JPH0594539A - Device and method for analyzing optical environment - Google Patents

Device and method for analyzing optical environment

Info

Publication number
JPH0594539A
JPH0594539A JP25353991A JP25353991A JPH0594539A JP H0594539 A JPH0594539 A JP H0594539A JP 25353991 A JP25353991 A JP 25353991A JP 25353991 A JP25353991 A JP 25353991A JP H0594539 A JPH0594539 A JP H0594539A
Authority
JP
Japan
Prior art keywords
light
amount
reaching
emitted
radiated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25353991A
Other languages
Japanese (ja)
Other versions
JP2747386B2 (en
Inventor
Nobuhiro Hattori
宜弘 服部
Sachio Nagamitsu
左千男 長光
Hisashi Kodama
久 児玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP25353991A priority Critical patent/JP2747386B2/en
Priority to DE69202423T priority patent/DE69202423T2/en
Priority to EP19920114359 priority patent/EP0532940B1/en
Publication of JPH0594539A publication Critical patent/JPH0594539A/en
Priority to US08/227,331 priority patent/US5422717A/en
Application granted granted Critical
Publication of JP2747386B2 publication Critical patent/JP2747386B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Image Generation (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

PURPOSE:To obtain an optical environment analyzing method capable of improving a calculation speed as high as possible without reducing accuracy. CONSTITUTION:A face forming an environment space to be analyzed is divided into several faces, a prescribed face having the maximum quantity of radiated light out of the divided faces is set up as a light source 1, the prescribed number of beams are radiated from the light source 1, respective faces at which respective beams arrive are searched, the quantity of light arriving at each searched face is calculated, the quantity of arriving beams on the prescribed face having the maximum light quantity is set up as a light source, the number of radiation beams is determined correspondingly to the quantity of radiated light, the light quantity of respective faces is calculated by the procedure, and similar operation is repeated to obtain the final light quantity of respective faces.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は照明、採光などをシミュ
レートする光環境解析装置及び光環境解析方法に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a light environment analysis apparatus and a light environment analysis method for simulating illumination, lighting, and the like.

【0002】[0002]

【従来の技術】部屋の中に照明器具などを設置する場合
に、器具を実際に取り付ける前に、部屋の各部分におけ
る照度、輝度などの値を計算上求めて、光環境が定量的
に分かることが望まれている。このような解析をする場
合に光源からの直接光だけでなく、壁面などからの反射
光も考慮に入れる必要がある。
2. Description of the Related Art When a lighting device is installed in a room, the light environment can be quantitatively obtained by calculating the values of illuminance and brightness in each part of the room before actually installing the device. Is desired. When performing such an analysis, it is necessary to take into consideration not only the direct light from the light source but also the reflected light from the wall surface.

【0003】従来、ラジオシティ法という手法を用いる
ことによって、そのような反射光も考慮した計算が可能
となっている(「映像の質を漸進的に高めるラジオシテ
ィ・アルゴリズム」、マイケル・F・コーエン、日経CG 1988年1
1月号P.164-P174参照(from"A Progressive Refinement
Approach to Fast Radiosity ImageGeneration" Mich
ael F.Cohen et al., Conputer Graphics ,vol.22,no.
4,August 1988 (SIGGRAPH'88 Conference Proceeding),
pp.75-84)))。
Conventionally, a method called the radiosity method can be used to perform calculations taking such reflected light into consideration ("Radiosity algorithm for progressively increasing the image quality", Michael F. Cohen, Nikkei CG 1988 1
See January issue P.164-P174 (from "A Progressive Refinement
Approach to Fast Radiosity Image Generation "Mich
ael F. Cohen et al., Computer Graphics, vol.22, no.
4, August 1988 (SIGGRAPH'88 Conference Proceeding),
pp.75-84))).

【0004】この手法では、部屋の天井、側壁、床など
を多くの面に分割する。当然その中のある面に照明光源
が存在することになる。
In this method, the ceiling, side walls, floor, etc. of a room are divided into many planes. Naturally, the illumination light source is present on a certain surface in it.

【0005】そこで最初に、それら各面の中で、光を最
も放射する面、すなわち照明光源の存在する面に着目す
る。そして、その面より光を四方に放射させる。その放
射された光が各面に到達する割合を求める際に角関係、
面の大きさなどから、フォームファクター(formfactor)なるも
のを求める。その方法として、1点(所定光源面)から
線を射出して各面に到達した本数より計算する方法が考
えられる。このformfactorを計算する演算の流れを図5
に示す。図中ステップS1では、光線の発射角度を決定
する。ステップS2では、その発射角度に対応した発射
光強度を求める。ステップS3では、その発射角度より
光線の到達面を探す。ステップS4では、その到達面に
おける光線強度を計算する(そしてそれまでの光線強度
に加算する)。ステップS5では、その一点から放射さ
せる全規定本数が終了したかどうかを判定する。未だ発
射角度が残っていれば、その残る角度で光を射出し、上
述の演算を行う。全ての角度に発射し終わると、ステッ
プS6では、1点から全方向へ光を発射させた場合の、
各面におけるその1点からの光の強度を算出する。
Therefore, first of all, attention is paid to the surface that most emits light, that is, the surface where the illumination light source exists. Then, light is emitted in all directions from the surface. The angular relationship when determining the ratio of the emitted light reaching each surface,
From the size of the surface, we obtain the form factor. As a method therefor, a method of emitting a line from one point (predetermined light source surface) and calculating from the number of lines reaching each surface can be considered. Figure 5 shows the flow of operations for calculating this form factor.
Shown in. In step S1 in the figure, the emission angle of the light beam is determined. In step S2, the emission light intensity corresponding to the emission angle is obtained. In step S3, the arrival surface of the ray is searched for based on the firing angle. In step S4, the light intensity on the reaching surface is calculated (and added to the light intensity up to that point). In step S5, it is determined whether or not the total specified number of rays to be emitted from the one point has ended. If the emission angle still remains, the light is emitted at the remaining angle and the above calculation is performed. After firing at all angles, in step S6, when light is emitted from one point in all directions,
The intensity of light from that one point on each surface is calculated.

【0006】次に、光源面以外の各面の中で、最も光り
強度の大きい面を探索する。そして、その最も光の強い
面を新たな光源とみなし、且つその面を完全拡散面とし
て、全方位に光を発射させ、上述のようにして、各面の
光の強度を増加させながら更に精密にしていく。
Next, of the surfaces other than the light source surface, the surface having the highest light intensity is searched for. Then, the surface with the strongest light is regarded as a new light source, and that surface is used as a perfect diffusion surface to emit light in all directions, and as described above, the intensity of light on each surface is increased and precision is increased. I will

【0007】[0007]

【発明が解決しようとする課題】しかしながら、form-f
acterを求める場合、光源、反射面に限らず、1点から
射出する線の本数が同じであるために、光源の場合に比
べて反射面のようにわずかな量の光を発する面の場合に
も、上記精度の点からみて本数が多くなり過ぎ、計算時
間が必要以上に要するという課題がある。
[Problems to be Solved by the Invention] However, form-f
When finding the acter, not only for the light source and the reflecting surface, but for the surface that emits a small amount of light like the reflecting surface, since the number of lines that emerge from one point is the same However, in view of the above accuracy, there is a problem that the number is too large and the calculation time is longer than necessary.

【0008】本発明は、このような従来の光環境解析装
置の課題を考慮し、できるだけ計算速度を高め且つ精度
を落とさない光環境解析装置及び光環境解析方法を提供
することを目的とするものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems of the conventional optical environment analyzing apparatus, and an object of the present invention is to provide an optical environment analyzing apparatus and a light environment analyzing method in which calculation speed is increased and accuracy is not reduced. Is.

【0009】[0009]

【課題を解決するための手段】本発明は、解析対象の環
境空間を形成する面をいくつかの面に分割し、その分割
された各面の中から、光量に関する所定の基準に基づき
選ばれた所定面を光源とし、そこから光を所定の本数放
射し、各光の到達する各面を探索し、その面に到達する
光量を演算し、さらに、前記各面の中から、所定の基準
に基づき選ばれた所定面の到達光量を光源として、上述
のようにして、各面における光量を演算し、このような
ことを繰り返すことによって、各面の最終的光量を得る
光環境解析装置において、放射する光の量に対応して、
放射する光の本数を決定する規定本数決定手段を備えた
ことを特徴とする光環境解析装置である。
According to the present invention, a surface forming an environment space to be analyzed is divided into several surfaces, and each of the divided surfaces is selected on the basis of a predetermined criterion relating to the amount of light. A predetermined surface is used as a light source, a predetermined number of light is emitted from the light source, each surface reached by each light is searched, the amount of light reaching that surface is calculated, and further, a predetermined reference is given from among the surfaces. In the light environment analysis device that obtains the final light intensity of each surface by calculating the light intensity of each surface as described above by using the light intensity of the predetermined surface selected based on , Corresponding to the amount of light emitted,
It is an optical environment analysis device comprising a prescribed number determination means for determining the number of emitted light.

【0010】また、本発明は、光源、反射壁などの面を
分割した光環境を解析する領域において最も光を放射す
る量が多い面を探す放射最大光量探索ステップと、前記
放射最大光量探索ステップで得られた放射最大光量が予
め決められた規定値より大きいか否かを比較する放射最
大光量規定値判定ステップと、探索された面より他の各
面への到達光量を計算する各面への到達光量計算ステッ
プと、前記到達光量計算ステップで求められた光量を各
面にて、それまでに求められた光量に加算する各面の到
達光量加算ステップと、前記到達光量加算計算ステップ
で求められた光量にその到達面の拡散反射率を乗ずる放
射光量計算ステップとを備え、放射を行った面の放射光
量を0にし、再度前記放射最大光量面探索ステップに
て、計算された放射光量のなかで最も光を放射する量が
多い面を探し、以下同じ操作を繰り返すことによって計
算領域のすべての面の照度、反射光強度等を求め、前記
放射された光が各面へ到達する量を求め加算する際のス
テップでは、放射する光の、本数に対応する発射角度を
決める光線発射角度決定ステップと、発射角度に対応し
た発射強度を算出する発射強度算出ステップと、発射さ
れた光が到達する面を探す到達面探索ステップと、到達
面にて到達強度を加算する到達強度加算ステップと、放
射する光があらゆる方向に出されるように決めた規定本
数を発射したかを判定する規定本数判定ステップを実行
するものであって、前記光線発射角度決定ステップにお
ける前記本数は、放射する光の量に対応して決められる
光環境解析方法である。
Further, according to the present invention, a maximum radiant light amount searching step for searching for a surface having the largest amount of radiating light in an area for analyzing a light environment, which is obtained by dividing a surface such as a light source and a reflecting wall, and the maximum radiant light amount searching step. In the maximum emission amount specified value determination step that compares whether or not the maximum emission amount obtained in step 1 is greater than a predetermined specified value, and to each surface that calculates the amount of light reaching each other surface from the searched surface Arrival light amount calculation step, the light amount obtained in the arrival light amount calculation step on each surface, the arrival light amount addition step of each surface to add to the light amount obtained up to that, and the arrival light amount addition calculation step A step of multiplying the obtained light quantity by the diffuse reflectance of the reaching surface, and setting the emitted light quantity of the radiated surface to 0, and again calculating the emitted maximum light quantity in the surface search step. Find the surface that emits the most light among the quantities, and repeat the same operation to obtain the illuminance, reflected light intensity, etc. of all the surfaces in the calculation area, and the emitted light reaches each surface. In the step of obtaining and adding the quantity, the light emitting angle determination step of determining the emission angle corresponding to the number of emitted light, the emission intensity calculation step of calculating the emission intensity corresponding to the emission angle, and the emitted light To find the surface to be reached, a reaching intensity adding step to add the reaching intensity on the reaching surface, and a rule to determine whether the radiated light has emitted the specified number so that it is emitted in all directions In the light environment analysis method, the number determination step is executed, and the number in the light beam emission angle determination step is determined corresponding to the amount of light to be emitted.

【0011】[0011]

【作用】上記構成においては、放射された光の各面へ到
達する光量を求める場合に、その放射光量に対応して、
放射本数を決定する。従って、精密さを犠牲にすること
なく、計算速度を早くすることが出来る。
In the above structure, when obtaining the amount of light that reaches each surface of the emitted light, in accordance with the amount of emitted light,
Determine the number of radiation. Therefore, the calculation speed can be increased without sacrificing precision.

【0012】[0012]

【実施例】以下、本発明の実施例について図面を参照し
て説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0013】図1は本発明の一実施例における光環境解
析方法の構成を示すフローチャートである。図2に示す
ような3次元空間を面分割し、面要素の中で最も光を放
射する面を探し(放射最大光量面探索部にて探す)(図
1のステップS1)、その面から光を発する。最初は光
源1がその面となる。光源が複数個ある場合は、最も明
るい光源が選ばれる。2は鏡面である。
FIG. 1 is a flow chart showing the configuration of a light environment analysis method according to an embodiment of the present invention. A three-dimensional space as shown in FIG. 2 is surface-divided, and the surface that emits the most light among the surface elements is searched (the maximum radiated light quantity surface search unit is searched) (step S1 in FIG. 1). Emit. At first, the light source 1 becomes the surface. If there are multiple light sources, the brightest light source is selected. 2 is a mirror surface.

【0014】次に、その光源からの各面への光の到達量
を求める(到達光量計算部で求める)(図1のステップ
S3)。図3のフローチャートにその到達量を求める動
作を示す。図4に示すように放射面より光を射出し、そ
れぞれの面に到達する割合を求める。
Next, the arrival amount of light from the light source to each surface is obtained (obtained by the reaching light amount calculation section) (step S3 in FIG. 1). The flowchart of FIG. 3 shows the operation for obtaining the arrival amount. As shown in FIG. 4, light is emitted from the emitting surface, and the ratio of reaching each surface is obtained.

【0015】図3のステップS1の光の発射角度、及び
ステップS2発射強度は、その放射本数で決まる。
The emission angle of the light in step S1 of FIG. 3 and the emission intensity of step S2 are determined by the number of emitted rays.

【0016】このようにして、発射された光線を追跡し
到達する面を求める。そして、上記光源から発射された
光の規定本数かどうかを判定し(規定本数判定部で判定
する)(図3のステップS8)、規定本数に達していな
い場合は、他の角度で光を発射し(図3のステップS
1)、同様の光の追跡を行う。
In this way, the emitted ray is traced and the reaching surface is obtained. Then, it is determined whether or not the number of lights emitted from the light source is the specified number (determined by the specified number determination unit) (step S8 in FIG. 3), and if the specified number is not reached, the light is emitted at another angle. (Step S in FIG. 3
1) The same light tracking is performed.

【0017】規定本数に達した場合は、最後に、放射面
からEなる光の量が放射され、光の強度がトータルでF
であり、1面に到達する強度がGであるとき、到達光量
算出部において1面に到達する光の量がE×G/Fとし
て計算される(図3のステップS9)。
When the specified number is reached, finally, the amount of light E is emitted from the emitting surface, and the total intensity of light is F.
When the intensity reaching the one surface is G, the amount of light reaching the one surface is calculated as E × G / F in the reaching light amount calculation unit (step S9 in FIG. 3).

【0018】以上のような方法によって、所定の放射面
から各面へ光が到達する割合が求められ、面に到達する
光の量を加算する(図1のステップS4)。
By the method described above, the ratio of the light reaching each surface from the predetermined radiation surface is obtained, and the amount of light reaching the surface is added (step S4 in FIG. 1).

【0019】この値に各面の拡散反射率を乗じた光量
が、その面を光源とする場合の放射する光の量になる
(図1のステップS5)。この面では、完全拡散面とみ
なされる。
The amount of light obtained by multiplying this value by the diffuse reflectance of each surface becomes the amount of light emitted when that surface is used as the light source (step S5 in FIG. 1). In this respect, it is considered as a perfect diffusion surface.

【0020】そこで、図1のステップ1で、この値が最
大の面を探索し、同じ操作を繰り返して光を放射する。
Therefore, in step 1 of FIG. 1, the surface having the maximum value is searched for, and the same operation is repeated to emit light.

【0021】この際、反射面での放射については、例え
ば、図4に示すように本数を多くすれば誤差も小さくな
るが、例えば光源から2500lm、反射面から500lm、光が
放射される場合、他の面に到達する割合を求める精度と
しては、光源の場合と、反射面の場合では同じでなくて
もよい。精度と本数の関係と放射する光の量から発射に
必要な規定本数を決めることになる。その放射光量が少
ないほど本数を少なくすることが望ましい。このように
して図2のような計算量域内のすべての面の照度,拡散
する光の量がわかる。
At this time, regarding the radiation on the reflecting surface, for example, if the number is increased as shown in FIG. 4, the error becomes smaller. For example, when light is emitted from the light source at 2500 lm and the reflecting surface at 500 lm, The accuracy of obtaining the ratio of reaching the other surface may not be the same in the case of the light source and the case of the reflecting surface. The specified number required for firing is determined from the relationship between accuracy and number and the amount of light emitted. It is desirable to reduce the number as the amount of emitted light decreases. In this way, the illuminance and the amount of diffused light on all surfaces within the calculation amount range as shown in FIG. 2 can be known.

【0022】なお、放射光源の光量が最も大きい面を探
索する場合、予め決められた規定値に到達しない面しか
残っていない場合は、そこで、シミュレーションは終了
する(図1のステップS2)。
When searching for the surface with the largest light amount of the radiation source, and only the surface that does not reach the predetermined specified value remains, the simulation ends there (step S2 in FIG. 1).

【0023】[0023]

【発明の効果】以上説明したところから明らかなよう
に、本発明は、放射光量に対応して、放射本数を決定す
るので、精度を比較的保持しながら、計算速度を早くす
ることが出来、照明器具の開発、設置などの設計に役立
つものである。
As is apparent from the above description, according to the present invention, the number of emitted rays is determined according to the amount of emitted light, so that it is possible to increase the calculation speed while maintaining the accuracy relatively. It is useful for the development and design of lighting equipment.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の光環境解析方法を示すフローチャート
である。
FIG. 1 is a flowchart showing a light environment analysis method of the present invention.

【図2】本発明の光環境解析方法の対象とする空間模式
図である。
FIG. 2 is a schematic diagram of a space as a target of the optical environment analysis method of the present invention.

【図3】本発明の各面への到達光量計算方法を示すフロ
ーチャートである。
FIG. 3 is a flowchart showing a method of calculating the amount of light reaching each surface of the present invention.

【図4】本発明の光射出本数と誤差との関係を示すグラ
フである。
FIG. 4 is a graph showing the relationship between the number of emitted light beams and the error according to the present invention.

【図5】従来の光の到達面における光量を求めるための
フローチャートである。
FIG. 5 is a flowchart for obtaining a light amount on a conventional light arrival surface.

【符号の説明】[Explanation of symbols]

1 光源 2 鏡面 図3のS3 到達面探索ステップ 図3のS5 到達面鏡面反射判定ステップ 図3のS6 鏡面反射強度算出ステップ 図3のS7 反射角度算出ステップ 1 light source 2 mirror surface S3 in FIG. 3 arrival surface search step S5 in FIG. 3 arrival surface specular reflection determination step S6 in FIG. 3 specular reflection intensity calculation step S7 in FIG. 3 reflection angle calculation step

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 解析対象の環境空間を形成する面をいく
つかの面に分割し、その分割された各面の中から、光量
に関する所定の基準に基づき選ばれた所定面を光源と
し、そこから光を所定の本数放射し、各光の到達する各
面を探索し、その面に到達する光量を演算し、さらに、
前記各面の中から、所定の基準に基づき選ばれた所定面
の到達光量を光源として、上述のようにして、各面にお
ける光量を演算し、このようなことを繰り返すことによ
って、各面の最終的光量を得る光環境解析装置におい
て、放射する光の量に対応して、放射する光の本数を決
定する規定本数決定手段を備えたことを特徴とする光環
境解析装置。
1. A surface forming an environment space to be analyzed is divided into a plurality of surfaces, and a predetermined surface selected from the divided surfaces based on a predetermined reference for the amount of light is used as a light source. Emit a predetermined number of light from, search each surface that each light reaches, calculate the amount of light reaching that surface,
From each surface, the amount of light reaching a predetermined surface selected based on a predetermined reference is used as a light source, the amount of light on each surface is calculated as described above, and by repeating this, An optical environment analyzing apparatus for obtaining a final light quantity, comprising a prescribed number determining means for determining the number of emitted light in accordance with the amount of emitted light.
【請求項2】 光源、反射壁などの面を分割した光環境
を解析する領域において最も光を放射する量が多い面を
探す放射最大光量探索ステップと、前記放射最大光量探
索ステップで得られた放射最大光量が予め決められた規
定値より大きいか否かを比較する放射最大光量規定値判
定ステップと、探索された面より他の各面への到達光量
を計算する各面への到達光量計算ステップと、前記到達
光量計算ステップで求められた光量を各面にて、それま
でに求められた光量に加算する各面の到達光量加算ステ
ップと、前記到達光量加算計算ステップで求められた光
量にその到達面の拡散反射率を乗ずる放射光量計算ステ
ップとを備え、放射を行った面の放射光量を0にし、再
度前記放射最大光量面探索ステップにて、計算された放
射光量のなかで最も光を放射する量が多い面を探し、以
下同じ操作を繰り返すことによって計算領域のすべての
面の照度、反射光強度等を求め、 前記放射された光が各面へ到達する量を求め加算する際
のステップでは、放射する光の、本数に対応する発射角
度を決める光線発射角度決定ステップと、発射角度に対
応した発射強度を算出する発射強度算出ステップと、発
射された光が到達する面を探す到達面探索ステップと、
到達面にて到達強度を加算する到達強度加算ステップ
と、放射する光があらゆる方向に出されるように決めた
規定本数を発射したかを判定する規定本数判定ステップ
を実行するものであって、前記光線発射角度決定ステッ
プにおける前記本数は、放射する光の量に対応して決め
られることを特徴とする光環境解析方法。
2. The maximum radiant light amount searching step for searching for a surface having the largest amount of radiating light in an area for analyzing a light environment, which is obtained by dividing a surface such as a light source and a reflecting wall, and the maximum radiant light amount searching step. Maximum radiant light intensity specified value determination step that compares whether or not the maximum radiated light amount is greater than a predetermined stipulated value, and calculation of the amount of light reaching each other surface from the searched surface Step, the amount of light obtained in the reaching light amount calculation step on each surface, the reaching light amount addition step of each surface to be added to the amount of light found so far, to the amount of light found in the reaching light amount addition calculation step And a step of calculating the amount of radiated light that multiplies the diffuse reflectance of the reaching surface, sets the radiated light amount of the radiated surface to 0, and again in the maximum radiated light amount surface search step, the most radiated light amount is calculated. Find the surface that emits a large amount of light, obtain the illuminance of all the surfaces in the calculation area, the reflected light intensity, etc. by repeating the same operation, and then add the amount of the emitted light reaching each surface and add it. In this step, the ray emission angle determination step that determines the emission angle corresponding to the number of emitted light, the emission intensity calculation step that calculates the emission intensity corresponding to the emission angle, and the surface that the emitted light reaches Reachable surface search step,
The reaching intensity adding step of adding the reaching intensity on the reaching surface, and the specified number determination step of determining whether the radiated light has emitted the specified number determined to be emitted in all directions, The light environment analysis method, wherein the number of rays in the ray emission angle determination step is determined corresponding to the amount of light emitted.
JP25353991A 1991-08-22 1991-10-01 Light environment analysis device and light environment analysis method Expired - Fee Related JP2747386B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP25353991A JP2747386B2 (en) 1991-10-01 1991-10-01 Light environment analysis device and light environment analysis method
DE69202423T DE69202423T2 (en) 1991-08-22 1992-08-22 Method and device for analyzing an exposure environment.
EP19920114359 EP0532940B1 (en) 1991-08-22 1992-08-22 Method and apparatus for analyzing a lighting environment
US08/227,331 US5422717A (en) 1991-08-22 1994-04-14 Method and apparatus for analyzing a lighting environment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25353991A JP2747386B2 (en) 1991-10-01 1991-10-01 Light environment analysis device and light environment analysis method

Publications (2)

Publication Number Publication Date
JPH0594539A true JPH0594539A (en) 1993-04-16
JP2747386B2 JP2747386B2 (en) 1998-05-06

Family

ID=17252780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25353991A Expired - Fee Related JP2747386B2 (en) 1991-08-22 1991-10-01 Light environment analysis device and light environment analysis method

Country Status (1)

Country Link
JP (1) JP2747386B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5422717A (en) * 1991-08-22 1995-06-06 Matsushita Electric Industrial Co., Ltd. Method and apparatus for analyzing a lighting environment

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4974612B2 (en) * 2006-05-18 2012-07-11 旭化成ホームズ株式会社 Light environment analysis program and light environment analysis apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5422717A (en) * 1991-08-22 1995-06-06 Matsushita Electric Industrial Co., Ltd. Method and apparatus for analyzing a lighting environment

Also Published As

Publication number Publication date
JP2747386B2 (en) 1998-05-06

Similar Documents

Publication Publication Date Title
EP0795164A1 (en) Image construction
EP0251800A2 (en) Method and apparatus for deriving radiation images using a light buffer
US20140071155A1 (en) Method of producing a reflective or refractive surface
Roy A comparative study of lighting simulation packages suitable for use in architectural design
US9262860B2 (en) System and method for importance sampling of area lights in participating media
US6359618B1 (en) Using irradiance textures for photorealistic image generation
JP2002319034A (en) Electromagnetic wave simulation device and method, and three-dimensional model data generator
JP2747386B2 (en) Light environment analysis device and light environment analysis method
JP2728321B2 (en) Light environment analysis device and light environment analysis method
US5422717A (en) Method and apparatus for analyzing a lighting environment
EP0532940B1 (en) Method and apparatus for analyzing a lighting environment
Hitchcock et al. DElight: A daylighting and electric lighting simulation engine
JP4974612B2 (en) Light environment analysis program and light environment analysis apparatus
Mistrick Desktop radiance overview
JP2711040B2 (en) Light environment analysis method and light environment analyzer
Tsangrassoulis et al. Daylight modelling with Passport-Light
JP2007334851A5 (en)
Luksch et al. Real-time Approximation of Photometric Polygonal Lights.
Tonn et al. Color, Material and Light in the Design Process–A software concept
CN118210146B (en) Design method of LED beam shaping system and LED beam shaping system
JPH05265473A (en) Device and method for sound environment analysis
Kopylov et al. The comparison of illumination maps technique in computer graphics software
Brackett et al. Interior point-by-point calculations in obstructed spaces
Hirata et al. Improvement of accuracy in lighting simulation by flux transfer method
Fu et al. A novel method for calculating the light energy distribution in building space

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees