソノナン
酸、デカン酸、イソデカン酸、ネオデカン酸、イ
ソトリデカン酸、イソパルミチン酸、イソステア
リン酸などが挙げられる。 また、置換もしくは未置換の安息香酸として
は、ベンゼン環上に、活性水素原子を含まない置
換基、例えば、メチル、エチル、プロピル、イソ
プロピル、ブチル、sec−ブチル、イソブチル、
tert−ブチルのような低級アルキル基;メトキ
シ、エトキシ、プロポキシ、ブトキシ、tert−ブ
トキシのような低級アルコキシ基;ジメチルアミ
ノ、ジエチルアミノのようなジ(低級アルキル)
アミノ基;ニトロ基等から選ばれる1〜3個、特
に1個の基を有していてもよい安息香酸が包含さ
れ、具体的には、安息香酸、m−メチル安息香
酸、p−tert−ブチル安息香酸、p−メトキシ安
息香酸、ジメチルアミノ安息香酸等が挙げられ
る。 これら合成飽和脂肪酸又は置換もしくは未置換
の安息香酸は、存在するカルボキシル基の反応性
を利用して以下に述べる如くして、(メタ)アク
リル系単量体に導入される。この導入に際して、
上記の酸はそれぞれ単独で使用してもよく、或い
は2種もしくはそれ以上組合わせて用いてもよい
が、これらの酸は、一般には、得られる重合体の
重量を基準にして5〜65重量%、好ましくは10〜
60重量%の範囲内に入る量で使用するのが有利で
ある。 かかる酸が導入される(メタ)アクリル系単量
体としては、エステル残基部分に該酸のカルボキ
シル基と反応しうる官能基、例えばエポキシ基、
水酸基等を含有するアクリル酸又はメタクリル酸
のエステルを例示することができる。 しかして、酸変性(メタ)アクリル系単量体(A)
を得るために前記した合成飽和脂肪酸又は置換も
しくは未置換の安息香酸が導入される(メタ)ア
クリル系単量体の1つのタイプに「エポキシ基を
有するアクリル酸エステルまたはメタクリル酸エ
ステル」(以下、“エポキシ含有(メタ)アクリル
酸エステル”と略称することがある)があり、こ
のタイプのエステルとしては、アクリル酸又はメ
タクリル酸のエステル残基部分にグリシジル基を
含むもの、殊に、グリシジルアクリレート及びグ
リシジルメタクリレートが好適である。かかるエ
ポキシ含有アクリル系エステルを用いての酸変性
アクリル系単量体(A)の調製は、常法に従い、適当
な不活性溶媒の存在又は不在下、通常は溶媒の不
在下に、前述した合成飽和脂肪酸又は置換もしく
は未置換の安息香酸をエポキシ含有アクリル系エ
ステルと反応させることにより行なうことができ
る。該反応は一般に約60〜約220℃、好ましくは
約120〜約170℃の温度において行なうことがで
き、反応時間は一般に約0.5〜約40時間、好まし
くは約3〜約10時間である。 該エポキシ含有アクリル酸エステルは、通常、
該合成飽和脂肪酸又は置換もしくは未置換の安息
香酸1モル当り0.7〜1.5モル、好ましくは0.8〜
1.2モルの割合で使用するのが有利である。 また、必要に応じて用いられる不活性溶媒とし
ては、220℃以下の濃度で還流しうる水−非混合
性の有機溶媒が好ましく、例えば、ベンゼン、ト
ルエン、キシレンなどの芳香族炭化水素;ヘプタ
ン、ヘキサン、オクタンなどの脂肪族炭化水素が
挙げられる。 さらに、上記反応に当つて、反応系に必要に応
じて重合禁止剤、例えば、ハイドロキノン、メト
キシフエノール、tert−ブチルカテコール、ベン
ゾキノン等を加え、エポキシ含有(メタ)アクリ
ル酸エステル及び/又は生成する酸変性(メタ)
アクリル系エステルの重合を抑制するようにする
ことが有利である。 上記反応において、エポキシ含有(メタ)アク
リル酸エステルのオキシラン基(エポキシ基)と
合成飽和脂肪酸又は置換もしくは未置換の安息香
酸のカルボキシル基との間でオキシラン環の開裂
を伴うエステル化が起り、上記の酸で変性された
(メタ)アクリル酸エステルが得られる。 また別のタイプの酸変性(メタ)アクリル系単
量体(A)をつくるために上記の合成飽和脂肪酸又は
置換もしくは未置換の安息香酸と反応せしめられ
る(メタ)アクリル系単量体には「水酸基を含有
するアクリル酸エステル又はメタクリル酸エステ
ル」(以下、“水酸基含有(メタ)アクリル酸エス
テル”と略称することがある)が包含され、この
タイプのエステルとしては、アクリル酸又はメタ
クリル酸のエステル残基部分に1個の水酸基を有
し且つ該エステル残基部分に2〜24個、好ましく
は2〜8個の炭素原子を含むものが包含されて、
中でも、下記式()又は() 上記各式中、R1は水素原子又はメチル基を表
わし、nは2〜8の整数であり、p及びqはそれ
ぞれ0〜8の整数であり、ただしpとqの和は1
〜8である、 で示される型の水酸基含有(メタ)アクリル酸エ
ステルが好適である。 本発明において特に好適な水酸基含有(メタ)
アクリル酸エステルは、上記式()で示される
ヒドロキシアルキルアクリレート及びヒドロキシ
アルキルメタクリレート、就中、2−ヒドロキシ
エチルアクリレート、2−ヒドロキシエチルメタ
クリレート、2−ヒドロキシプロピルアクリレー
ト及び2−ヒドロキシプロピルメタクリレートで
ある。 後者のタイプの酸変性メタアクリル系単量体(A)
の調製は、通常、前記の合成飽和脂肪酸又は置換
もしくは未置換の安息香酸を上記水酸基含有(メ
タ)アクリル酸エステルと適宜不活性溶媒中に
て、エステル化触媒の存在下に反応させることに
より行なうことができる。該反応は一般に約100
〜約180℃、好ましくは約120〜約160℃の温度の
加熱下に行なわれ、反応時間は一般に約0.5〜約
9時間、通常約1〜約6時間である。 該水酸基含有(メタ)アクリル酸エステルは、
通常、該上記の酸1モル当り0.5〜1.9モルの割合
で使用することができ、好ましくは上記の酸1モ
ル当り1.0〜1.5モルの割合で使用するのが有利で
ある。 上記反応に使用されるエステル化触媒として
は、例えば、硫酸、硫酸アルミニウム、硫酸水素
カリウム、p−トルエンスルホン酸、塩酸、硫酸
メチル、リン酸等が挙げられ、これら触媒は、通
常、反応せしめられる上記の酸と水酸基含有(メ
タ)アクリル酸エステルとの合計量の約0.001〜
約20重量%、好ましくは約0.05〜約1.0重量%の
割合で使用される。 また、必要に応じて用いられる不活性溶媒とし
ては、180℃以下の温度で還流しうる水−非混和
性の有機溶媒が好ましく、例えば、ベンゼン、ト
ルエン、キシレンなどの芳香族炭化水素;ヘプタ
ン、ヘキサン、オクタンなどの脂肪族炭化水素が
挙げられる。 さらに、上記反応に当つて、反応系に必要に応
じて重合禁止剤、例えば、ハイドロキノン、メト
キシフエノール、tert−ブチルカテコール、ベン
ゾキノン等を加え、水酸基含有(メタ)アクリル
酸エステル及び/又は生成する酸変性(メタ)ア
クリル系エステルの重合を抑制するようにするこ
とが有利である。 上記反応において、水酸基含有(メタ)アクリ
ル酸エステルの水酸基と合成飽和脂肪酸又は置換
もしくは未置換の安息香酸のカルボキシル基との
間でエステル化が起り、酸で変性された(メタ)
アクリル酸エステルが得られる。 酸変性(メタ)アクリル系単量体(A)を調製する
ための更に別の方法として、前記した方法の他
に、合成飽和脂肪酸又は置換もしくは未置換の安
息香酸のグリシジルエステル〔例えば、
“Cardura E”(シエル・ケミカル社の製品)〕に
アクリル酸又はメタクリル酸を前述の如くしてエ
ステル化反応させることもできる。 α,β−エチレン性不飽和含窒素単量体(B): 次に本発明において用いられるα,β−エチレ
ン性不飽和含窒素単量体(B)としては、1分子中に
1個または複数個(通常4個まで)の塩基性窒素
原子と1つのエチレン性不飽和結合を含有する単
量体が包含され、代表的なものとしては、含窒素
複素環を有する不飽和単量体及び(メタ)アクリ
ル酸の含窒素誘導体が挙げられる。以下、これら
の単量体についてさらに具体的に説明する。 〔〕 含窒素複素環を有する不飽和単量体として
は1〜3個、好ましくは1又は2個の環窒素原
子を含む単環又は多環の複素環がビニル基に結
合した単量体が包含され、特に下記に示す単量
体を挙げることができる。 (i) ビニルピロリドン類; 例えば、1−ビニル−2−ピロリドン、1
−ビニル−3−ピロリドンなど。 (ii) ビニルピリジン類; 例えば、2−ビニルピリジン、4−ビニル
ピリジン、5−メチル−2−ビニルピリジ
ン、5−エチル−2−ビニルピリジンなど。 (iii) ビニルイミダゾール類; 例えば、1−ビニルイミダゾール、1−ビ
ニル−2−メチルイミダゾールなど。 (iv) ビニルカルバゾール類; 例えば、N−ビニルカルバゾールなど。 (v) ビニルキノリン類; 例えば、2−ビニルキノリンなど。 (vi) ビニルピペリジン類; 例えば、3−ビニルピペリジン、N−メチ
ル−3−ビニルピペリジンなど。 (vii) その他; 例えば、式
The present invention relates to an aqueous pigment dispersion that uses a novel dispersant and has excellent dispersibility and dispersion stability. Conventionally, in water-based paints such as emulsion paints and water-soluble resin paints containing pigments, there have been problems such as decreased coloring effect on the painted surface, flattening (floating),
It is well known that undesirable phenomena such as floating (floating mottling) and reduction in gloss occur. For this reason, generally, an aqueous pigment dispersion is prepared by dispersing the pigment in advance with a dispersant, and this is mixed and dispersed in the aqueous paint to be colored to color the aqueous paint. In conventional aqueous pigment dispersions, low molecular weight compounds such as surfactants are used as dispersants, but the dispersants cause damage, that is, secondary adverse effects such as deterioration of coating performance or coating condition. This is unavoidable, and recently oligomers or polymers having a medium molecular weight have been used as dispersants to suppress the deterioration of coating performance. However, when oligomers or polymers are used as dispersants, the amount used is larger than that of low-molecular surfactants, and the use of the resulting aqueous pigment dispersion is dependent on the type of binder used in water-based paints. Therefore, there are drawbacks such as limitations. This goes against the rationalization of paint manufacturing, and there is therefore a strong demand for the development of a water-based pigment dispersion that is common to various water-based paints. Therefore, the present inventors have developed an ideal dispersion that allows pigments to be easily dispersed in small amounts, is compatible with various water-based resins, and is polymeric in itself and does not cause a decline in the coating performance of water-based paints. The present invention was completed as a result of intensive research aimed at developing a particularly difficult aqueous system. Thus, according to the invention, in an aqueous pigment dispersion comprising a pigment, a dispersant and an aqueous medium, the dispersant is (A) a (meth)acrylic resin modified with a synthetic saturated fatty acid or substituted or unsubstituted benzoic acid; monomer
3 to 98 parts by weight (B) Radically polymerizable nitrogen-containing monomer 2 to 97 parts by weight (C) α,β-ethylenically unsaturated carboxylic acid
A polymer obtained by copolymerizing 0.5 to 20 parts by weight and (D) 0 to 91 parts by weight of α,β-ethylenically unsaturated monomers other than (A), (B), and (C) above. An aqueous pigment dispersion is provided, which is a water-soluble pigment dispersion. The polymer used as a dispersant for the aqueous pigment dispersion of the present invention has a lipophilic group on the side chain connected to a main chain containing a hydrophilic nitrogen-containing monomer and an α,β-ethylenically unsaturated carboxylic acid. Because it has a structure that is bonded in a separate form, it has very high pigment dispersion ability. Furthermore, since the polymer contains both basic components derived from nitrogen-containing monomers and acidic components derived from carboxylic acids, it has the advantage that it is possible to disperse a wide range of pigments such as acidic pigments and basic pigments. are doing. Also,
This dispersant has excellent pigment dispersion ability and a relatively low acid value, i.e., the absolute amount of carboxyl groups is small, so it has excellent properties such as corrosion resistance and adhesion, and can form good colored coatings. Obtainable. Hereinafter, the dispersant used in the aqueous pigment dispersion of the present invention will be explained in more detail. (Meth)acrylic monomer (A) modified with synthetic saturated fatty acids or substituted or unsubstituted benzoic acid: Synthetic saturated fatty acids or (meth)acrylic monomers modified with substituted or unsubstituted benzoic acid used in the present invention ) Acrylic monomer (hereinafter referred to as "acid-modified (meth)acrylic monomer") (A), the synthetic saturated fatty acid used as a modifier is obtained from natural fats and oils or fatty acids or petroleum raw materials by ozone oxidation. law,
A linear or branched saturated fatty acid carboxyl having 4 to 24 carbon atoms, preferably 5 to 18 carbon atoms, artificially induced by a paraffin liquid air oxidation method, the oxo method, the Koch method, etc. Typical synthetic saturated fatty acids include neopentanoic acid,
Examples include 2-ethylbutyric acid, heptanoic acid, 2-ethylhexanoic acid, isooctanoic acid, nonanoic acid, isononanoic acid, decanoic acid, isodecanoic acid, neodecanoic acid, isotridecanoic acid, isopalmitic acid, isostearic acid, and the like. Substituted or unsubstituted benzoic acids include substituents that do not contain active hydrogen atoms on the benzene ring, such as methyl, ethyl, propyl, isopropyl, butyl, sec-butyl, isobutyl,
Lower alkyl groups such as tert-butyl; lower alkoxy groups such as methoxy, ethoxy, propoxy, butoxy, tert-butoxy; di(lower alkyl) such as dimethylamino, diethylamino
Amino group: Includes benzoic acid which may have 1 to 3, especially 1 group selected from nitro group etc. Specifically, benzoic acid, m-methylbenzoic acid, p-tert- Examples include butylbenzoic acid, p-methoxybenzoic acid, dimethylaminobenzoic acid, and the like. These synthetic saturated fatty acids or substituted or unsubstituted benzoic acids are introduced into (meth)acrylic monomers as described below by utilizing the reactivity of the existing carboxyl groups. With this introduction,
The above acids may be used alone or in combination of two or more, but generally these acids are used in an amount of 5 to 65% by weight based on the weight of the resulting polymer. %, preferably 10~
It is advantageous to use amounts within the range of 60% by weight. The (meth)acrylic monomer into which such an acid is introduced has a functional group capable of reacting with the carboxyl group of the acid, such as an epoxy group, in the ester residue portion.
Examples include esters of acrylic acid or methacrylic acid containing hydroxyl groups and the like. Therefore, acid-modified (meth)acrylic monomer (A)
One type of (meth)acrylic monomer into which the synthetic saturated fatty acid or substituted or unsubstituted benzoic acid described above is introduced is "acrylic ester or methacrylic ester having an epoxy group" (hereinafter referred to as (sometimes abbreviated as "epoxy-containing (meth)acrylic ester"), and this type of ester includes those containing a glycidyl group in the ester residue of acrylic acid or methacrylic acid, especially glycidyl acrylate and Glycidyl methacrylate is preferred. The acid-modified acrylic monomer (A) using such an epoxy-containing acrylic ester is prepared according to the conventional method, in the presence or absence of a suitable inert solvent, usually in the absence of a solvent, by the synthesis described above. This can be accomplished by reacting a saturated fatty acid or substituted or unsubstituted benzoic acid with an epoxy-containing acrylic ester. The reaction can generally be carried out at a temperature of about 60 to about 220°C, preferably about 120 to about 170°C, and the reaction time is generally about 0.5 to about 40 hours, preferably about 3 to about 10 hours. The epoxy-containing acrylic ester is usually
0.7 to 1.5 mol, preferably 0.8 to 1.5 mol per mol of the synthetic saturated fatty acid or substituted or unsubstituted benzoic acid.
It is advantageous to use a proportion of 1.2 mol. In addition, as the inert solvent used as necessary, water-immiscible organic solvents that can be refluxed at a concentration of 220°C or less are preferable, such as aromatic hydrocarbons such as benzene, toluene, and xylene; heptane, Examples include aliphatic hydrocarbons such as hexane and octane. Furthermore, in the above reaction, a polymerization inhibitor such as hydroquinone, methoxyphenol, tert-butylcatechol, benzoquinone, etc. is added to the reaction system as necessary, and the epoxy-containing (meth)acrylic ester and/or the generated acid are added. Degeneration (meta)
It is advantageous to suppress the polymerization of the acrylic ester. In the above reaction, esterification accompanied by cleavage of the oxirane ring occurs between the oxirane group (epoxy group) of the epoxy-containing (meth)acrylic ester and the carboxyl group of the synthetic saturated fatty acid or substituted or unsubstituted benzoic acid. A (meth)acrylic acid ester modified with an acid is obtained. In addition, the (meth)acrylic monomer that is reacted with the above synthetic saturated fatty acid or substituted or unsubstituted benzoic acid to produce another type of acid-modified (meth)acrylic monomer (A) includes: This type of ester includes esters of acrylic acid or methacrylic acid (hereinafter sometimes abbreviated as ``hydroxyl group-containing (meth)acrylic esters''). Those having one hydroxyl group in the residue moiety and containing 2 to 24, preferably 2 to 8 carbon atoms in the ester residue moiety are included,
Among them, the following formula () or () In each of the above formulas, R 1 represents a hydrogen atom or a methyl group, n is an integer of 2 to 8, p and q are each an integer of 0 to 8, provided that the sum of p and q is 1
-8, hydroxyl group-containing (meth)acrylic esters of the type shown below are suitable. Particularly suitable hydroxyl group-containing (meth) in the present invention
The acrylic esters are hydroxyalkyl acrylates and hydroxyalkyl methacrylates represented by the above formula (), especially 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, 2-hydroxypropyl acrylate and 2-hydroxypropyl methacrylate. The latter type of acid-modified methacrylic monomer (A)
The preparation is usually carried out by reacting the synthetic saturated fatty acid or substituted or unsubstituted benzoic acid with the hydroxyl group-containing (meth)acrylic acid ester in an appropriate inert solvent in the presence of an esterification catalyst. be able to. The reaction generally takes about 100
The reaction is carried out under heating at a temperature of from about 180 DEG C. to about 160 DEG C., preferably from about 120 DEG to about 160 DEG C., and the reaction time is generally from about 0.5 to about 9 hours, usually from about 1 to about 6 hours. The hydroxyl group-containing (meth)acrylic ester is
Usually, it can be used in a proportion of 0.5 to 1.9 mol per mol of the above-mentioned acid, preferably 1.0 to 1.5 mol per mol of the above-mentioned acid. Examples of the esterification catalyst used in the above reaction include sulfuric acid, aluminum sulfate, potassium hydrogen sulfate, p-toluenesulfonic acid, hydrochloric acid, methyl sulfate, and phosphoric acid. Approximately 0.001 or more of the total amount of the above acid and hydroxyl group-containing (meth)acrylic ester
It is used in a proportion of about 20% by weight, preferably about 0.05 to about 1.0% by weight. In addition, as the inert solvent used as necessary, water-immiscible organic solvents that can be refluxed at a temperature of 180°C or lower are preferred, such as aromatic hydrocarbons such as benzene, toluene, and xylene; heptane, Examples include aliphatic hydrocarbons such as hexane and octane. Furthermore, in the above reaction, a polymerization inhibitor such as hydroquinone, methoxyphenol, tert-butylcatechol, benzoquinone, etc. is added to the reaction system as necessary, and the hydroxyl group-containing (meth)acrylic ester and/or the generated acid are added. It is advantageous to suppress the polymerization of the modified (meth)acrylic ester. In the above reaction, esterification occurs between the hydroxyl group of the hydroxyl group-containing (meth)acrylic ester and the carboxyl group of the synthetic saturated fatty acid or substituted or unsubstituted benzoic acid, resulting in acid-modified (meth)
An acrylic ester is obtained. As yet another method for preparing the acid-modified (meth)acrylic monomer (A), in addition to the method described above, synthetic saturated fatty acids or glycidyl esters of substituted or unsubstituted benzoic acid [e.g.
"Cardura E" (a product of Shell Chemical Co.)] can also be subjected to an esterification reaction with acrylic acid or methacrylic acid as described above. α,β-Ethylenically unsaturated nitrogen-containing monomer (B): Next, as the α,β-ethylenically unsaturated nitrogen-containing monomer (B) used in the present invention, one or Monomers containing a plurality of (usually up to 4) basic nitrogen atoms and one ethylenically unsaturated bond are included, and typical examples include unsaturated monomers having a nitrogen-containing heterocycle and Examples include nitrogen-containing derivatives of (meth)acrylic acid. These monomers will be explained in more detail below. [] The unsaturated monomer having a nitrogen-containing heterocycle is a monomer in which a monocyclic or polycyclic heterocycle containing 1 to 3, preferably 1 or 2 ring nitrogen atoms is bonded to a vinyl group. In particular, mention may be made of the monomers shown below. (i) Vinylpyrrolidones; For example, 1-vinyl-2-pyrrolidone, 1
-vinyl-3-pyrrolidone, etc. (ii) Vinylpyridines; For example, 2-vinylpyridine, 4-vinylpyridine, 5-methyl-2-vinylpyridine, 5-ethyl-2-vinylpyridine, etc. (iii) Vinylimidazoles; For example, 1-vinylimidazole, 1-vinyl-2-methylimidazole, etc. (iv) Vinylcarbazoles; For example, N-vinylcarbazole. (v) Vinylquinolines; For example, 2-vinylquinoline. (vi) Vinylpiperidines; For example, 3-vinylpiperidine, N-methyl-3-vinylpiperidine, etc. (vii) Others; e.g.

【式】 (ここで、R1は前記の意味を有する)で示さ
れるN−(メタ)アクリロイルモルホリンや、
N-(meth)acryloylmorpholine represented by [Formula] (wherein R 1 has the above meaning),
formula

【式】 (ここで、R1は前記の意味を有する)で示
されるN−(メタ)アクリロイルピロリジン
など。 上記した含窒素複素環を有するビニル単量体
の中でも好適なものは、ビニルピロリドン類、
ビニルイミダゾール類及びビニルカルバゾール
類でであり、中でも環窒素原子が3級化されて
いるものが好適である。 〔2〕 (メタ)アクリル酸の含窒素誘導体には、
(メタ)アクリル酸エステルのエステル部分に
置換もしくは未置換のアミノ基を含むもの及び
(メタ)アクリル酸のアミドが包含され、特に
下記式()又は() 上記各式中、R2及びR3はそれぞれ独立に水
素原子又は低級アルキル基を表わし、R4は水
素原子又は低級アルキルを表わし、R5は水素
原子、低級アルキル基、ジ(低級アルキル)ア
ミノ低級アルキル基、ヒドロキシ低級アルキル
基又は低級アルコキシ低級アルキル基を表わ
し、R1及びnは前記の意味を有する。 で示されるアミノアルキル(メタ)アクリレート
及び(メタ)アクリルアミドが適している。ここ
で「低級」なる語はこの語が付された基の炭素原
子数が6個以下、好ましくは4個以下であること
を意味する。 しかして、かかる含窒素(メタ)アクリル系単
量体の具体例として、上記式()のアミノアル
キル(メタ)アクリレートの例には、N,N−ジ
メチルアミノエチル(メタ)アクリレート、N,
N−ジエチルアミノエチル(メタ)アクリレー
ト、N−t−ブチルアミノエチル(メタ)アクリ
レート、N,N−ジメチルアミノプロピル(メ
タ)アクリレート、N,N−ジメチルアミノブチ
ル(メタ)アクリレート、N−プロピルアミノエ
チル(メタ)アクリレート、N−ブチルアミノエ
チル(メタ)アクリレートなどが包含され、また
上記式()の(メタ)アクリルアミドの例に
は、(メタ)アクリルアミド、N−メチル(メタ)
アクリルアミド、N−エチル(メタ)アクリルア
ミド、N−ブチル(メタ)アクリルアミド、N,
N−ジメチル(メタ)アクリルアミド、N,N−
ジエチル(メタ)アクリルアミド、N,N−ジプ
ロピル(メタ)アクリルアミド、N−メチロール
(メタ)アクリルアミド、N−エトキシメチル
(メタ)アクリルアミド、N−ブトキシメチル
(メタ)アクリルアミド、N,N−ジメチルアミ
ノプロピルアクリルアミドなどが包含される。こ
れらの含窒素(メタ)アクリル系単量体として
は、存在する窒素原子が三級化されているものが
最適であり、次いで2級化されているものも好適
に使用される。 以上に述べたα,β−エチレン性不飽和含窒素
単量体はそれぞれ単独で又は2種もしくはそれ以
上組合わせて使用することができる。 α,β−エチレン性不飽和カルボン酸(C): 次に、本発明において用いられるα,β−エチ
レン性不飽和カルボン酸(C)は、カルボキシル基が
結合する炭素原子とそれに隣接する炭素原子との
間に付加重合性の二重結合を有する型の不飽和脂
肪族モノ−又はポリカルボン酸で、炭素原子を3
〜8個、特に3〜5個含有し且つカルボキシル基
を1又は2個有するものが適してており、下記一
般式() 式中、R6は水素原子又は低級アルキル基を表
わし、R7は水素原子、低級アルキル基又はカル
ボキシル基を表わし、R8は水素原子、低級アル
キル基又はカルボキシ低級アルキル基を表わす、 で示されるものが包含される。上記式()にお
いて、低級アルキル基としては炭素原子数4個以
下のもの、殊にメチル基が好ましい。 かかるα,β−エチレン性不飽和カルボン酸の
例としては、アクリル酸、メタクリル酸、クロト
ン酸、イタコン酸、マレイン酸、無水マレイン
酸、フマル酸等が挙げられ、これらはそれぞれ単
独で又は2種以上組合わせて使用することができ
る。 他のα,β−エチレン性不飽和単量体(D): さらに、上記(A)、(B)、(C)以外のα,β−エチレ
ン性不飽和単量体(D)としては、特に制約がなく、
本発明の分散剤に望まれる性能に応じて広範に選
択することができる。かかる不飽和単量体の代表
例を示せば次のとおりである。 (a) アクリル酸又はメタクリル酸のエステル:例
えば、アクリル酸メチル、アクリル酸エチル、
アクリル酸プロピル、アクリル酸イソプロピ
ル、アクリル酸ブチル、アクリル酸ヘキシル、
アクリル酸オクチル、アクリル酸ラウリル、メ
タクリル酸メチル、メタクリル酸エチル、メタ
クリル酸プロピル、メタクリル酸イソプロピ
ル、メタクリル酸ブチル、メタクリル酸ヘキシ
ル、メタクリル酸オクチル、メタクリル酸ラウ
リル等のアクリル酸又はメタクリル酸のC1
C16アルキルエステル;グリシジルアクリレー
ト、グリシジルメタクリレート;アクリル酸メ
トキシブチル、メタクリル酸メトキシブチル、
アクリル酸メトキシエチル、メタクリル酸メト
キシエチル、アクリル酸エトキシブチル、メタ
クリル酸エトキシブチル等のアクリル酸又はメ
タクリル酸のC2〜18アルコキシアルキルエステ
ル;アリルアクリレート、アリルメタクリレー
ト等のアクリル酸又はメタクリル酸のC2〜8アル
ケニルエステル:ヒドロキシエチルアクリレー
ト、ヒドロキシエチルメタクリレート、ヒドロ
キシプロピルアクリレート、ヒドロキシプロピ
ルメタクリレート等のアクリル酸又はメタクリ
ル酸のC2〜8ヒドロキシアルキルエステル;アリ
ルオキシエチルアクリレート、アリルオキシメ
タクリレート等のアクリル酸又はメタクリル酸
のC3〜18アルケニルオキシアルキニルエステル。 (b) ビニル芳香族化合物:例えば、スチレン、α
−メチルスチレン、ビニルトルエン、p−クロ
ルスチレン。 (c) ポリオレフイン系化合物:例えば、ブタジエ
ン、イソプレン、クロロプレン。 (d) その他:アクリロニトリル、メタクリロニト
リル、メチルイソプロペニルケトン、酢酸ビニ
ル、ベオバモノマー(シエル化学製品)、ビニ
ルプロピオネート、ビニルピバレートなど。 これら不飽和単量体は所望の物性に応じて適宜
選択され、それぞれ単独で用いてもよく、或いは
2種又はそれ以上組合わせて使用することができ
る。 本発明に従えば、上記の酸変性(メタ)アクリ
ル系単量体(A)、α,β−エチレン性不飽和含窒素
単量体(B)、α,β−エチレン性不飽和カルボン酸
(C)及び不飽和単量体(D)は相互に共重合せしめられ
る。該共重合は、アクリル系共重体を製造するた
めのそれ自体公知の方法に従い、例えば溶液重合
法、乳化重合法、懸濁重合法等を用いて行なうこ
とができる。 共重合を行なう場合の上記4成分の配合割合
は、分散剤として望まれる性能に応じて変えるこ
とができるが、下記の割合で配合するのが適当で
ある。 (1) 酸変性(メタ)アクリル系単量体(A):3〜98
重量部、好ましくは塗膜性能上から10〜85重量
部、 (2) α,β−エチレン性不飽和含窒素単量体(B):
2〜97重量部、好ましくは、顔料分散の観点か
ら3〜90重量部、 (3) α,β−エチレン性不飽和カルボン酸(C):
0.5〜20重量部、好ましくは水溶解性、塗膜性
能上から2〜18重量部、 (4) 上記(A)〜(C)以外の不飽和単量体(D):0〜91重
量部、好ましくは塗膜性能の面から5〜83重量
部。 上記共重合反応は、有利には、溶液重合法に従
つて行なうことが好ましく、上記の4成分を適当
な不活性溶媒中で、重合触媒の存在下に、通常約
0〜約180℃、好ましくは約40〜約170℃の反応温
度において、約1〜約20時間、好ましくは約6〜
約10時間反応をつづけることにより行なうことが
できる。 使用する溶媒としては、該共重合反応中にゲル
化が生じないように、生成する共重合体を溶解し
且つ水と混和しうる溶媒を使用することが望まし
い。特に水性顔料分散液を得るに際し除去するこ
となくそのまま使用できるものが良い。かかる溶
媒としては例えば、式HO−CH2CH2−OR9〔ただ
し、R9は水素原子または炭素原子数1〜8個の
アルキル基を表わす〕のセロソルブ系溶媒たとえ
ばエチレングリコール、ブチルセロソルブ、エチ
ルセロソルブなど;
N-(meth)acryloylpyrrolidine, etc. represented by the formula: (wherein R 1 has the above meaning); Among the above-mentioned vinyl monomers having a nitrogen-containing heterocycle, vinyl pyrrolidones,
These include vinyl imidazoles and vinyl carbazoles, and among them, those in which the ring nitrogen atom is tertiary are preferred. [2] Nitrogen-containing derivatives of (meth)acrylic acid include
Includes (meth)acrylic acid esters containing a substituted or unsubstituted amino group in the ester moiety and amides of (meth)acrylic acid, particularly those of the following formula () or () In each of the above formulas, R 2 and R 3 each independently represent a hydrogen atom or a lower alkyl group, R 4 represents a hydrogen atom or a lower alkyl group, and R 5 represents a hydrogen atom, a lower alkyl group, or a di(lower alkyl) amino It represents a lower alkyl group, a hydroxy lower alkyl group or a lower alkoxy lower alkyl group, and R 1 and n have the above meanings. Aminoalkyl (meth)acrylates and (meth)acrylamides of the formula are suitable. The term "lower" herein means that the group to which this term is attached has no more than 6 carbon atoms, preferably no more than 4 carbon atoms. Therefore, as specific examples of such nitrogen-containing (meth)acrylic monomers, examples of the aminoalkyl (meth)acrylate of the above formula () include N,N-dimethylaminoethyl (meth)acrylate, N,
N-diethylaminoethyl (meth)acrylate, N-t-butylaminoethyl (meth)acrylate, N,N-dimethylaminopropyl (meth)acrylate, N,N-dimethylaminobutyl (meth)acrylate, N-propylaminoethyl (meth)acrylate, N-butylaminoethyl (meth)acrylate, etc. are included, and examples of (meth)acrylamide in the above formula () include (meth)acrylamide, N-methyl (meth)
Acrylamide, N-ethyl (meth)acrylamide, N-butyl (meth)acrylamide, N,
N-dimethyl(meth)acrylamide, N,N-
Diethyl (meth)acrylamide, N,N-dipropyl (meth)acrylamide, N-methylol (meth)acrylamide, N-ethoxymethyl (meth)acrylamide, N-butoxymethyl (meth)acrylamide, N,N-dimethylaminopropylacrylamide etc. are included. As these nitrogen-containing (meth)acrylic monomers, those in which the existing nitrogen atoms are tertiary are optimal, and those in which the nitrogen atoms are secondary are also preferably used. The α,β-ethylenically unsaturated nitrogen-containing monomers described above can be used alone or in combination of two or more. α,β-Ethylenically unsaturated carboxylic acid (C): Next, the α,β-ethylenically unsaturated carboxylic acid (C) used in the present invention consists of the carbon atom to which the carboxyl group is bonded and the carbon atom adjacent to it. An unsaturated aliphatic mono- or polycarboxylic acid having an addition-polymerizable double bond between
Those containing ~8, especially 3 to 5 carboxyl groups and 1 or 2 carboxyl groups are suitable, and have the following general formula () In the formula, R 6 represents a hydrogen atom or a lower alkyl group, R 7 represents a hydrogen atom, a lower alkyl group, or a carboxyl group, and R 8 represents a hydrogen atom, a lower alkyl group, or a carboxy lower alkyl group. things are included. In the above formula (), the lower alkyl group is preferably one having 4 or less carbon atoms, particularly a methyl group. Examples of such α,β-ethylenically unsaturated carboxylic acids include acrylic acid, methacrylic acid, crotonic acid, itaconic acid, maleic acid, maleic anhydride, and fumaric acid, each of which may be used alone or in combination. The above can be used in combination. Other α, β-ethylenically unsaturated monomers (D): Furthermore, α, β-ethylenically unsaturated monomers (D) other than the above (A), (B), and (C) include: There are no particular restrictions,
A wide range of choices can be made depending on the desired performance of the dispersant of the present invention. Representative examples of such unsaturated monomers are as follows. (a) Esters of acrylic acid or methacrylic acid, such as methyl acrylate, ethyl acrylate,
Propyl acrylate, isopropyl acrylate, butyl acrylate, hexyl acrylate,
C 1 ~ of acrylic acid or methacrylic acid such as octyl acrylate, lauryl acrylate, methyl methacrylate, ethyl methacrylate, propyl methacrylate, isopropyl methacrylate, butyl methacrylate, hexyl methacrylate, octyl methacrylate, lauryl methacrylate, etc.
C 16 alkyl ester; glycidyl acrylate, glycidyl methacrylate; methoxybutyl acrylate, methoxybutyl methacrylate,
C2-18 alkoxyalkyl esters of acrylic acid or methacrylic acid, such as methoxyethyl acrylate, methoxyethyl methacrylate, ethoxybutyl acrylate, and ethoxybutyl methacrylate; C2 of acrylic acid or methacrylic acid, such as allyl acrylate, allyl methacrylate, etc. ~8 alkenyl esters: C2-8 hydroxyalkyl esters of acrylic acid or methacrylic acid such as hydroxyethyl acrylate, hydroxyethyl methacrylate, hydroxypropyl acrylate, hydroxypropyl methacrylate; acrylic acid or methacrylic acid such as allyloxyethyl acrylate, allyloxymethacrylate C3-18 alkenyloxyalkynyl esters of acids. (b) Vinyl aromatic compounds: e.g. styrene, α
-Methylstyrene, vinyltoluene, p-chlorostyrene. (c) Polyolefin compounds: for example, butadiene, isoprene, chloroprene. (d) Others: acrylonitrile, methacrylonitrile, methyl isopropenyl ketone, vinyl acetate, beoba monomer (Siel Chemicals), vinyl propionate, vinyl pivalate, etc. These unsaturated monomers are appropriately selected depending on the desired physical properties, and may be used alone or in combination of two or more. According to the present invention, the above acid-modified (meth)acrylic monomer (A), α,β-ethylenically unsaturated nitrogen-containing monomer (B), α,β-ethylenically unsaturated carboxylic acid
(C) and the unsaturated monomer (D) are copolymerized with each other. The copolymerization can be carried out according to methods known per se for producing acrylic copolymers, such as solution polymerization, emulsion polymerization, suspension polymerization, and the like. The blending ratio of the above four components in copolymerization can be changed depending on the desired performance as a dispersant, but it is appropriate to mix them in the following ratios. (1) Acid-modified (meth)acrylic monomer (A): 3-98
Parts by weight, preferably 10 to 85 parts by weight in terms of coating film performance, (2) α,β-ethylenically unsaturated nitrogen-containing monomer (B):
2 to 97 parts by weight, preferably 3 to 90 parts by weight from the viewpoint of pigment dispersion, (3) α,β-ethylenically unsaturated carboxylic acid (C):
0.5 to 20 parts by weight, preferably 2 to 18 parts by weight in terms of water solubility and coating performance, (4) Unsaturated monomers (D) other than the above (A) to (C): 0 to 91 parts by weight , preferably 5 to 83 parts by weight from the viewpoint of coating film performance. The above copolymerization reaction is preferably carried out according to a solution polymerization method, in which the above four components are mixed in a suitable inert solvent in the presence of a polymerization catalyst, usually at about 0 to about 180°C, preferably. at a reaction temperature of about 40 to about 170°C for about 1 to about 20 hours, preferably about 6 to about 20 hours.
This can be carried out by continuing the reaction for about 10 hours. As the solvent used, it is desirable to use a solvent that can dissolve the produced copolymer and is miscible with water so that gelation does not occur during the copolymerization reaction. Particularly preferred is one that can be used as is without being removed when obtaining an aqueous pigment dispersion. Examples of such solvents include cellosolve solvents of the formula HO-CH 2 CH 2 -OR 9 [wherein R 9 represents a hydrogen atom or an alkyl group having 1 to 8 carbon atoms], such as ethylene glycol, butyl cellosolve, and ethyl cellosolve. Such;

【式】〔た だし、R9は上記と同じ意味を有する〕のプロピ
レングリコール系溶媒たとえばプロピレングリコ
ールモノメチルエーテルなど;式HO−CH2CH2
−OCH2CH2−OR9〔ただし、R9は上記と同じ意
味を有する〕のカルビトール系溶媒たとえばジエ
チレングリコール、メチルカルビトール、ブチル
カルビトールなど;式R10O−CH2CH2−OR11〔た
だし、R10及びR11はそれぞれ炭素原子数1〜3
個のアルキル基を表わす〕グライム系溶媒たとえ
ばエチレングリコールジメチルエーテルなど;式
R10O−CH2CH2OCH2−CH2OR11〔ただし、R10
及びR11は上記と同じ意味を有する〕のジグライ
ム系溶媒たとえばジエチレングリコールジメチル
エーテルなど;式R12O−CH2CH2OCO−CH3〔た
だし、R12は水素原子またはCH3もしくはC2H5
表わす〕のセロソルブアセテート系溶媒たとえば
エチレングリコールモノアセテート、メチルセロ
ソルブアセテートなど;式R13OH〔ただし、R13
は炭素原子数1〜4個のアルキル基を表わす〕の
アルコール系溶媒たとえばエタノール、プロパノ
ールなど;並びに、ダイアセトンアルコール、ジ
オキサン、テトラヒドロフラン、アセトン、ジメ
チルホルムアミド、3−メトキシ−3−メチル−
ブタノール等が使用できる。 しかしながら、水に混和しない不活性溶媒もま
た使用可能であり、かかる水−非混和性溶媒とし
ては重合反応終了後に常圧又は減圧下での蒸留に
より簡単に除去できるよう沸点が250℃以下のも
のが好ましい。かかる溶媒としては、例えば、 式
[Formula] [However, R 9 has the same meaning as above] Propylene glycol solvent such as propylene glycol monomethyl ether; Formula HO-CH 2 CH 2
-OCH 2 CH 2 -OR 9 [However, R 9 has the same meaning as above] Carbitol-based solvents such as diethylene glycol, methyl carbitol, butyl carbitol, etc.; formula R 10 O-CH 2 CH 2 -OR 11 [However, R 10 and R 11 each have 1 to 3 carbon atoms.
[representing an alkyl group] glyme-based solvent such as ethylene glycol dimethyl ether; formula
R 10 O−CH 2 CH 2 OCH 2 −CH 2 OR 11 [However, R 10
and R 11 have the same meanings as above], such as diethylene glycol dimethyl ether; formula R 12 O-CH 2 CH 2 OCO-CH 3 [However, R 12 is a hydrogen atom, CH 3 or C 2 H 5 cellosolve acetate solvents of the formula R 13 OH [wherein R 13
represents an alkyl group having 1 to 4 carbon atoms], such as ethanol, propanol, etc.; and diacetone alcohol, dioxane, tetrahydrofuran, acetone, dimethylformamide, 3-methoxy-3-methyl-
Butanol etc. can be used. However, it is also possible to use inert solvents that are immiscible with water, and such water-immiscible solvents include those with a boiling point below 250°C so that they can be easily removed by distillation under normal or reduced pressure after the completion of the polymerization reaction. is preferred. Such solvents include, for example, the formula

【式】〔ただし、R14は水素原子又は 炭素原子数1〜4個のアルキル基を表わす〕又は
[Formula] [However, R 14 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms] or the formula

【式】〔ただし、R15及びR16はそれぞ れ炭素原子数1〜4個のアルキル基を表わす〕で
表わされる芳香族炭化水素数、たとえばトルエ
ン、キシレンなど;式R17−COO−R18〔ただし、
R17は炭素原子数1〜6個のアルキル基を表わ
し、R18は水素原子または炭素原子数1〜6個の
アルキル基もしくはシクロヘキシル基を表わす〕
で表わされ酸またはエステル数たとえば酢酸、ギ
酸エチル、酢酸ブチル、酢酸シクロヘキシルな
ど;式R19R20C=O〔ただし、R19及びR20はそれ
ぞれ炭素原子数1〜8個のアルキル基を表わす〕
および
[Formula] [However, R 15 and R 16 each represent an alkyl group having 1 to 4 carbon atoms] Aromatic hydrocarbon number such as toluene, xylene, etc.; Formula R 17 -COO-R 18 [ however,
R 17 represents an alkyl group having 1 to 6 carbon atoms, and R 18 represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or a cyclohexyl group]
represented by the number of acids or esters such as acetic acid, ethyl formate, butyl acetate, cyclohexyl acetate, etc.; formula R 19 R 20 C=O [wherein R 19 and R 20 each represent an alkyl group having 1 to 8 carbon atoms; ]
and

【式】で表わされるケトン類、たとえば メチルエチルケトン、シクロヘキサノンなど;式
R19−O−R20〔ただし、R19及びR20は上記と同じ
意味を有する〕で表わされるエーテル類、たとえ
ばエチルエーテル、ヘキシルエーテルなど;式
R21OH〔ただし、R21は炭素原子数5〜11個のア
ルキル基を表わす〕で表わされるアルコール類、
たとえばヘキサノールなどが挙げられる。 これら溶媒は、前記共重合4成分の合計重量の
15〜90重量%の範囲で使用することができる。 また、重合触媒としては、例えば、アゾ系化合
物、パーオキサド系化合物、スルフイド類、スル
フイン類、スルフイン酸類、ジアゾ化合物、ニト
ロソ化合物、レドツクス系および電離性放射線等
の通常のラジカル重合に使用できるラジカル開始
剤が使用される。 本発明においては生成する共重合体の分子量が
変化しても実質的に満足できる水性顔料分散体が
得られるが、分子量があまり低すぎると被着色水
性塗料の塗膜物性の低下をきたすおそれがある。
また、分子量が高すぎると粘度が高くなり、粘度
を下げると共重合体の濃度が低くなり顔料の分散
性が低下するので前記の共重合反応は、一般に、
生成する共重合体の数平均分子量が約500〜約
150000、好ましくは約1000〜約100000の範囲内に
なるまで行なうのが有利である。 かくの如くして生成せしめられる共重合体樹脂
はそのまま又は溶媒を留去した後、水溶性化され
る。この水溶性化は、常法により、例えば該共重
合体樹脂中に存在するカルボキシル基を従来公知
の中和剤で中和処理することにより行なうことが
できる。用いうる中和剤としては例えば、アンモ
ニア、アミン、アルカリ金属の水酸化物、アルカ
リ金属の炭酸塩または重炭酸塩等が挙げられる。
該アミンとしては第1級、第2級のアルキルアミ
ン;第1級、第2級又は第3級のアルカノールア
ミン;およびシクロアルキルアミン等が使用でき
る。また、アルカリ金属の水酸化物としては水酸
化カリウム、水酸化ナトリウムなど;アルカリ金
属の炭酸塩及び重炭酸塩としては炭酸カリウム、
炭酸ナトリウム、重炭酸ナトリウムなどが使用で
きる。これら中和剤の中では、特に水酸化カリウ
ム、水酸化ナトリウムが好適である。 該中和処理は、前記の如くして得られた共重合
体樹脂又はその溶液に、上記中和剤又はその水溶
液を加えて常法により容易に行なうことができ
る。中和剤の使用量は、一般に、樹脂中のカルボ
キシル基に対し0.01〜2.0当量、好ましくは0.3〜
1.0当量である。 このようにして得られる水溶性化重合体は、顔
料、分散剤及び水性媒体からなる水性顔料分散液
における分散剤として使用される。 上記水溶性化重合体からなる分散剤の使用量
は、顔料100重量部当り一般に約1〜500重量部、
好ましくは約1〜300重量部とすることができる。
この範囲の上限を超えるときは水性顔料分散液の
着色力と粘度のバランスが不均衡となる傾向がみ
られ、一方、下限を外れると顔料の分散安定性が
低下しやすい。 本発明の水性顔料分散液において使用する水性
媒体は、実質的には水であるが、必要に応じて、
例えば分散剤の親水性の程度が低く充分な顔料分
散性能が得られないような場合には、親水性有機
溶媒を併用することができる。該親水性有機溶媒
としては前記重合体の製造で使用したものを単独
もしくは混合して用いることができる。 また、本発明の水性顔料分散液に使用される顔
料は、この種の顔料分散液において通常使用され
ている無機及び有機顔料であることができ、例え
ば無機顔料としては、(1)酸化物系(亜鉛華、二酸
化チタン、ベンガラ、酸化クロム、コバルトブル
ー、鉄黒等);(2)水酸化物系(アルミナホワイト、
黄色酸化鉄等);(3)硫化物、セチレン化物系(硫
化亜鉛)朱、カドミウムエロー、カドミウムレツ
ド等);(4)フエロシアン化物系(紺青等);(5)クロ
ム酸塩系(黄鉛、ジンククロメート、モリブデン
レツド等);(6)硫酸塩系(沈降性硫酸バリウム
等);(7)炭酸塩系(沈降性炭酸カルシウム等);(8)
硅酸塩系(含水硅酸塩、クレー、群青等);(9)燐
酸塩系(マンガンバイオレツト等);(10)炭酸系
(カーボンブラツク等);〓金属粉系(アルミニユ
ウム粉、ブロンズ粉、至鉛末等)等が挙げられ、
また有機顔料としては、(1)ニトロン顔料系(ナフ
トールグリーンB等);(2)ニトロ顔料系(ナフト
ールエローS等);(3)アゾ顔料系(リソールレツ
ド、レーキレツドC、フアストエロー、ナフトー
ルレツド、レツド等);(4)染付レーキ顔料系(ア
ルカリブルーレーキ、ローダミンレーキ等);(5)
フタロシアニン顔料系(フタロシアニンブルー、
フアストスカイブルー等);(6)縮合多環顔料系
(ペリレンレツド、キナクリドンレツド、ジオキ
サジンバイオレツト、イソインドリノンエロー
等)などが包含される。 本発明の水性顔料分散液中における前記顔料の
含有量は特に技術的な制限がないが、一般には該
分散液の重量を基準にして約2〜90重量%であ
る。 本発明の水性顔料分散液の調製は適当な分散装
置中で上記の各成分を一縮に混合することによつ
て行なうことができ、用いることのできる分散装
置としては、通常塗料工業において使用されてい
るボールミル、ロールミル、ホモミキサー、サン
ドグライダー、シエーカー、アトライターなどが
挙げられている。 本発明の水性顔料分散液には、更に必要に応じ
て、従来公知の界面活性剤や保護コロイドを加え
ることも可能である。 かくして得られる本発明の水性顔料分散液は、
その顔料が非常に均一微細に分散しており、長時
間貯蔵しても顔料粒子が凝集したり沈降すること
がほとんどない。これは顔料の表面に分散剤の親
油性部分が吸着され、親水性部分は水性媒体中に
溶解するため顔料が水性媒体中に安定に分散され
ているためと推測される。 しかして、本発明の水性顔料分散液は、水性塗
料および水性インキに用いられるアルキド樹脂、
アクリル樹脂、エポキシ系樹脂、ウレタン系樹
脂、マレイン化ポリブタジエン樹脂等の従来から
公知の水溶性樹脂、水分散性樹脂、エマルジヨン
等との混和性がよく、これらの樹脂による制限が
全くなく、いずれの樹脂からなる水性塗料の着色
にも広く使用することができる。 上記した水性樹脂の具体例としては、例えばア
ルキド樹脂は従来の溶剤型のアルキド樹脂と同じ
原料から合成され、多塩基酸、多価アルコール、
油成分を常法により縮合反応させて得られるもの
である。アクリル樹脂は、α,β−エチレン性不
飽和酸(例えば、アクリル酸、メタクリル酸、マ
レイン酸など)、(メタ)アクリル酸エステル(例
えばアクリル酸エチル、アクリル酸プロピル、ア
クリル酸ブチル、メタクリル酸メチル、メタクリ
ル酸エチル、メタクリル酸プロピル、メタクリル
酸ブチルなど)およびビニル芳香族化合物(例え
ばスチレン、ビニルトルエンなど)を共重合して
得られるものである。エポキシ樹脂としては、エ
ポキシ樹脂のエポキシ基と不飽和脂肪酸の反応に
よつてエポキシエステルを合成し、この不飽和基
にα,β−不飽和酸を付加する方法やエポキシエ
ステルの水酸基と、フタル酸やトリメリツト酸の
ような多塩基酸とをエステル化する方法などによ
つて得られるエポキシエステル樹脂が挙げられ
る。 また、ウレタン系樹脂としては、ポリイソシア
ネート化合物(例えばトルエンジイソシアネー
ト、ジフエニルメタンジイソシアネート、1,6
−ヘキサンジイソシアネート、イソホロンジイソ
シアネート等)を用い樹脂骨格中にウレタン基を
導入してなる樹脂で、且つジメチロールプロピオ
ン酸などを用いてカルボキシル基を導入したもの
である。 上記した水性樹脂を水溶性にして用いる場合に
は、樹脂の酸価が約35〜200になるように合成さ
れ、このものをアルカリ性物質、例えば水酸化ナ
トリウム、アミンなどで中和して水溶性塗料に供
される。他方、これらの樹脂を自己分散型にして
用いる場合には樹脂の酸価を約5〜35の低酸価型
樹脂とし、このものを中和して水分散型塗料に供
される。 また、エマルシヨンとしては、アニオン型もし
くはノニオン型低分子界面活性剤を用いてアルキ
ド樹脂、アクリル樹脂、エポキシ樹脂、ウレタン
樹脂を分散させて得られる乳化剤分散エマルシヨ
ン;上記界面活性剤を用いて(メタ)アクリル酸
エステル、アクリロニトリル、スチレン、ブタジ
エン、酢酸ビニル、塩化ビニル等の単量体を乳化
重合して得られる乳化重合エマルシヨン;マレイ
ン化ポリブタジエン、マレイン化アルキド樹脂、
マレイン化脂肪酸変性ビニル樹脂、乾性油あるい
は半乾性油脂肪酸変性アクリル樹脂、その他の水
溶性高分子などの水溶性樹脂を乳化安定剤として
前記した単量体を乳化重合及びグラフト反応させ
て得られるソープフリーエエマルシヨンが挙げら
れる。 本発明の水性顔料分散液は、特に顔料分散能の
劣る低酸価水分散性樹脂およびエマルシヨンから
なる水性顔料に対し配合するのに有効である。 本発明の水性顔料分散液の水性塗料に対する配
合割合は、該分散液中の顔料の種類や最終塗料に
要求される着色の程度等に依存し広い範囲で変え
ることができるが、一般には、前述の水性塗料の
樹脂分100重量部当り、顔料分散液は2〜100重量
部の請求で配合することができる。 次に、実施例により重合体をさらに説明する。 実施例中、部及び%は重量部及び重量%を示
す。 実施例 1 (1‐a) 下記の成分: イソノナン酸 133部 グリシジルメタクリレート 119部 ハイドロキノン 0.3部 テトラエチルアンモニウムブロマイド 0.2部 を反応容器に入れた。反応はかきまぜながら140
〜150℃の温度で行ない付加反応生成物を得た。
エポキシ基とカルボキシル基との付加反応は、残
存カルボキシル基の量を測定しながら追跡した。
反応が完了するまで約4時間かかつた。 (1‐b) n−ブチルセロソルブ250部を反応容器に
入れ、加熱して120℃にした。次に以下に示す割
合の混合物を、この溶液に約2時間かけて滴下し
た。反応は窒素注入下で行なつた。 上記(1−a)で得た脂肪酸変性単量体 113部 N−ビニルピロリドン 126部 アクリル酸 11部 アゾビスジメチルバレロニトリル 17.5部 反応温度を120℃に保ち、反応溶液をかきまぜ
ながら、上記の混合物を滴下した。滴下終了1時
間後にアゾビスイソブチロニトリル2.5部を反応
溶液に加え、さらに2時間後、アゾビスイソブチ
ロニトリル2.5部を反応溶液に加え、その後2時
間120℃に保つたまま反応を行なつた。反応終了
後未反応の単量体とn−ブチルセロソルブを減圧
蒸留し、加熱残分71.0%、樹脂酸価36.7、ガード
ナー粘度(40%n−ブチルセロソルブ溶液)Dの
共重合体溶液が得られた。さらに、この共重合体
をトリエチルアミンで中和し(1.0当量中和)、水
を加えて加熱残分40%の水溶液からなる分散剤(1)
を得た。 次に、この分散剤8.3部及びチタン白顔料(堺
化学社製チタン白R−5N)200部の混合物をRed
Devil分散機を用いて0.5時間分散せしめて、本発
明の水性顔料分散液(A)を得た。 同様にして後記表−1に示す配合で顔料の分散
を行ない本発明の水性顔料分散液(B)〜(D)を得た。
なお、チタン白以外の顔料は1時間分散を行なつ
た。 得られた水性顔料分散液の性状をまとめて後記
表−1に示す。 次に、水性顔料分散液(A)10部及び水分散型アル
キド樹脂(アマニ油脂肪酸/ペンタエリスリトー
ル/安息香酸/イソフタル酸/無水マレイン酸=
903/705/1140/610/45(部)を原料とする油長
30及び酸価16のアルキド樹脂をトリエチルアミン
で1.0当量中和して得られる固形分40%溶液)
23.4部からなる配合物を十分混合して水性塗料(1)
を調製した。 同様にして後記表−2に示す顔料分散液及び水
性樹脂からなる配合物を十分混合して水性塗料(2)
〜(6)を得た。得られた水性塗料の塗膜性能をまと
めて後記表−2に示す。 実施例 2 (2‐a) 下記の成分: イソパルミチン酸 61.8部 ハイドロキノン 0.03部 n−ヘプタン 4.56部 を反応容器に入れ、かきまぜながら160℃に昇温
させた。次に下記の成分: ヒドロキシエチルメタクリレート 41.2部 ハイドロキノン 0.03部 ドデシルベンゼンスルホン酸 0.95部 トルエン 3.7部 の混合物を2時間かかつて、160℃の反応容器内
に滴下した。生成する縮合水を反応系から取り除
き、反応生成物の酸価が5.5及びガードナー粘度
がA2になつたら、反応溶器を減圧にし、トルエ
ン及びn−ヘプタンを減圧除去し、酸価5.0及び
ガードナー粘度A1の脂肪酸変性アクリル系単量
体が得られた。 (2‐b) n−ブチルセロソルブ300部を反応容器
に入れ、加熱して120℃にした。次に以下に示す
割合の混合物を、この溶液に約2時間かけて滴下
した。反応は窒素注入下で行なつた。 上記(2−a)で得た脂肪酸変性単量体 75部 n−ブチルメタクリレー1 39部 N−ビニルピロリドン 125部 アクリル酸 11部 アゾビスジメチルバレロニトリル 18部 反応温度を120℃に保ち、反応溶液をかきまぜ
ながら、上記の混合物を滴下した。滴下終了1時
間後にアゾビスイソブチロニトリル2.5部を反応
溶液に加え、さらに2時間後、アゾビスイソブチ
ロニトリル2.5部を反応溶液に加え、その後2時
間120℃に保つたまま反応を行なつた。反応終了
後未反応の単量体とn−ブチルセロソルブを減圧
蒸留し、加熱残分70.3%、樹脂酸価37.2、ガード
ナー粘度(40%n−ブチルセロソルブ溶液)Hの
共重合体溶液が得られた、さらに、この共重合体
をトリエチルアミンで中和し(1.0当量中和)、水
を加えて加熱残分40%の水溶液からなる分散剤
()を得た。 次に、得られ分散剤()を用いて後記表−1
に示す顔料を実施例1と同様の方法によつて分散
せしめて本発明の水性顔料分散液(E)を得た。 また、この顔料分散液(E)と後記表−2に示す水
性樹脂を十分混合して水性塗料(7)を調製した。 上記顔料分散液(E)の性状及び水性塗料(7)の塗膜
性能をそれぞれ後記表−1及び表−2に示す。 実施例 3 前記(1−a)で得た樹脂酸変性単量体 85部 2−ビニルピリジン 150部 アクリル酸 15部 のモノマー混合物を実施例1に記載の方法に従つ
て重合反応させた。加熱残分71.5%、樹脂酸価
46.0、ガードナー粘度(40%n−ブチルセロソル
ブ溶液)の共重合体溶液が得られた。このもの
をトリエチルアミン(1.0当量中和)で中和し、
加熱残分40%の水溶液からなる分散剤()を得
た。 次に、得られた分散剤()を用いて後記表−
1に示す顔料を実施例1と同様の方法によつて分
散せしめて本発明の水性顔料分散液(F)を得た。 また、この顔料分散液(F)と後記表−2に示す水
性樹脂を十分混合して水性塗料(8)を調製した。 上記顔料分散液(F)の性状及び水性塗料(8)の塗膜
性能をそれぞれ後記表−1及び表−2に示す。 実施例 4 (4‐a) 下記の成分: 安息香酸 103部 グリシジルメタクリレート 119部 ハイドロキノン 0.2部 テトラエチルアンモニウムブロマイド 0.1部 を反応容器に入れた。反応はかきまぜながら140
〜150℃の温度で行ない付加反応生成物を得た。
エポキシ基とカルボキシル基の付加反応は、残存
カルボキシル基の量を測定しながら追跡した。反
応が完了するまで約6時間かかつた。 (4‐b) n−ブチルセロソルブ300部を反応容器
に入れ、加熱して120℃にした。次に以下に示す
割合の混合物を、この溶液に約2時間かけて滴下
した。反応は窒素注入下で行なつた。 上記(4−a)で得た脂肪酸変性単量体 113部 N,N−ジメチルアクリルアミド 126部 アクリル酸 11部 アゾビスジメチルバレロニトリル 17.5部 他は実施例3と同じ条件下で重合反応を行な
い、加熱残分71.5%、樹脂酸価36.2、ガードナー
粘度(40%n−ブチルセロソルブ溶液)Mの共重
合体溶液が得られた。次にこのものをトリエチル
アミンで中和し(1.0当量中和)、加熱残分40%の
水溶液からなる分散剤()を得た。 次に、得られた分散剤()を用いて後記表−
1に示す顔料を実施例1と同様の方法によつて分
散せしめて本発明の水性顔料分散液(G)を得た。 また、この顔料分散液(G)と後記表−2に示す水
性樹脂を十分混合して水性塗料(9)を調製した。 上記顔料分散液(G)の性状及び水性塗料(9)の塗膜
性能をそれぞれ後記表−1及び表−2に示す。 実施例 5 実施例1においてN−ビニルピロリドンの代わ
りに1−ビニルイミダゾールを使用した以外は実
施例1と同じ条件下で重合反応を行ない、加熱残
分71.2%、樹脂酸価34.9、ガードナー粘度(40%
n−ブチルセロソルブ溶液)Eの共重合体溶液が
得られた。次にトリエチルアミンで中和し(1.0
当量中和)、加熱残分40%の水溶液からなる分散
剤()を得た。 次に、得られた分散剤()を用いて後記表−
1に示す顔料を実施例1と同様の方法によつて分
散せしめて本発明の水性顔料分散液(H)を得た。 また、この顔料分散液(H)と後記表−2に示す水
性樹脂を十分混合して水性塗料(10)を調製した。 上記顔料分散液(H)の性状及び水性塗料(10)の塗膜
性能をそれぞれ後記表−1及び表−2に示す。 比較例 1 市販の顔料分散剤SMA1440H
(ARCOChemical社製スチレン−無水マレイン酸
重合体のナトリウム塩、商品名)を用いてチタン
白R−5N(堺化学社製酸化チタン、商品名)を固
形分重量比でチタン白/分散剤=22/1の割合で
分散してなる顔料分散液(顔料含有量70.0%)10
部と後記表−2のエマルシヨン(b)17.5部を混合し
て比較用の水性塗料を得た。このものの塗膜性能
を後記表−2に示す。
Ketones represented by [formula], such as methyl ethyl ketone, cyclohexanone, etc.;
Ethers represented by R 19 -O-R 20 [wherein R 19 and R 20 have the same meanings as above], such as ethyl ether, hexyl ether, etc.;
Alcohols represented by R 21 OH [wherein R 21 represents an alkyl group having 5 to 11 carbon atoms],
Examples include hexanol. These solvents are based on the total weight of the four copolymer components.
It can be used in a range of 15-90% by weight. Examples of polymerization catalysts include azo compounds, peroxide compounds, sulfides, sulfin compounds, sulfinic acids, diazo compounds, nitroso compounds, redox compounds, and radical initiators that can be used in normal radical polymerization such as ionizing radiation. is used. In the present invention, a substantially satisfactory aqueous pigment dispersion can be obtained even if the molecular weight of the copolymer to be produced changes, but if the molecular weight is too low, there is a risk of deterioration of the physical properties of the water-based paint to be colored. be.
In addition, if the molecular weight is too high, the viscosity will increase, and if the viscosity is lowered, the concentration of the copolymer will decrease and the dispersibility of the pigment will decrease.
The number average molecular weight of the copolymer produced is approximately 500 to approximately
150,000, preferably within the range of about 1,000 to about 100,000. The copolymer resin thus produced can be made water-soluble as it is or after distilling off the solvent. This water solubility can be achieved by a conventional method, for example, by neutralizing the carboxyl groups present in the copolymer resin with a conventionally known neutralizing agent. Examples of neutralizing agents that can be used include ammonia, amines, alkali metal hydroxides, alkali metal carbonates or bicarbonates, and the like.
As the amine, primary or secondary alkylamines; primary, secondary or tertiary alkanolamines; and cycloalkylamines can be used. In addition, hydroxides of alkali metals include potassium hydroxide and sodium hydroxide; carbonates and bicarbonates of alkali metals include potassium carbonate,
Sodium carbonate, sodium bicarbonate, etc. can be used. Among these neutralizing agents, potassium hydroxide and sodium hydroxide are particularly preferred. The neutralization treatment can be easily carried out by a conventional method by adding the neutralizing agent or an aqueous solution thereof to the copolymer resin or its solution obtained as described above. The amount of neutralizing agent used is generally 0.01 to 2.0 equivalents, preferably 0.3 to 2.0 equivalents based on the carboxyl group in the resin.
It is 1.0 equivalent. The water-solubilized polymer thus obtained is used as a dispersant in an aqueous pigment dispersion consisting of a pigment, a dispersant, and an aqueous medium. The amount of the dispersant made of the water-solubilizing polymer used is generally about 1 to 500 parts by weight per 100 parts by weight of the pigment.
Preferably, it can be about 1 to 300 parts by weight.
When the upper limit of this range is exceeded, the balance between coloring power and viscosity of the aqueous pigment dispersion tends to become imbalanced, while when it is outside the lower limit, the dispersion stability of the pigment tends to decrease. The aqueous medium used in the aqueous pigment dispersion of the present invention is essentially water, but if necessary,
For example, if the degree of hydrophilicity of the dispersant is low and sufficient pigment dispersion performance cannot be obtained, a hydrophilic organic solvent can be used in combination. As the hydrophilic organic solvent, those used in the production of the polymer can be used alone or in combination. Furthermore, the pigments used in the aqueous pigment dispersion of the present invention can be inorganic and organic pigments commonly used in this type of pigment dispersion. (zinc white, titanium dioxide, red iron oxide, chromium oxide, cobalt blue, iron black, etc.); (2) hydroxide type (alumina white,
(yellow iron oxide, etc.); (3) Sulfide, acetylenide (zinc sulfide) vermilion, cadmium yellow, cadmium red, etc.); (4) Ferrocyanide (dark blue, etc.); (5) chromate (yellow) (lead, zinc chromate, molybdenum lead, etc.); (6) Sulfate-based (precipitated barium sulfate, etc.); (7) Carbonate-based (precipitated calcium carbonate, etc.); (8)
Silicate type (hydrated silicate, clay, ultramarine, etc.); (9) Phosphate type (manganese violet, etc.); (10) Carbonate type (carbon black, etc.); Metal powder type (aluminum powder, bronze powder) , lead powder, etc.), etc.
Examples of organic pigments include (1) nitrone pigments (Naphthol Green B, etc.); (2) nitro pigments (Naphthol Yellow S, etc.); (3) azo pigments (Resol Red, Lake Red C, Fast Yellow, Naphthol Red, etc.); (4) Dyed lake pigments (alkali blue lake, rhodamine lake, etc.); (5)
Phthalocyanine pigment type (phthalocyanine blue,
(6) condensed polycyclic pigments (perylene red, quinacridone red, dioxazine violet, isoindolinone yellow, etc.); The content of the pigment in the aqueous pigment dispersion of the present invention is not particularly technically limited, but is generally about 2 to 90% by weight based on the weight of the dispersion. The aqueous pigment dispersion of the present invention can be prepared by simultaneously mixing the above components in a suitable dispersion device. Examples include ball mills, roll mills, homomixers, sand gliders, sheakers, and attritors. If necessary, conventionally known surfactants and protective colloids can be added to the aqueous pigment dispersion of the present invention. The aqueous pigment dispersion of the present invention thus obtained is
The pigment is extremely uniformly and finely dispersed, and there is almost no aggregation or sedimentation of the pigment particles even when stored for a long time. This is presumed to be because the lipophilic part of the dispersant is adsorbed on the surface of the pigment, and the hydrophilic part dissolves in the aqueous medium, so that the pigment is stably dispersed in the aqueous medium. Therefore, the aqueous pigment dispersion of the present invention has alkyd resins used in water-based paints and inks,
It has good miscibility with conventionally known water-soluble resins, water-dispersible resins, emulsions, etc. such as acrylic resins, epoxy resins, urethane resins, maleated polybutadiene resins, etc., and there is no restriction due to these resins, and it can be used with any of the following. It can also be widely used for coloring water-based paints made of resin. As specific examples of the above-mentioned water-based resins, for example, alkyd resins are synthesized from the same raw materials as conventional solvent-based alkyd resins, and include polybasic acids, polyhydric alcohols,
It is obtained by subjecting oil components to a condensation reaction using a conventional method. Acrylic resins include α,β-ethylenically unsaturated acids (e.g., acrylic acid, methacrylic acid, maleic acid, etc.), (meth)acrylic acid esters (e.g., ethyl acrylate, propyl acrylate, butyl acrylate, methyl methacrylate, etc.). , ethyl methacrylate, propyl methacrylate, butyl methacrylate, etc.) and vinyl aromatic compounds (for example, styrene, vinyltoluene, etc.). Epoxy resins can be produced by synthesizing epoxy esters by reacting the epoxy groups of epoxy resin with unsaturated fatty acids, and adding α,β-unsaturated acids to this unsaturated group, or by combining the hydroxyl groups of epoxy esters with phthalic acid. Examples include epoxy ester resins obtained by a method of esterifying polybasic acids such as or trimellitic acid. In addition, as the urethane resin, polyisocyanate compounds (for example, toluene diisocyanate, diphenylmethane diisocyanate, 1,6
-Hexane diisocyanate, isophorone diisocyanate, etc.) to introduce a urethane group into the resin skeleton, and a carboxyl group using dimethylolpropionic acid or the like. When using the above-mentioned aqueous resin as water-soluble, it is synthesized so that the resin has an acid value of about 35 to 200, and this is neutralized with an alkaline substance such as sodium hydroxide or amine to make it water-soluble. Served for paint. On the other hand, when these resins are used in a self-dispersion type, the acid value of the resin is made into a low acid value resin of about 5 to 35, and this resin is neutralized and used as a water-dispersed paint. In addition, emulsions include emulsifier-dispersed emulsions obtained by dispersing alkyd resins, acrylic resins, epoxy resins, and urethane resins using anionic or nonionic low-molecular-weight surfactants; Emulsion polymerization emulsion obtained by emulsion polymerization of monomers such as acrylic ester, acrylonitrile, styrene, butadiene, vinyl acetate, vinyl chloride; maleated polybutadiene, maleated alkyd resin,
Soap obtained by emulsion polymerization and graft reaction of the above-mentioned monomers using water-soluble resins such as maleated fatty acid-modified vinyl resins, drying oils or semi-drying oil fatty acid-modified acrylic resins, and other water-soluble polymers as emulsion stabilizers. Examples include free emulsions. The aqueous pigment dispersion of the present invention is particularly effective in blending with aqueous pigments made of low acid value water-dispersible resins and emulsions which have poor pigment dispersibility. The blending ratio of the aqueous pigment dispersion of the present invention to the aqueous paint can be varied within a wide range depending on the type of pigment in the dispersion and the degree of coloring required for the final paint, but in general, The pigment dispersion can be blended in an amount of 2 to 100 parts by weight per 100 parts by weight of the resin content of the aqueous paint. Next, the polymers will be further explained by Examples. In the examples, parts and % indicate parts by weight and % by weight. Example 1 (1-a) The following components: 133 parts of isononanoic acid 119 parts of glycidyl methacrylate 0.3 parts of hydroquinone 0.2 parts of tetraethylammonium bromide were placed in a reaction vessel. The reaction is 140 while stirring.
The addition reaction product was obtained at a temperature of ~150°C.
The addition reaction between epoxy groups and carboxyl groups was monitored while measuring the amount of remaining carboxyl groups.
The reaction took approximately 4 hours to complete. (1-b) 250 parts of n-butyl cellosolve was placed in a reaction vessel and heated to 120°C. Next, a mixture in the proportions shown below was added dropwise to this solution over about 2 hours. The reaction was carried out under nitrogen injection. Fatty acid modified monomer obtained in (1-a) above 113 parts N-vinylpyrrolidone 126 parts Acrylic acid 11 parts Azobisdimethylvaleronitrile 17.5 parts While keeping the reaction temperature at 120°C and stirring the reaction solution, mix the above mixture. was dripped. One hour after the completion of the dropwise addition, 2.5 parts of azobisisobutyronitrile was added to the reaction solution, and after another 2 hours, 2.5 parts of azobisisobutyronitrile was added to the reaction solution, and the reaction was then continued while maintaining the temperature at 120°C for 2 hours. Summer. After the reaction was completed, unreacted monomers and n-butyl cellosolve were distilled under reduced pressure to obtain a copolymer solution with a heating residue of 71.0%, a resin acid value of 36.7, and a Gardner viscosity (40% n-butyl cellosolve solution) of D. Furthermore, this copolymer was neutralized with triethylamine (1.0 equivalent neutralization) and water was added to form a dispersant (1) consisting of an aqueous solution with a heating residue of 40%.
I got it. Next, a mixture of 8.3 parts of this dispersant and 200 parts of titanium white pigment (Titanium White R-5N manufactured by Sakai Chemical Co., Ltd.) was added to Red
Dispersion was carried out for 0.5 hours using a Devil disperser to obtain an aqueous pigment dispersion (A) of the present invention. Pigments were similarly dispersed according to the formulations shown in Table 1 below to obtain aqueous pigment dispersions (B) to (D) of the present invention.
Incidentally, pigments other than titanium white were dispersed for 1 hour. The properties of the obtained aqueous pigment dispersion are summarized in Table 1 below. Next, 10 parts of aqueous pigment dispersion (A) and water-dispersed alkyd resin (linseed oil fatty acid/pentaerythritol/benzoic acid/isophthalic acid/maleic anhydride =
Yucho made from 903/705/1140/610/45 (parts)
40% solids solution obtained by neutralizing 1.0 equivalent of alkyd resin with triethylamine and acid value 16)
Water-based paint (1) by thoroughly mixing a formulation consisting of 23.4 parts
was prepared. In the same way, the pigment dispersion liquid and the water-based resin shown in Table 2 below were sufficiently mixed to form a water-based paint (2).
~(6) was obtained. The coating film performance of the obtained water-based paint is summarized in Table 2 below. Example 2 (2-a) The following components: 61.8 parts of isopalmitic acid, 0.03 parts of hydroquinone, and 4.56 parts of n-heptane were placed in a reaction vessel, and the temperature was raised to 160°C while stirring. Next, a mixture of the following components: 41.2 parts of hydroxyethyl methacrylate, 0.03 parts of hydroquinone, 0.95 parts of dodecylbenzenesulfonic acid, and 3.7 parts of toluene was added dropwise into a reaction vessel at 160° C. over a period of 2 hours. The produced condensation water is removed from the reaction system, and when the acid value of the reaction product becomes 5.5 and the Gardner viscosity becomes A2 , the pressure of the reaction vessel is reduced, toluene and n-heptane are removed under reduced pressure, and the acid value becomes 5.0 and the Gardner viscosity becomes A2. A fatty acid-modified acrylic monomer with a viscosity of A 1 was obtained. (2-b) 300 parts of n-butyl cellosolve was placed in a reaction vessel and heated to 120°C. Next, a mixture in the proportions shown below was added dropwise to this solution over about 2 hours. The reaction was carried out under nitrogen injection. Fatty acid modified monomer obtained in (2-a) above 75 parts n-butyl methacrylate 1 39 parts N-vinylpyrrolidone 125 parts acrylic acid 11 parts azobisdimethylvaleronitrile 18 parts Maintaining the reaction temperature at 120°C, the reaction The above mixture was added dropwise while stirring the solution. One hour after the completion of the dropwise addition, 2.5 parts of azobisisobutyronitrile was added to the reaction solution, and after another 2 hours, 2.5 parts of azobisisobutyronitrile was added to the reaction solution, and the reaction was then continued while maintaining the temperature at 120°C for 2 hours. Summer. After the reaction was completed, the unreacted monomer and n-butyl cellosolve were distilled under reduced pressure to obtain a copolymer solution with a heating residue of 70.3%, a resin acid value of 37.2, and a Gardner viscosity (40% n-butyl cellosolve solution) H. Furthermore, this copolymer was neutralized with triethylamine (1.0 equivalent neutralization), and water was added to obtain a dispersant () consisting of an aqueous solution with a heating residue of 40%. Next, using the obtained dispersant (), Table 1 below
The pigment shown in Example 1 was dispersed in the same manner as in Example 1 to obtain an aqueous pigment dispersion (E) of the present invention. In addition, a water-based paint (7) was prepared by thoroughly mixing this pigment dispersion (E) and a water-based resin shown in Table 2 below. The properties of the pigment dispersion (E) and the coating performance of the water-based paint (7) are shown in Tables 1 and 2 below, respectively. Example 3 A monomer mixture of 85 parts of the resin acid-modified monomer obtained in (1-a), 150 parts of 2-vinylpyridine, and 15 parts of acrylic acid was subjected to a polymerization reaction according to the method described in Example 1. Heating residue 71.5%, resin acid value
A copolymer solution with a Gardner viscosity of 46.0 (40% n-butyl cellosolve solution) was obtained. Neutralize this with triethylamine (1.0 equivalent neutralization),
A dispersant () consisting of an aqueous solution with a heating residue of 40% was obtained. Next, using the obtained dispersant (),
The pigment shown in Example 1 was dispersed in the same manner as in Example 1 to obtain an aqueous pigment dispersion (F) of the present invention. In addition, a water-based paint (8) was prepared by sufficiently mixing this pigment dispersion (F) and the water-based resin shown in Table 2 below. The properties of the pigment dispersion (F) and the coating performance of the water-based paint (8) are shown in Tables 1 and 2 below, respectively. Example 4 (4-a) The following components: 103 parts of benzoic acid, 119 parts of glycidyl methacrylate, 0.2 parts of hydroquinone, and 0.1 part of tetraethylammonium bromide were placed in a reaction vessel. 140 while stirring the reaction
The addition reaction product was obtained at a temperature of ~150°C.
The addition reaction between epoxy groups and carboxyl groups was monitored while measuring the amount of remaining carboxyl groups. The reaction took approximately 6 hours to complete. (4-b) 300 parts of n-butyl cellosolve was placed in a reaction vessel and heated to 120°C. Next, a mixture in the proportions shown below was added dropwise to this solution over about 2 hours. The reaction was carried out under nitrogen injection. Fatty acid modified monomer obtained in (4-a) above 113 parts N,N-dimethylacrylamide 126 parts Acrylic acid 11 parts Azobisdimethylvaleronitrile 17.5 parts The polymerization reaction was otherwise carried out under the same conditions as in Example 3. A copolymer solution with a heating residue of 71.5%, a resin acid value of 36.2, and a Gardner viscosity (40% n-butyl cellosolve solution) of M was obtained. Next, this material was neutralized with triethylamine (1.0 equivalent neutralization) to obtain a dispersant () consisting of an aqueous solution with a heating residue of 40%. Next, using the obtained dispersant (),
The pigment shown in Example 1 was dispersed in the same manner as in Example 1 to obtain an aqueous pigment dispersion (G) of the present invention. In addition, a water-based paint (9) was prepared by sufficiently mixing this pigment dispersion (G) with the water-based resin shown in Table 2 below. The properties of the pigment dispersion (G) and the film performance of the water-based paint (9) are shown in Tables 1 and 2 below, respectively. Example 5 A polymerization reaction was carried out under the same conditions as in Example 1 except that 1-vinylimidazole was used instead of N-vinylpyrrolidone in Example 1, and the heating residue was 71.2%, the resin acid value was 34.9, and the Gardner viscosity ( 40%
A copolymer solution of n-butyl cellosolve solution) E was obtained. Next, neutralize with triethylamine (1.0
(equivalent neutralization), and a dispersant () consisting of an aqueous solution with a heating residue of 40% was obtained. Next, using the obtained dispersant (),
The pigment shown in Example 1 was dispersed in the same manner as in Example 1 to obtain an aqueous pigment dispersion (H) of the present invention. Further, this pigment dispersion (H) and the water-based resin shown in Table 2 below were sufficiently mixed to prepare a water-based paint (10). The properties of the pigment dispersion (H) and the coating performance of the water-based paint (10) are shown in Tables 1 and 2 below, respectively. Comparative example 1 Commercially available pigment dispersant SMA1440H
(sodium salt of styrene-maleic anhydride polymer, manufactured by ARCOChemical, trade name) and titanium white R-5N (titanium oxide, trade name, manufactured by Sakai Chemical Co., Ltd.) at a solid content weight ratio of titanium white/dispersant = 22 /1 pigment dispersion (pigment content 70.0%) 10
A water-based paint for comparison was prepared by mixing 17.5 parts of emulsion (b) shown in Table 2 below. The coating film performance of this product is shown in Table 2 below.

【表】【table】

【表】【table】

【表】【table】

〔塗膜性能試験〕[Coating film performance test]

水性塗料(1)〜(10)に水性ドライヤー(大日本イン
キ社製商品名“デイクネート”、コバルト金属含
量3%)を樹脂固形分100部に対し1部の割合で
添加し、軟鋼板に塗装した。20℃、相対湿度75%
で3日間乾燥した後、試験に供した。 ゴバン目付着性:1mm幅のゴバン目を100個作
り、その上にセロフアン粘着テープをはりつけそ
れを勢いよくはがして試験した。 耐水性:20℃の水道水に2日間浸漬して塗面状
態を肉眼で調べた。
Add a water-based dryer (trade name: "Deiknate", manufactured by Dainippon Ink Co., Ltd., cobalt metal content: 3%) to water-based paints (1) to (10) at a ratio of 1 part to 100 parts of resin solid content, and paint on a mild steel plate. did. 20℃, relative humidity 75%
After drying for 3 days, it was used for testing. String adhesion: A test was carried out by making 100 1 mm wide grids, pasting cellophane adhesive tape on them, and peeling off the tape vigorously. Water resistance: The condition of the coated surface was visually examined by immersing it in tap water at 20°C for 2 days.

Claims (1)

【特許請求の範囲】 1 顔料、分散剤及び水性媒体からなる水性顔料
分散液において、該分散剤が (A) 合成飽和脂肪酸又は置換もしくは未置換の安
息香酸で変性された(メタ)アクリル系単量体
3〜98重量部 (B) α,β−エチレン性不飽和含窒素単量体
2〜97重量部 (C) α,β−エチレン性不飽和カルボン酸
0.5〜20重量部 及び (D) 上記(A),(B),(C)以外のα,β−エチレン性不
飽和単量体 0〜91重量部 を共重合することにより得られる重合体の水溶性
化物であることを特徴とする水性顔料分散液。
[Scope of Claims] 1. In an aqueous pigment dispersion consisting of a pigment, a dispersant, and an aqueous medium, the dispersant is (A) a (meth)acrylic monomer modified with a synthetic saturated fatty acid or substituted or unsubstituted benzoic acid. mass
3 to 98 parts by weight (B) α,β-ethylenically unsaturated nitrogen-containing monomer
2 to 97 parts by weight (C) α,β-ethylenically unsaturated carboxylic acid
A polymer obtained by copolymerizing 0.5 to 20 parts by weight and (D) 0 to 91 parts by weight of α,β-ethylenically unsaturated monomers other than (A), (B), and (C) above. An aqueous pigment dispersion characterized by being a water-soluble product.
JP58187723A 1983-10-08 1983-10-08 Aqueous pigment dispersion Granted JPS6081253A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58187723A JPS6081253A (en) 1983-10-08 1983-10-08 Aqueous pigment dispersion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58187723A JPS6081253A (en) 1983-10-08 1983-10-08 Aqueous pigment dispersion

Publications (2)

Publication Number Publication Date
JPS6081253A JPS6081253A (en) 1985-05-09
JPH059473B2 true JPH059473B2 (en) 1993-02-05

Family

ID=16211045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58187723A Granted JPS6081253A (en) 1983-10-08 1983-10-08 Aqueous pigment dispersion

Country Status (1)

Country Link
JP (1) JPS6081253A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11167768B2 (en) 2018-03-29 2021-11-09 Subaru Corporation Vehicle driving assist system

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0788455B2 (en) * 1986-05-30 1995-09-27 大日精化工業株式会社 Pigment composition
JP2619255B2 (en) * 1988-02-19 1997-06-11 大日精化工業株式会社 Pigment composition
US5227421A (en) * 1990-05-01 1993-07-13 Nippon Paint Co., Ltd. Aqueous pigment-dispersed paste, processes for producing it and therefrom water paint composition
JP2003055519A (en) * 2001-08-20 2003-02-26 National Institute Of Advanced Industrial & Technology Resin composition and method for producing the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5740191A (en) * 1980-08-20 1982-03-05 Babcock Hitachi Kk Differ material joint part
JPS5750535A (en) * 1980-09-12 1982-03-25 Toagosei Chem Ind Co Ltd Nonaqueous solvent type dispersant

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5740191A (en) * 1980-08-20 1982-03-05 Babcock Hitachi Kk Differ material joint part
JPS5750535A (en) * 1980-09-12 1982-03-25 Toagosei Chem Ind Co Ltd Nonaqueous solvent type dispersant

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11167768B2 (en) 2018-03-29 2021-11-09 Subaru Corporation Vehicle driving assist system

Also Published As

Publication number Publication date
JPS6081253A (en) 1985-05-09

Similar Documents

Publication Publication Date Title
JPH0517266B2 (en)
JP5563556B2 (en) Paste resin for general-purpose pigment paste
EP1640389A1 (en) Copolymers, their process and use as dipersant or wetting agent
US5134187A (en) Cationic aqueous pigment dispersion
JP2003055416A (en) Method for producing pigment dispersing resin
JPH0441195B2 (en)
JPH0588275B2 (en)
JPH059473B2 (en)
JPH0441194B2 (en)
JPH0521154B2 (en)
JPH051301B2 (en)
JPH0816207B2 (en) Aqueous pigment dispersion
JPH0576508B2 (en)
JPS63248839A (en) Aqueous pigment dispersion
JPH0517265B2 (en)
JP2577441B2 (en) Cationic aqueous pigment dispersion
JPH0447716B2 (en)
JP4484493B2 (en) Pigment dispersion, toning method and gloss adjustment method using the pigment dispersion
JPH0576507B2 (en)
JPH0536467B2 (en)
JPH0576509B2 (en)
JPH09157538A (en) Pigment dispersant and coating mateiral or printing ink composition containing the same
JPS63154769A (en) Aqueous pigment dispersion
JPH0576506B2 (en)
JPS61103537A (en) Aqueous pigment dispersion liquid