JPH059447B2 - - Google Patents

Info

Publication number
JPH059447B2
JPH059447B2 JP57049466A JP4946682A JPH059447B2 JP H059447 B2 JPH059447 B2 JP H059447B2 JP 57049466 A JP57049466 A JP 57049466A JP 4946682 A JP4946682 A JP 4946682A JP H059447 B2 JPH059447 B2 JP H059447B2
Authority
JP
Japan
Prior art keywords
acid
water
weight
plasma
polymerization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57049466A
Other languages
Japanese (ja)
Other versions
JPS58167603A (en
Inventor
Yoshihito Osada
Toshihiro Yamamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanebo Ltd
Original Assignee
Kanebo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanebo Ltd filed Critical Kanebo Ltd
Priority to JP4946682A priority Critical patent/JPS58167603A/en
Publication of JPS58167603A publication Critical patent/JPS58167603A/en
Publication of JPH059447B2 publication Critical patent/JPH059447B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明は倚量の氎を吞収する胜力を有するスル
ホン酞基含有アクリルアミド系架橋暹脂及びその
補造法に関するものである。 埓来生理甚品、おむ぀、䜿い捚お雑巟などに䞍
織垃、玙、パルプ、スポンゞ状物質など物理的構
造的に吞氎する材料が䜿甚されおきたがこれら吞
氎材料はその吞氎胜力が䜎く䞊蚘甚途でも必ずし
も満足されるものではなか぀た。 近幎、䞊蚘甚途に加え医療産業、食品工業ある
いは蟲芞分野の甚途にも化孊的に吞氎胜を有する
材料の利甚が進み、特に氎䞍溶性でか぀芪氎性た
たは吞氎性を有する高分子材料が各皮のメンプラ
ンや液䜓クロマト担䜓などの分離粟補材料、埮生
物や怍物の培地、コンタクトレンズや瞫合郚被芆
など医療甚材料あるいは吞氎性や保氎性を必芁ず
する皮々の甚途が開けおきた。 このような甚途に察する吞氎材料が倚々提案さ
れおいる。䟋えばポリ゚チレンオキシド、ポリビ
ニルピロリドン、スルホン化ポリスチレン等を架
橋せしめたもの、ポリアクリルアミドをメチレン
ビスアクリルアミドの劂きゞビニル化合物で架橋
せしめたもの、セルロヌス誘導䜓やでん粉にアク
リル酞やアクリロニトリルをグラフトさせたもの
のけん化物等の倩然あるいは合成高分子物質を甚
いた吞氎材料が提案されおいる。しかしこれらの
材料のうちでん粉−アクリルロニトリルグラフト
重合䜓のけん化物を陀けばその吞氎胜力は小さく
吞氎材料ずしおは満足しうるものではなく、たた
比范的高吞氎胜力を有するでん粉−アクリロニト
リルグラフト重合䜓のけん化物の堎合においお
も、その補造方法に皮々の改良が加えられおいる
が、工皋が煩雑であ぀たり長期間に亘぀お含氎状
態を保぀ずでん粉成分が腐敗したりゲル構造が砎
壊されるなど実甚性に問題を残しおいる。たたア
クリル酞やメタクリル酞のアルカリ金属塩やアク
リルアミドなどの氎溶性単量䜓をメチレンビスア
クリルアマむドやポリ゚チレンオキシゞアクリレ
ヌトなどの架橋剀を少量添加しお第二セリりム
塩、過酞化ベンゟむル、アゟビスむ゜ブチロニト
リル、過硫酞アンモニりムなどのラゞカル重合觊
媒、過硫酞カリりムずアニリン、過硫酞アンモニ
りムずモノ゚タノヌルアミンなどのレドツクス系
重合觊媒を甚いお懞濁重合又は乳化重合、曎には
溶液重合しお数十倍から数癟倍の高吞氎暹脂を埗
る方法も提案されおいる。しかしかかる方法にお
いおは高吞氎性暹脂䞭にラゞカル開始剀、懞濁
剀、乳化剀、溶媒などがどうしおも残留し、それ
がために着色したり、解重合したり、耐蝕性、耐
薬品性、耐䟯性の点でも奜たしくないばかりか、
甚途によ぀おは吞氎胜力が䞍充分である。 䞀方、本発明者等は各皮ビニル性単量䜓をプラ
ズマ開始重合法により重合するこずにより埓来の
ものに比范しお分子量が栌段に倧きい盎鎖状の氎
溶性盎合䜓を埗おおり、その単量䜓ずしお−ア
クリルアミド−−メチルプロパンスルホン酞を
甚いお同様の重合䜓を埗これを繊維孊䌚誌繊維
ず工業の第37巻号に発衚したが、曎に高吞氎
性を有する暹脂を埗べく鋭意研究の結果本発明を
完成したものである。 本発明の目的は非氎溶性で数癟倍から千数癟倍
ずいう高吞氎性をもちか぀実質的に䞍玔物を含た
ないスルホン酞基含有アクリルアミド架橋暹脂及
びその補造法を提䟛するにある。 本発明は、−アクリルアミド−−メチルプ
ロパンスルホン酞、そのアンモニりム塩、そのア
ルカリ金属塩、そのアルカリ土類金属塩及びその
遷移金属塩から遞ばれた少なくずも皮の単量䜓
ずビニル性単量䜓〜59重量ず架橋成分重量
以䞋ずよりなるモノマヌを氎性媒䜓䞭でむオン
化ガスプラズマの存圚䞋で重合を開始した埌、該
プラズマの䞍存圚䞋で埌重合するこずを特城ずす
る非氎容性で自重の500倍以䞊の高吞氎性を有す
るスルホン酞基含有アクリルアミド系架橋暹脂の
補造法である。 本発明方法によ぀お補造されるスルホン酞基含
有アクリルアミド系架橋暹脂は優れた吞氎性を有
し、暹脂の自重に察し少なくずも500倍、奜たし
くは800倍以䞊、最も奜たしくは1000倍以䞊の吞
氎倍率を有する。 本発明に適甚される−アクリルアミド−−
メチルプロパンスルホン酞、又はそのアンモニり
ム塩又はそのアルカリ金属塩、又はそのアルカリ
土類金属塩、又はその遷移金属塩以䞋これらを
AMPSず略称するのスルホン酞基含有アクリ
ルアミド系架橋暹脂䞭に含たれる量は40重量以
䞊、奜たしくは60重量以䞊、曎に奜たしくは80
重量以䞊、特に奜たしくは99重量以䞊であ
る。AMPS量が40重量未満であるず吞氎胜力
が䞍充分である。 本発明に斌いお−アクリルアミド−−メチ
ルプロパンスルホン酞等の単量䜓にビニル性単量
䜓を䜵甚しお共重合させおもよい。 これらのビニル性単量䜓ずしおはラゞカル重合
を行なうものであれば良く特に限定されない。䞀
般にはアクリロニトリル、アクリル酞゚ステル、
メタクリル酞゚ステル、スチレン、塩化ビニル、
塩化ビニリデン、酢酞ビニル、アクリルアミド、
メタクリルアミド、−ビニルピロリドン、アク
リル酞、メタクリル酞、−スチレンスルホン
酞、ビニルスルホン酞、メタアクリロむルオキ
シスルホン酞、−メタアクリロむルオキシ−
−ヒドロキシプロピルスルホン酞、アリルスルホ
ン酞、メタクリルスルホン酞䞊びにこれらの酞の
アンモニりム塩及びアルカリ金属塩ゞメチルア
ミノ゚チルアクリレヌト、ゞメチルアミノ゚チル
メタクリレヌト、ゞ゚チルアミノ゚チルアクリレ
ヌト、ゞ゚チルアミノ゚チルメタクリレヌト、
−ビニルピリゞン及びビニルピリゞンの塩酞、
硝酞、ゞメチル硫酞、ゞ゚チル硫酞、又は塩化゚
チルの玚化物などが挙げられる。 奜たしいビニル性単量䜓は、氎溶性であるが、
特に奜たしくはアクリルアミド、メタクリルアミ
ド、−ビニルピロリドンアクリル酞、メタク
リル酞、−スチレンスルホン酞、ビニルスルホ
ン酞、−メタアクリロむルオキシ゚チルスルホ
ン酞、−メタアクリロむルオキシ−−ヒドロ
キシプロピルスルホン酞、アリルスルホン酞、メ
タクリルスルホン酞、䞊びにこれらの酞のアンモ
ニりム塩、及びアルカリ金属塩ゞメチルアミノ
゚チルアクリレヌト、ゞメチルアミノ゚チルメタ
クリレヌト、ゞ゚チルアミノ゚チルアクリレヌト
及びゞ゚チルアミノ゚チルメタクリレヌト、ビ
ニルピリゞン及びビニルピリゞンの塩酞、硝
酞、ゞメチル硫酞、ゞ゚チル硫酞又は塩化゚チル
の玚化物である。ビニル性単量䜓がアクリロニ
トリル、メタクリル酞メチルなどの非氎溶性であ
るず埗られたスルホン酞基含有アクリルアミド系
架橋暹脂の吞氎胜力が䜎䞋する傟向にあり、たた
氎溶性単量䜓であ぀おもAMPSに比し吞氎胜力
の䜎䞋をきたすのでビニル性単量䜓は高々59重量
、奜たしくは39重量以䞋、曎に奜たしくは19
重量以䞋の範囲である。 本発明に適甚される架橋成分は重量以䞋、
奜たしくは0.1重量以䞋、曎に奜たしくは0.05
重量以䞋、特に奜たしくは0.0001〜0.02重量
、最も奜たしくは0.01重量以䞋であり、架橋
させる為の必須成分である。架橋成分が重量
を超えるず吞氎胜力が䜎䞋する。䞀般に架橋成分
が倚くなるず吞氎倍率は䜎䞋する傟向にあり、高
吞氎倍率を埗たい堎合は架橋成分を枛らしおいく
こずが倚いが䞀般の重合開始方法、䟋えばラゞカ
ル重合開始剀や玫倖線を甚いた乳化重合、懞濁重
合、又は溶液重合などでは埗られた暹脂の分子量
が䜎いため架橋成分を0.1重量以䞋にするず可
溶化したり、氎膚最状態で圢くずれを起こしたり
ベトツク珟象がみられる。しかし本発明の暹脂は
超高分子量であるため架橋成分が0.1重量以䞋、
䟋えば0.0001重量であ぀おも氎膚最状態でも圢
態はくずれずベトツキはみられない。 架橋成分ずしおはゞビニルベンれン、NN′−
メチレンビスアクリルアミド、ゞアリルアミン、
ゞアクリメタクリルアミド、ゞ゚チレングリコヌ
ルゞメタクリレヌト、ポリ゚チレングリコヌルゞ
メタクリレヌト等のゞビニル化合物、ヒドロキ
シ゚チルアクリレヌト、ヒドロキシ゚チルメタ
クリレヌト、ヒドロキシプロピルアクリレヌ
ト、ヒドロキシプロピルメタクリレヌト、グリ
シゞルアクリレヌト、グリシゞルメタクリレヌ
ト、メチロヌルアクリルアミド又はメチロヌルメ
タクリルアミドなどが挙げられるが、これらに限
定されるこずはない。架橋成分ずしおはNN′−
メチレンビスアクリルアミド、ゞアクリルメタク
リルアミド、ポリ゚チレングリコヌルゞメタクリ
レヌト、ゞ゚チレングリコヌルゞメタクリレヌ
ト、メチロヌルアクリルアミド等が奜適である。 本発明に適甚される重合方法はむオン化ガスプ
ラズマの存圚䞋で重合を開始した埌、該プラズマ
の䞍存圚䞋で埌重合させるずいう、所謂プラズマ
開始重合であり、しかも氎性媒䜓䞭であるこずが
必須である。氎性媒䜓ずしおは氎又は氎ずメタノ
ヌル、゚タノヌル、ブタノヌルなどのアルコヌル
類、アセトン、メチル゚チルケトンなどのケトン
類などずの混合物が挙がられるが氎単独媒䜓の方
が奜たしい。氎性媒䜓、特に氎媒䜓を䜿甚した堎
合重合速床は著しく倧ずなる。氎性媒䜓䞭のモノ
マヌ濃床ずしおは通垞0.1〜90重量、奜たしく
は〜65重量、曎に奜たしくは10〜60重量で
ある。 䞀般に氎媒䜓の堎合モノマヌ濃床ずしお50モル
の時が重合速床は極倧ずなりそれ以䞋でもそれ
以䞊でも䜎䞋する傟向がみられる。たた分子量も
重合速床ず同䞀傟向がみられる。媒䜓ずしお有機
溶媒を䜿甚した堎合は䞀般に重合速床が遅いばか
りか、本発明のように氎溶性ポリマヌの重合の堎
合、有機溶媒を陀去する必芁があり経枈的でな
い。 本発明に斌けるプラズマ開始重合ずは非平衡の
むオン化ガスプラズマを甚いお重合を開始させか
぀プラズマの䞍存圚䞋に重合の倧郚分を完結させ
るものである。䞀般には高分子量で実質的に線状
のポリマヌが生成されるが、本発明の堎合は䟋え
ばゞビニル性単量䜓等の架橋成分を䜿甚するので
架橋構造のポリマヌが生成される。むオン化ガス
プラズマの生成はかかるプラズマを生成するため
の公知方法のいずれによ぀おも行なうこずができ
る。䟋えばJ.R.ホラハンHollahanずA.T.ベ
ルBelll版“プラズマ化孊の応甚技術”、ワむ
リヌ、ニナヌペヌク1974およびM.シ゚ンShen
版“重合䜓のプラズマ化孊”デツカヌ・ニナヌペ
ヌク1976に蚘茉されおいる。即ち高呚波発生噚
に連結された平行板電極の間にモノマヌを真空䞋
で入れ、真空宀の倖郚又は内郚のいずれかの平行
板を甚いおプラズマを生成させるこずが出来る。
たた倖郚誘導コむルによ぀お電堎を぀くらせ、む
オン化ガスのプラズマを発生させおもよく、たた
反察に荷電した電極に間隔をおいお盎接真空宀に
入れおプラズマを生成させおもよい。本発明にお
いおは非蒞気盞液䜓及び又は固䜓の単量䜓
の重合をむオン化ガスプラズマの存圚䞋で開始し
぀いでプラズマの䞍存圚䞋で埌重合を行なう。こ
の二段階重合法により超高分子量の非氎溶性で高
吞氎胜を有する暹脂を倧量に、省゚ネルギヌで぀
くるこずができる。 本発明方法を曎に詳述に説明すれば液䜓窒玠な
どによる冷媒で単量䜓氎性媒䜓溶液を冷华しお凍
結し脱気を10-1〜10-4トヌルで行なう。凍結した
単量䜓氎性媒䜓溶液を埐々に暖ため液状の小滎が
珟われる状態に達した時に非溶液郚即ち真空空
間郚に䞊蚘方法におプラズマ照射を行なう。通
垞は20〜200ワツト、奜たしくは40〜100ワツトで
グロヌ攟電をさせ氎及び又は単量䜓をプラズマ
化させる。照射時間は通垞〜3600秒、奜たしく
は10〜60秒もあれば十分である。プラズマ照射を
行な぀た埌に䞊蚘単量䜓氎性媒䜓溶液を䞀定の枩
床䞋に数時間攟眮させ埌重合を行なわせる。プラ
ズマ開始期間の重合率は埌重合に比べお著しく小
さく、通垞〜を超えない。埌重合枩床及び
時間は䜿甚する単量䜓皮類によ぀お異なり特に限
定されないが通垞枩床は1.0〜60℃、時間は〜
25時間で十分である。単量䜓皮類によ぀おは60℃
を超えるず熱重合を起こし䜎分子のポリマヌも生
成しおくるこずがあるので泚意を芁する。 たたプラズマ開始重合では、埗られた高吞氎性
暹脂䞭に単量䜓成分よりなるポリマヌ以倖は䜕も
含たないこずが他重合法ず異なり倧きな特長であ
る。即ち他重合法ではラゞカル開始剀、懞濁剀、
乳化剀、溶媒などが残存しやすく完党に陀去する
こずはむ぀かしいがプラズマ開始重合ではそれら
の添加剀を䜿甚しないために必然的にポリマヌの
みである。 かくしお埗られたスルホン酞基含有アクリルア
ミド系架橋暹脂は非氎溶性で高吞氎性を瀺す。即
ちこの暹脂は、䟋えば−アクリルアミド−−
メチルプロパンスルホン酞99.999重量ずメチレ
ンビスアクリルアミド0.001重量ずからなる本
発明方法により埗られたものは、自重の1400倍ず
いう吞氎胜力を瀺したたその膚最ゲルはベトツキ
もなく、型くずれするこずもなく曎に100℃の沞
氎でもその圢態を保持する非氎溶性であり、しか
も䜕の䞍玔物をも含たないずいう埓来法では埗ら
れない画期的な暹脂である。 本発明の暹脂は非氎溶性であり、高吞氎性を有
し、しかも䞍玔物を含たないこずから衛生材料、
医療産業、食品工業、蟲芞分野などに有甚に甚い
られる。 以䞋本発明を実斜䟋にお詳现に説明する。なお
実斜䟋䞭の吞氎倍率は次の方法にお枬定した。詊
料0.5をの氎に浞挬し、24時間宀枩にお静
眮埌、ガラスフむルタヌで吞匕過しお䜙分の氎
を陀去し、ガラスフむルタヌず含氎詊料ずの合蚈
重量を枬定した。 吞氎量(g)合蚈重量 −ガラスフむルタヌ重量 吞氎倍率吞氎量0.5 実斜䟋  −アクリルアミド−−メチルプロパンスル
ホン酞0.4、氎10及び架橋成分ずしお
N′−メチレンビスアクリルアミドを第衚の劂
く倉化させ100mlのアンプルに入れ10-3トヌルで
脱気埌封管した。぀いで液䜓窒玠で凍結し、回
脱気させた。 次に150ワツトの出力たで出るむンタヌナシペ
ナル・プラズマ・コヌポレヌシペン・モデル3001
の高呚波発生噚に連結した䞀察の倖郚平行電極間
に挿入したこのアンプルを100ワツトの電力でグ
ロヌ攟電プラズマを50秒間照射した。しかる埌に
グロヌ攟電を停止させ、封管埌25℃の恒枩槜に10
時間攟眮した。その埌開封しお倚量の氎䞭で膚最
せしめ未反応モノマヌを陀去した埌、倚量の゚タ
ノヌルで掗浄し真空也燥させ、埗られた暹脂の重
合䜓、吞氎倍率を枬定した。たた−アクリルア
ミド−−メチルプロパンスルホン酞0.4、氎
10及び架橋成分ずしお↓メチレンビスア
クリルアミドを衚の劂く倉化させ過硫酞カリり
ム0.004を100mlのアンプルに入れ10-3トヌルで
真空脱気埌封管し60℃で24時間重合させた暹脂の
吞氎性を比范の為、瀺した。
The present invention relates to a sulfonic acid group-containing acrylamide crosslinked resin having the ability to absorb a large amount of water, and a method for producing the same. Conventionally, materials that physically absorb water, such as nonwoven fabrics, paper, pulp, and sponge-like substances, have been used in sanitary products, diapers, disposable wipes, etc. However, these water-absorbing materials have a low water-absorbing capacity and are not necessarily satisfactory for the above applications. It wasn't something. In recent years, in addition to the above-mentioned applications, materials with chemical water-absorbing ability have been increasingly used for applications in the medical industry, food industry, and agricultural fields. In particular, water-insoluble, hydrophilic, or water-absorbing polymeric materials have been used in various materials. It has found use in separation and purification materials such as planks and liquid chromatography carriers, microbial and plant culture media, medical materials such as contact lenses and suture coatings, and a variety of other uses that require water absorption or water retention. Many water-absorbing materials have been proposed for such uses. For example, crosslinked polyethylene oxide, polyvinylpyrrolidone, sulfonated polystyrene, etc., polyacrylamide crosslinked with a divinyl compound such as methylenebisacrylamide, saponified products of cellulose derivatives and starch grafted with acrylic acid or acrylonitrile, etc. Water-absorbing materials using natural or synthetic polymeric substances have been proposed. However, among these materials, except for saponified starch-acrylonitrile graft polymers, their water-absorbing capacity is small and they are not satisfactory as water-absorbing materials. In the case of saponified products, various improvements have been made to the manufacturing method, but the process is complicated, and if the starch components remain in a hydrated state for a long period of time, the starch components will rot and the gel structure will be destroyed. There remain problems with practicality. In addition, water-soluble monomers such as alkali metal salts of acrylic acid and methacrylic acid and acrylamide are added with a small amount of crosslinking agents such as methylene bisacrylamide and polyethylene oxydiacrylate to produce ceric salts, benzoyl peroxide, azobisisomer, etc. Suspension polymerization or emulsion polymerization using radical polymerization catalysts such as butyronitrile and ammonium persulfate, redox polymerization catalysts such as potassium persulfate and aniline, ammonium persulfate and monoethanolamine, and even solution polymerization is carried out to increase the A method of obtaining a super absorbent resin several hundred times as large has also been proposed. However, in such methods, radical initiators, suspending agents, emulsifiers, solvents, etc. inevitably remain in the superabsorbent resin, which may cause discoloration, depolymerization, corrosion resistance, chemical resistance, and weather resistance. Not only is it unfavorable in terms of
Depending on the application, the water absorption capacity may be insufficient. On the other hand, the present inventors have obtained a linear water-soluble linear polymer with a much larger molecular weight than conventional polymers by polymerizing various vinyl monomers using a plasma-initiated polymerization method. A similar polymer was obtained using 2-acrylamido-2-methylpropanesulfonic acid as a polymer, and this was published in the Journal of the Japan Institute of Fiber Science and Technology (Textiles and Industry), Vol. 37, No. 7, but a resin with even higher water absorption The present invention has been completed as a result of intensive research aimed at achieving this goal. An object of the present invention is to provide a sulfonic acid group-containing crosslinked acrylamide resin that is water-insoluble, has high water absorption of several hundred to several thousand times, and is substantially free of impurities, and a method for producing the same. The present invention comprises at least one monomer selected from 2-acrylamido-2-methylpropanesulfonic acid, its ammonium salt, its alkali metal salt, its alkaline earth metal salt, and its transition metal salt, and a vinyl monomer. Polymerization of a monomer consisting of 0 to 59% by weight of a polymer and a crosslinking component of 1% or less by weight is initiated in an aqueous medium in the presence of ionized gas plasma, and then postpolymerization is carried out in the absence of the plasma. This is a method for producing a sulfonic acid group-containing acrylamide crosslinked resin that is water-insoluble and has a high water absorption capacity of more than 500 times its own weight. The sulfonic acid group-containing acrylamide crosslinked resin produced by the method of the present invention has excellent water absorption, with a water absorption capacity of at least 500 times, preferably 800 times or more, and most preferably 1000 times or more relative to the resin's own weight. has. 2-acrylamide-2- applied to the present invention
Methylpropanesulfonic acid, or its ammonium salt, or its alkali metal salt, or its alkaline earth metal salt, or its transition metal salt (hereinafter referred to as these)
The amount of sulfonic acid group-containing acrylamide crosslinked resin (abbreviated as AMPS) is 40% by weight or more, preferably 60% by weight or more, and more preferably 80% by weight or more.
It is at least 99% by weight, particularly preferably at least 99% by weight. If the amount of AMPS is less than 40% by weight, the water absorption capacity will be insufficient. In the present invention, a vinyl monomer may be copolymerized with a monomer such as 2-acrylamido-2-methylpropanesulfonic acid. These vinyl monomers are not particularly limited as long as they undergo radical polymerization. Generally, acrylonitrile, acrylic ester,
Methacrylic acid ester, styrene, vinyl chloride,
vinylidene chloride, vinyl acetate, acrylamide,
Methacrylamide, N-vinylpyrrolidone, acrylic acid, methacrylic acid, p-styrenesulfonic acid, vinylsulfonic acid, 2-methacryloyloxysulfonic acid, 3-methacryloyloxy-2
- Hydroxypropylsulfonic acid, allylsulfonic acid, methacrylsulfonic acid and ammonium salts and alkali metal salts of these acids; dimethylaminoethyl acrylate, dimethylaminoethyl methacrylate, diethylaminoethyl acrylate, diethylaminoethyl methacrylate, 2
- hydrochloric acid of vinylpyridine and 4-vinylpyridine,
Examples include nitric acid, dimethyl sulfate, diethyl sulfate, and quaternized products of ethyl chloride. Preferred vinylic monomers are water-soluble, but
Particularly preferred are acrylamide, methacrylamide, N-vinylpyrrolidone; acrylic acid, methacrylic acid, P-styrenesulfonic acid, vinylsulfonic acid, 2-methacryloyloxyethylsulfonic acid, 3-methacryloyloxy-2-hydroxypropylsulfonic acid , allylsulfonic acid, methacrylsulfonic acid, and ammonium salts and alkali metal salts of these acids; dimethylaminoethyl acrylate, dimethylaminoethyl methacrylate, diethylaminoethyl acrylate and diethylaminoethyl methacrylate, hydrochloric acid of 2-vinylpyridine and 4-vinylpyridine, It is a quaternized product of nitric acid, dimethyl sulfate, diethyl sulfate, or ethyl chloride. If the vinyl monomer is water-insoluble, such as acrylonitrile or methyl methacrylate, the water absorption capacity of the obtained sulfonic acid group-containing acrylamide crosslinked resin tends to decrease; The vinyl monomer content is at most 59% by weight, preferably 39% by weight or less, and more preferably 19% by weight, as it lowers the water absorption capacity compared to AMPS.
The range is below % by weight. The crosslinking component applied to the present invention is 1% by weight or less,
Preferably 0.1% by weight or less, more preferably 0.05%
The amount is not more than 0.0001% by weight, particularly preferably 0.0001 to 0.02% by weight, and most preferably not more than 0.01% by weight, and is an essential component for crosslinking. 1% by weight crosslinking component
If it exceeds this, the water absorption capacity will decrease. In general, the water absorption capacity tends to decrease as the amount of crosslinked components increases, and if you want to obtain a high water absorption capacity, you often reduce the amount of crosslinked components. In polymerization, suspension polymerization, solution polymerization, etc., the molecular weight of the resin obtained is low, so if the crosslinking component is less than 0.1% by weight, it may become solubilized, lose its shape when swollen with water, or cause stickiness. However, since the resin of the present invention has an ultra-high molecular weight, the crosslinking component is less than 0.1% by weight.
For example, even if the concentration is 0.0001% by weight, the shape does not collapse even in a water-swollen state and no stickiness is observed. The crosslinking component is divinylbenzene, NN′-
methylenebisacrylamide, diallylamine,
Divinyl compounds such as diacrymethacrylamide, diethylene glycol dimethacrylate, polyethylene glycol dimethacrylate, 2hydroxyethyl acrylate, 2hydroxyethyl methacrylate, 2hydroxypropyl acrylate, 2hydroxypropyl methacrylate, glycidyl acrylate, glycidyl methacrylate, methylol acrylamide or methylol methacrylamide Examples include, but are not limited to, these. As a crosslinking component, NN′−
Preferred are methylene bisacrylamide, diacrylmethacrylamide, polyethylene glycol dimethacrylate, diethylene glycol dimethacrylate, methylol acrylamide, and the like. The polymerization method applied to the present invention is a so-called plasma-initiated polymerization in which polymerization is initiated in the presence of ionized gas plasma and then post-polymerized in the absence of the plasma, and it is essential that the polymerization be performed in an aqueous medium. It is. Examples of the aqueous medium include water or mixtures of water and alcohols such as methanol, ethanol, and butanol, and ketones such as acetone and methyl ethyl ketone, but water alone is preferred. When an aqueous medium is used, especially an aqueous medium, the polymerization rate is significantly increased. The monomer concentration in the aqueous medium is usually 0.1 to 90% by weight, preferably 1 to 65% by weight, and more preferably 10 to 60% by weight. In general, in the case of an aqueous medium, the polymerization rate reaches its maximum when the monomer concentration is 50 mol%, and tends to decrease below or above that level. Furthermore, the molecular weight also shows the same tendency as the polymerization rate. When an organic solvent is used as a medium, not only the polymerization rate is generally slow, but also, in the case of polymerizing a water-soluble polymer as in the present invention, it is necessary to remove the organic solvent, which is not economical. Plasma-initiated polymerization in the present invention is one in which polymerization is initiated using non-equilibrium ionized gas plasma and most of the polymerization is completed in the absence of plasma. Generally, a substantially linear polymer having a high molecular weight is produced, but in the case of the present invention, a crosslinked structure polymer is produced because a crosslinking component such as a divinyl monomer is used. The generation of the ionized gas plasma can be accomplished by any of the known methods for generating such plasmas. For example, J.R. Hollahan and AT Bell, “Applied Techniques of Plasma Chemistry”, Wiley, New York 1974 and M. Shen.
Edition “Plasma Chemistry of Polymers” Detzker New York. Listed in 1976. That is, the monomer can be placed under vacuum between parallel plate electrodes connected to a high frequency generator, and the plasma can be generated using the parallel plates either outside or inside the vacuum chamber.
Alternatively, an electric field may be created by an external induction coil to generate a plasma of ionized gas, or a plasma may be generated by placing oppositely charged electrodes spaced apart directly into a vacuum chamber. In the present invention, polymerization of non-vapor phase (liquid and/or solid) monomers is initiated in the presence of an ionized gas plasma and postpolymerization is carried out in the absence of plasma. This two-step polymerization method allows the production of a large amount of ultra-high molecular weight, water-insoluble, highly water-absorbing resin with energy savings. To explain the method of the present invention in more detail, a monomer aqueous medium solution is cooled and frozen using a refrigerant such as liquid nitrogen, and deaeration is performed at 10 -1 to 10 -4 Torr. When the frozen monomer aqueous medium solution is gradually warmed to a state where liquid droplets appear, the non-solution area (ie, the vacuum space area) is irradiated with plasma using the above method. Glow discharge is usually performed at 20 to 200 watts, preferably 40 to 100 watts, to turn water and/or monomer into plasma. The irradiation time is usually 1 to 3600 seconds, preferably 10 to 60 seconds. After plasma irradiation, the monomer aqueous medium solution is left at a constant temperature for several hours to carry out post-polymerization. The polymerization rate during the plasma initiation period is significantly lower than the post-polymerization and usually does not exceed 1-2%. The post-polymerization temperature and time vary depending on the type of monomer used and are not particularly limited, but the usual temperature is 1.0-60°C and the time is 1-60°C.
25 hours is sufficient. 60℃ depending on the type of monomer
Caution is required when exceeding this temperature, as thermal polymerization may occur and low-molecular polymers may also be produced. Another major feature of plasma-initiated polymerization, unlike other polymerization methods, is that the superabsorbent resin obtained does not contain anything other than a polymer made of monomer components. That is, in other polymerization methods, radical initiators, suspending agents,
Emulsifiers, solvents, etc. tend to remain and are difficult to completely remove, but plasma-initiated polymerization does not use these additives, so only polymers are present. The thus obtained sulfonic acid group-containing acrylamide crosslinked resin is water-insoluble and exhibits high water absorption. That is, this resin is, for example, 2-acrylamide-2-
The product obtained by the method of the present invention, which consists of 99.999% by weight of methylpropanesulfonic acid and 0.001% by weight of methylenebisacrylamide, exhibits a water absorption capacity of 1400 times its own weight, and the swollen gel is neither sticky nor loses its shape. Furthermore, it is a water-insoluble resin that retains its shape even in boiling water at 100°C and does not contain any impurities, making it an epoch-making resin that cannot be obtained using conventional methods. The resin of the present invention is water-insoluble, has high water absorption, and does not contain impurities, so it can be used as a sanitary material.
It is usefully used in the medical industry, food industry, agricultural fields, etc. The present invention will be explained in detail below with reference to Examples. In addition, the water absorption capacity in Examples was measured by the following method. 0.5 g of the sample was immersed in 1 water, allowed to stand at room temperature for 24 hours, and then suctioned through a glass filter to remove excess water, and the total weight of the glass filter and the water-containing sample was measured. Water absorption amount (g) = (Total weight) - (Glass filter weight) Water absorption capacity = Water absorption amount / 0.5 Example 1 0.4 g of 2-acrylamide-2-methylpropanesulfonic acid, 10 g of water, and N as a crosslinking component.
N'-methylenebisacrylamide was changed as shown in Table 1, placed in a 100 ml ampoule, degassed at 10 -3 Torr, and sealed. It was then frozen with liquid nitrogen and degassed three times. Next up is the International Plasma Corporation Model 3001, which outputs up to 150 watts.
This ampoule, which was inserted between a pair of external parallel electrodes connected to a high-frequency generator, was irradiated with glow discharge plasma for 50 seconds at a power of 100 watts. After that, the glow discharge was stopped, and after sealing the tube, it was placed in a constant temperature oven at 25℃ for 10 minutes.
I left it for a while. Thereafter, the package was opened and swollen in a large amount of water to remove unreacted monomers, washed with a large amount of ethanol, and vacuum dried, and the polymer and water absorption capacity of the resulting resin were measured. Also 0.4g of 2-acrylamido-2-methylpropanesulfonic acid, water
10g and N,N↓methylenebisacrylamide as a crosslinking component were changed as shown in Table 1, and 0.004g of potassium persulfate was placed in a 100ml ampoule, vacuum degassed at 10 -3 Torr, sealed, and polymerized at 60°C for 24 hours. The water absorbency of the resin is shown for comparison.

【衚】 実斜䟋  −アクリルアミド−−メチルプロパンスル
ホン酞(A)ずアクリル酞(B)の比率を第
衚の劂く倉化させN′−メチレンビスアクリ
ルアミドを0.001重量添加させ党モノマヌ量を
ずし氎10ずする以倖は実斜䟋ず同䞀の方
法でプラズム開始重合をさせた。埗られた暹脂を
実斜䟋ず同䞀方法で掗浄し重合率、吞氎倍率を
枬定した。
[Table] Example 2 The ratio (A/B) of 2-acrylamido-2-methylpropanesulfonic acid (A) and acrylic acid (B) was
Plasma-initiated polymerization was carried out in the same manner as in Example 1, except that 0.001% by weight of N,N'-methylenebisacrylamide was added, the total monomer amount was 4 g, and water was 10 g, as shown in the table. The obtained resin was washed in the same manner as in Example 1, and the polymerization rate and water absorption capacity were measured.

【衚】【table】

【衚】 実斜䟋  −アクリルアミド−−メチルプロパンスル
ホン酞ナトリりム0.4、ゞ゚チレンオキサむド
ゞメタクリレヌト0.00004を第衚の劂く10
の溶媒に溶解させ100mlのアンプルに入れ液䜓窒
玠で凍結させ10-4トヌルで脱気した。぀ぎに実斜
䟋のモデル3001の高呚波発生噚に連結し䞀察の
倖郚平行電極間に、挿入したこのアンプルに80ワ
ツトの出力でグロヌ攟電を発生させ、30秒間照射
した。しかる埌にグロヌ攟電を停止させ封管埌25
℃の恒枩槜に15時間攟眮した。その埌開封しお氎
で十分掗浄を行ない、未反応モノマヌを陀去した
埌倚量の゚タノヌルで掗浄し也燥しお詊料ずし、
重合率、吞氎倍率を枬定した。
[Table] Example 3 0.4 g of sodium 2-acrylamido-2-methylpropanesulfonate and 0.00004 g of diethylene oxide dimethacrylate were added to 10 g as shown in Table 3.
The solution was dissolved in a solvent of 100 mL, placed in a 100 ml ampoule, frozen in liquid nitrogen, and degassed at 10 -4 Torr. Next, this ampoule was connected to the model 3001 high-frequency generator of Example 1 and inserted between a pair of external parallel electrodes, and a glow discharge was generated at an output of 80 watts, and the ampoule was irradiated for 30 seconds. After that, the glow discharge was stopped and the tube was sealed for 25 minutes.
It was left in a constant temperature bath at ℃ for 15 hours. After that, the package was opened and thoroughly washed with water to remove unreacted monomers, washed with a large amount of ethanol, dried, and used as a sample.
The polymerization rate and water absorption capacity were measured.

【衚】【table】

Claims (1)

【特蚱請求の範囲】[Claims]  −アクリルアミド−メチルプロパンスル
ホン酞、そのアンモニりム塩、そのアルカリ金属
塩から遞ばれた少なくずも皮の単量䜓ずアクリ
ル酞、メタクリル酞、スチレンスルホン酞、ビ
ニルスルホン酞、メタアクリロむルオキシ゚チ
ルスルホン酞、アリルスルホン酞、メタクリルス
ルホン酞䞊びにこれらの酞のアンモニりム塩及び
アルカリ金属塩から遞ばれた少なくずも皮のビ
ニル系単量䜓、及び架橋成分ずよりなるモノマヌ
を氎性媒䜓䞭でむオン化ガスプラズマの存圚䞋で
重合を開始した埌、該プラズマの䞍存圚䞋で埌重
合するこずを特城ずする非氎容性で自重の500倍
以䞊の高吞氎性を有するスルホン酞基含有アクリ
ルアミド系架橋暹脂の補造法。
1 At least one monomer selected from 2-acrylamido-2-methylpropanesulfonic acid, its ammonium salt, and its alkali metal salt, and acrylic acid, methacrylic acid, p-styrenesulfonic acid, vinylsulfonic acid, 2-methacryloyloxy A monomer consisting of at least one vinyl monomer selected from ethyl sulfonic acid, allyl sulfonic acid, methacryl sulfonic acid, ammonium salts and alkali metal salts of these acids, and a crosslinking component is ionized in an aqueous medium with an ionized gas. A sulfonic acid group-containing acrylamide crosslinked resin that is water-insoluble and has a high water absorption capacity of 500 times or more its own weight, which is characterized by starting polymerization in the presence of plasma and then post-polymerizing in the absence of said plasma. manufacturing method.
JP4946682A 1982-03-26 1982-03-26 Sulfonic group-containing acrylamide-based crosslinked resin and its preparation Granted JPS58167603A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4946682A JPS58167603A (en) 1982-03-26 1982-03-26 Sulfonic group-containing acrylamide-based crosslinked resin and its preparation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4946682A JPS58167603A (en) 1982-03-26 1982-03-26 Sulfonic group-containing acrylamide-based crosslinked resin and its preparation

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP4293815A Division JP2511840B2 (en) 1992-10-06 1992-10-06 Sulfonic acid group-containing acrylamide cross-linking resin

Publications (2)

Publication Number Publication Date
JPS58167603A JPS58167603A (en) 1983-10-03
JPH059447B2 true JPH059447B2 (en) 1993-02-05

Family

ID=12831909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4946682A Granted JPS58167603A (en) 1982-03-26 1982-03-26 Sulfonic group-containing acrylamide-based crosslinked resin and its preparation

Country Status (1)

Country Link
JP (1) JPS58167603A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS582312A (en) * 1981-06-19 1983-01-07 ケミツシナ・フアブリク・ストツクハりれン・ゲ−゚ムベ−ハ− Bridged copolymer and absorbent

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS582312A (en) * 1981-06-19 1983-01-07 ケミツシナ・フアブリク・ストツクハりれン・ゲ−゚ムベ−ハ− Bridged copolymer and absorbent

Also Published As

Publication number Publication date
JPS58167603A (en) 1983-10-03

Similar Documents

Publication Publication Date Title
EP0312952B1 (en) Process for preparing absorbent polymers
JP2922216B2 (en) Super absorbent polymer production method
JP2003246812A5 (en)
JPH05209010A (en) Production of superabsorbent polymer
JPS61271303A (en) Production of water-absorptive resin
JP3259143B2 (en) Method for producing water absorbent resin
JPH04227705A (en) Production of salt-resistant water absorbing resin
US5281673A (en) Superabsorbent polymers
JPH059447B2 (en)
US5206326A (en) Grafted copolymers highly absorbent to aqueous electrolyte solutions
JP2511840B2 (en) Sulfonic acid group-containing acrylamide cross-linking resin
Omidian et al. Modifying acrylic‐based superabsorbents. II. Modification of process nature
JP2003176317A (en) Ampho-ionic polymer for absorbing electrolyte aqueous solution
US5252690A (en) Superabsorbent polymers
JPH0555523B2 (en)
JPH0422168B2 (en)
JPH0656933A (en) Water-absorbing resin and its production
US5376729A (en) Grafted copolymers highly absorbent to aqueous electrolyte solutions
JPS591744B2 (en) self-reinforcing hydrogel
JPH0131531B2 (en)
JPH0678390B2 (en) Production of water-absorbing polymer
JP3871434B2 (en) Production method of super absorbent resin
US5334685A (en) Grafted copolymers highly absorbent to aqueous electrolyte solutions
JPS6063210A (en) Manufacture of sulfonic acid group-containing acrylamide polymer
JP2716485B2 (en) Method for producing superabsorbent polymer