JPH0593711A - Narrow-groove type electrophoresis device - Google Patents

Narrow-groove type electrophoresis device

Info

Publication number
JPH0593711A
JPH0593711A JP3139986A JP13998691A JPH0593711A JP H0593711 A JPH0593711 A JP H0593711A JP 3139986 A JP3139986 A JP 3139986A JP 13998691 A JP13998691 A JP 13998691A JP H0593711 A JPH0593711 A JP H0593711A
Authority
JP
Japan
Prior art keywords
flat plate
groove type
electrophoretic device
narrow groove
type electrophoretic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3139986A
Other languages
Japanese (ja)
Other versions
JP2910319B2 (en
Inventor
Hideki Kanbara
秀記 神原
Keiichi Nagai
啓一 永井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP3139986A priority Critical patent/JP2910319B2/en
Publication of JPH0593711A publication Critical patent/JPH0593711A/en
Application granted granted Critical
Publication of JP2910319B2 publication Critical patent/JP2910319B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

PURPOSE:To obtain a narrow-groove type electrophoresis device having high sensitivity and throughput. CONSTITUTION:Numerous capillary electrophoresis paths are formed of numerous narrow grooves 3 by putting a glass plate 1 with a laser irradiation groove 2 and the numerous narrow grooves 3 upon a plate having no groove. Since the cross section of the electrophoresis path of this narrow-groove type electrophoresis device can be reduced, the volume of a DNA band can be reduced and a small amount of sample can be measured. In addition, the throughput of the electrophoresis device can be improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は蛍光標識したDNA等の
生物試料を電気泳動により分離検出する装置、たとえば
DNAシーケンサーもしくは遺伝子診断装置に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for separating and detecting a fluorescently labeled biological sample such as DNA by electrophoresis, for example, a DNA sequencer or a gene diagnostic apparatus.

【0002】[0002]

【従来の技術】従来、DNAの塩基配列決定は放射性元
素でDNAを標識し、ゲル電気泳動分離した後に分離パ
ターンフィルムに転写することにより行なっていた。し
かし、放射性標識を用いる煩雑さに加えて手間と時間の
かかる難点があり、蛍光標識を用いた実時間光検出を用
いた方法が用いられ始めている。
2. Description of the Related Art Conventionally, the base sequence of DNA has been determined by labeling the DNA with a radioactive element, performing gel electrophoresis separation, and then transferring it to a separation pattern film. However, in addition to the complexity of using a radioactive label, there is a problem that it takes time and labor, and a method using real-time photodetection using a fluorescent label is beginning to be used.

【0003】[0003]

【発明が解決しようとする課題】このような蛍光標識と
平板型ゲル(スラブゲル)による方法は高感度が得られ
ない難点があり、測定体積を小さくし感度を上げる工夫
がキャピラリー電気泳動を用いてなされている。しか
し、キャピラリー電気泳動を用いる方法では泳動路を1
本しか確保できないため、スループットが小さい上、D
NAシーケンシングでは末端塩基種A,C,G,および
Tの識別に発光波長の異なる蛍光体を使用する必要があ
り、励起効率の良い光源と蛍光体の組み合わせをすべて
について実現することは困難である。
The method using such a fluorescent label and a flat plate gel (slab gel) has a drawback in that high sensitivity cannot be obtained. Therefore, a technique for reducing the measurement volume and increasing the sensitivity is to use capillary electrophoresis. Has been done. However, in the method using capillary electrophoresis, the migration path is set to 1
Since only books can be secured, throughput is small and D
In NA sequencing, it is necessary to use fluorophores having different emission wavelengths to identify the terminal base species A, C, G, and T, and it is difficult to realize all combinations of light sources and fluorophores with good excitation efficiency. is there.

【0004】本発明の目的はこの問題点を解決し、高感
度でスループットの大きなDNA等の分離検出装置を提
供するものである。
An object of the present invention is to solve this problem and provide a separation and detection apparatus for DNA and the like with high sensitivity and high throughput.

【0005】[0005]

【課題を解決するための手段】上記目的は石英あるいは
ガラス平板に多数の溝を作成し、この溝内にゲルを形成
して、キャピラリー型泳動路を構成することにより達成
される。
The above object can be achieved by forming a large number of grooves on a quartz or glass plate and forming a gel in the grooves to form a capillary-type migration path.

【0006】[0006]

【作用】石英板に堀られた多数の直線(あるいは曲線)
状溝の1つ1つがキャピラリー泳動路と同じ役割を果
す。1cm当り少なくとも10本以上の溝を堀ることがで
きるので横巾10cmの領域に100本以上の泳動路を確
保できる。溝の径を小さくすることにより、DNAバン
ドの体積を小さくできる。検出限界は背景光と目的物か
らの蛍光の大小で決定される。このため小さな体積の中
に試料を押し込めることにより微量検出が実現できる。
[Function] Many straight lines (or curves) dug on a quartz plate
Each groove has the same role as the capillary migration path. Since at least 10 or more grooves can be dug per 1 cm, 100 or more migration paths can be secured in a region with a width of 10 cm. By reducing the diameter of the groove, the volume of the DNA band can be reduced. The detection limit is determined by the background light and the magnitude of fluorescence from the target. Therefore, a small amount of detection can be realized by pushing the sample into a small volume.

【0007】[0007]

【実施例】以下、本発明の一実施例を図1〜図4により
説明する。図1に示すゲル保持板となるガラス板1の片
面には巾0.2mm,深さ0.2mmの溝3が1mm間隔できざま
れ細溝付ガラス板が形成される。間隔は0.5mm あるい
はそれ以下にすることもできる。上端から25cmの所に
泳動路と直角にレーザー照射用の溝2(巾0.4mm 深さ
0.3mm)が設けられている,上端は試料注入部であ
り、各溝3の端30はすりばち状に広げられている。そ
の端面の断面は約0.5φ で、試料注入を容易に行なえ
るようにしてある。図2に示すようにこの細溝付ガラス
板1を溝のないガラスの平板4とを密着して重ね合わせ
てキャピラリー泳動路を形成する。これらの泳動路にポ
リアクリルアミドゲルを形成し図2に示したようにセッ
トする。ガラス板3と4の積層体からなる泳動板は垂直
に立てられ、その上部にはゲルが形成された各泳動路の
上端にバッファ溶液が接するよう、上部バッファ槽13
が設けられる。また泳動路の下端は、下部バッファ槽1
2のバッファ溶液に接するように設置される。DNA等
の試料をゲル上端にそれぞれ添加し、バッファ槽13と
12の間に泳動用電圧を印加して泳動分離を行なう。実
施例では、TexaoRed(励起極大波長596nm,発光極大
波長615nm)で標識したDNAを上部から泳動させ分
離した。励起光源5にはPMS(Particle Measurement
Systems)社製He−Neレーザー(発振波長594n
m,出力2.5mW)を用いた。レーザー光はミラー6に
反射させ、溝2を通るように泳動板の側面から入射さ
せ、もってすべての泳動路を均一に照射する。蛍光標識
DNA断片がレーザー照射部を通過する時蛍光を発する
が、線状照射部つまり溝2からの蛍光像は波長選別用フ
ィルター8を通過した後、レンズ9によりイメージ増幅
器11の受光面に結像され、例えばダイオードアレーか
らなる高感度ラインセンサー、あるいは例えばCCDの
ような二次元光検出器10で検出される。図3は測定中
の一時期の蛍光像の強度分布を示したもので、蛍光標識
DNA断片の通過中の泳動路部分から蛍光が見られる。
図4は試料としてλファージを制限酸素HindIIIで
切断し、切断部に蛍光標識を入れたDNA断片を泳動さ
せた例である。特定の泳動路から出る蛍光の時間変化を
示したものでDNA断片スペクトルに相当する。DNA
バンドの巾は約0.7mm で1つのバンド当り2×10
-19mole という微量のDNAを含んでいるに過ぎないが
S/N良くピークが検出されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. On one side of the glass plate 1 which is the gel holding plate shown in FIG. 1, grooves 3 having a width of 0.2 mm and a depth of 0.2 mm are formed at intervals of 1 mm to form a glass plate with fine grooves. The spacing can be 0.5 mm or less. A groove 2 (width 0.4 mm, depth 0.3 mm) for laser irradiation is provided 25 cm from the upper end at a right angle to the migration path. The upper end is the sample injection part, and the end 30 of each groove 3 is a skirt. It is spread out in a shape. The end face has a cross section of about 0.5φ so that sample injection can be performed easily. As shown in FIG. 2, this narrow grooved glass plate 1 is closely adhered to a flat plate 4 of glass having no groove to form a capillary migration path. A polyacrylamide gel is formed in these migration paths and set as shown in FIG. An electrophoretic plate composed of a laminated body of glass plates 3 and 4 is erected vertically, and an upper buffer tank 13 is placed so that the buffer solution is in contact with the upper end of each electrophoretic path on which a gel is formed.
Is provided. The lower end of the migration path is at the bottom buffer tank 1.
It is installed so as to be in contact with the buffer solution of 2. A sample such as DNA is added to the upper end of the gel, and an electrophoretic voltage is applied between the buffer tanks 13 and 12 to perform electrophoretic separation. In the examples, DNA labeled with TexaoRed (excitation maximum wavelength 596 nm, emission maximum wavelength 615 nm) was electrophoresed and separated from the top. The PMS (Particle Measurement) is used as the excitation light source 5.
Systems) He-Ne laser (oscillation wavelength 594n
m, output 2.5 mW). The laser light is reflected by the mirror 6 and made incident on the side surface of the migration plate so as to pass through the groove 2 so that all migration paths are uniformly irradiated. The fluorescence-labeled DNA fragment emits fluorescence when passing through the laser irradiation portion, but the fluorescent image from the linear irradiation portion, that is, the groove 2 passes through the wavelength selection filter 8 and is then formed on the light receiving surface of the image amplifier 11 by the lens 9. It is imaged and detected by a high sensitivity line sensor, eg consisting of a diode array, or a two-dimensional photodetector 10, eg a CCD. FIG. 3 shows the intensity distribution of the fluorescence image during one period during the measurement, and fluorescence can be seen from the migration path portion during the passage of the fluorescence-labeled DNA fragment.
FIG. 4 shows an example in which λ phage was cleaved with a restriction oxygen HindIII as a sample, and a DNA fragment having a fluorescent label at the cleaved portion was electrophoresed. It shows the time change of fluorescence emitted from a specific migration path and corresponds to a DNA fragment spectrum. DNA
The width of the band is about 0.7mm and 2x10 per band
It contains only a small amount of -19 mole DNA, but the peak is well detected in S / N.

【0008】上述の実施例では泳動板を垂直にして用い
たが、図5に示したような泳動板を用い水平位置で動作
させる事も可能である。この泳動板では、溝3がきざま
れた細溝付ガラス板1と密着させるもう1枚のガラス板
4´には図5(a)に示すように試料注入口とする穴1
6を各溝3に対応させて設け、容易に試料注入を行なう
事ができる利点がある。
Although the electrophoretic plate is used vertically in the above embodiment, it is also possible to operate the electrophoretic plate as shown in FIG. 5 in a horizontal position. In this electrophoretic plate, another glass plate 4'which is closely attached to the glass plate 1 with fine grooves having grooves 3 is provided with a hole 1 to be a sample injection port as shown in FIG. 5 (a).
6 is provided corresponding to each groove 3, and there is an advantage that a sample can be easily injected.

【0009】さらに、各溝3の他方の端に近い位置に対
応する位置には、各溝に共通に泳動断片流出のための長
方形の穴15が設けられる。細溝付ガラス板1とガラス
板4´が密着され、これにより生じるキャピラリー、及
び上記の穴15,16にゲルが形成されて複数のキャピ
ラリー泳動路となる。なお、溝3は試料注入口16に対
応する位置から断片流出口15に対応する位置に渡って
設けられていれば良いが、図1に示すようにガラス板1
の一端から他端に渡って設けられていても良い。いずれ
にしても、泳動路は試料注入口から断片流出口までとな
り、試料注入口16がガラス板の端面でなくガラス板4
´の主面に並んでいるので、試料注入が容易となる。こ
のような泳動板は図5(b)に示すように水平に設置さ
れ、試料注入口16の位置,及び断片流出口15の位置
にはバッファ槽13´及び12´がそれぞれ設置され
る。試料注入口16にそれぞれ分析する試料液が注入さ
れた後、各バッファ槽をバッファ溶液で満たし、電圧印
加により電気泳動を行なって溝2にレーザー光を照射し
て断片の通過を検出する。これらの実施例においてDN
Aを多色蛍光標識し、発する蛍光をプリズム等を用いて
波長選別受光することにより、スループットの向上ある
いはDNAシーケンシングにおけるA、C,G,T,D
NA末端を発光波長の差により識別する機能を具備させ
ることもできる。
Further, at the position corresponding to the position close to the other end of each groove 3, a rectangular hole 15 for allowing the migration of the electrophoretic fragment is provided in common to each groove. The narrow grooved glass plate 1 and the glass plate 4'are brought into close contact with each other, and a gel is formed in the capillaries generated thereby and the holes 15 and 16 to form a plurality of capillary migration paths. The groove 3 may be provided from the position corresponding to the sample injection port 16 to the position corresponding to the fragment outlet port 15. However, as shown in FIG.
May be provided from one end to the other end. In any case, the migration path extends from the sample injection port to the fragment outlet, and the sample injection port 16 is not the end surface of the glass plate 4 but the glass plate 4
Since they are lined up on the main surface of ′, sample injection becomes easy. Such an electrophoretic plate is installed horizontally as shown in FIG. 5B, and buffer tanks 13 ′ and 12 ′ are installed at the position of the sample injection port 16 and the position of the fragment outlet 15. After the sample solution to be analyzed is injected into the sample injection port 16, each buffer tank is filled with the buffer solution, and electrophoresis is performed by applying a voltage to irradiate the groove 2 with laser light to detect passage of fragments. In these examples DN
A is labeled with a multicolor fluorescent light, and the emitted fluorescence is wavelength-selected and received using a prism or the like to improve the throughput or A, C, G, T, D in DNA sequencing.
It is also possible to provide a function of identifying the NA terminal by the difference in emission wavelength.

【0010】また以上の実施例では、泳動媒質としてポ
リアクリルアミドゲルを用いたが、この他にアガロース
等のゲルおよび導電性の液体などを用いてもよいことは
明白である。
Although polyacrylamide gel is used as the electrophoretic medium in the above embodiments, it is obvious that a gel such as agarose or a conductive liquid may be used.

【0011】以上の実施例ではゲル保持板(平板)に溝
を作ったが、細溝付平板は図6に示す実施例のように平
板に線状あるいはリボン状の突起物を固着したり、又は
平板間にガラス線、高分子線あるいはリボン17(材質
はポリエチレンテレフタレート、アクリルなど)あるい
は他の絶縁性素材あるいは高電気抵抗素材からなるワイ
ヤーあるいはリボンを挟み込み保持し、多数の泳動路3
を形成することもできる。リボンやワイヤーは各泳動路
を分離する役目を果す。図6の実施例では細溝付平板と
平板を密着して重ね合わせキャピラリー泳動路を形成す
るが、線状あるいはリボン状の突起物を2枚の平板の双
方にそれぞれ交互に固着したのち、密着して重ね合わせ
ても同様にキャピラリー泳動路を形成することができ
る。
In the above embodiments, the grooves are formed in the gel holding plate (flat plate), but the flat plate with fine grooves has a linear or ribbon-shaped protrusion fixed to the flat plate as in the embodiment shown in FIG. Alternatively, glass wires, polymer wires or ribbons 17 (made of polyethylene terephthalate, acrylic, etc.) or other wires or ribbons made of an insulating material or a high electric resistance material are sandwiched and held between flat plates, and a large number of migration paths 3 are provided.
Can also be formed. Ribbons and wires serve to separate each migration path. In the embodiment shown in FIG. 6, the flat plate with the narrow groove and the flat plate are closely adhered to each other to form a capillary migration path. Even if they are overlapped with each other, the capillary migration path can be similarly formed.

【0012】溝がきざまれる平板3、及びこれと密着さ
せる平板4もしくは4´としては、石英ガラス,耐熱強
化ガラス等のガラス材が適切であるが、ある程度の熱伝
導性を有する絶縁物であれば使用することができる。エ
ッチング可能な感光性ガラスを使用すれば正確に多数の
溝をエッチングにより再現性良く形成することができ
る。一方、導電性を有する板材料であっても、板あるい
は板に溝をきざんだ後に表面を絶縁物質でコーティング
して用いることも可能である。例えば、表面を酸化被
膜、もしくは窒化被膜で絶縁層とした金属板をいずれか
の平板に使用すれば、電気泳動で生じる熱を排出するの
に有利となる。
A glass material such as quartz glass or heat-resistant tempered glass is suitable for the flat plate 3 having the groove and the flat plate 4 or 4'which is closely adhered to the flat plate 3, but any insulating material having a certain degree of thermal conductivity may be used. Can be used if If an etchable photosensitive glass is used, a large number of grooves can be accurately formed by etching with good reproducibility. On the other hand, even a plate material having conductivity can be used by coating the surface of the plate or the plate with grooves and then coating the surface with an insulating material. For example, when a metal plate whose surface is an oxide film or a nitride film as an insulating layer is used for any of the flat plates, it is advantageous for discharging heat generated by electrophoresis.

【0013】DNAなどの検出には図1に示した側面入
射方式の他、励起光スキャンの方式を用いてもよい。
In addition to the side incidence method shown in FIG. 1, an excitation light scanning method may be used for detecting DNA and the like.

【0014】[0014]

【発明の効果】本発明によれば、泳動路の断面積を溝に
より小さく制限することができ、DNAバンドの体積を
小さくできるので微量の試料で計測することができる。
たとえば、従来の平板型ゲルを用いたDNA計測ではゲ
ルの厚さ0.3〜0.5mm,DNAバンドの巾2〜5mmが
用いられていた。すなわち泳動路の断面積は小さい方で
も0.6mm2内外であった。一方、本発明では実施例で
0.04mm2、更に溝の巾を小さくすることで0.01mm2
あるいはそれ以下の泳動路断面積を得ることも可能であ
る。面積を小さくした事で1〜2桁の微量サンプルでの
測定が可能となった。また作製する溝も1mmに1〜2本
は作れるので従来10cmに20〜30本しか確保できな
かった泳動路数を100本以上にすることができ、スル
ープットの向上に大きな効果がある。また、泳動路間隔
が1mmあるいはそれ以下なので温度差が小さく、泳動路
によりDNAの泳動速度に差がでないのでDNAを1種
の蛍光体で標識し泳動路の差で末端DNA塩基種を識別
するシーケンシングにも有効に活用できる。
According to the present invention, the cross-sectional area of the migration path can be restricted to a small value by the groove, and the volume of the DNA band can be reduced, so that it is possible to measure with a small amount of sample.
For example, in the conventional DNA measurement using a flat-plate gel, a gel thickness of 0.3 to 0.5 mm and a DNA band width of 2 to 5 mm were used. That is, the cross-sectional area of the migration path was within 0.6 mm 2 even if it was small. On the other hand, in the present invention, in the embodiment, it is 0.04 mm 2 , and by further reducing the width of the groove, 0.01 mm 2
Alternatively, it is possible to obtain a migration path cross-sectional area smaller than that. By making the area small, it became possible to measure with a trace sample of 1 to 2 digits. Further, since 1 to 2 grooves can be formed per 1 mm, the number of migration paths can be increased to 100 or more, which was conventionally able to secure only 20 to 30 per 10 cm, which is very effective in improving the throughput. In addition, since the migration path interval is 1 mm or less, the temperature difference is small, and since there is no difference in the migration speed of DNA depending on the migration path, the DNA is labeled with one type of fluorophore and the terminal DNA base species is identified by the difference in the migration path. It can also be used effectively for sequencing.

【図面の簡単な説明】[Brief description of drawings]

【図1】溝付ガラス板の平面図。FIG. 1 is a plan view of a grooved glass plate.

【図2】測定装置の概念図。FIG. 2 is a conceptual diagram of a measuring device.

【図3】測定された信号の一例。FIG. 3 shows an example of a measured signal.

【図4】特定位置における蛍光強度変化を測定したDN
A断片スペクトル。
[Fig. 4] DN in which change in fluorescence intensity at a specific position is measured
A fragment spectrum.

【図5】水平型泳動漕の例。FIG. 5 shows an example of a horizontal migration tank.

【図6】泳動路分離リボン付泳動板の見取り図。FIG. 6 is a sketch of a migration plate with migration path separation ribbon.

【符号の説明】 1…細溝付ガラス板、2…レーザ照射溝、3…泳動用細
溝、4…平板、5…レーザー、6…ミラー、7…レーザ
ー光、8…フィルター、9…レンズ、10…1次元ある
いは2次元光検出器、11…イメージ増幅器、12…下
部バッファー槽、13…上部バッファー槽、14…DN
A断片ピーク、15…DNA断片流出口、16…DNA
断片注入口、17…泳動分離リボン。
[Explanation of Codes] 1 ... Glass plate with fine groove, 2 ... Laser irradiation groove, 3 ... Migration fine groove, 4 ... Flat plate, 5 ... Laser, 6 ... Mirror, 7 ... Laser light, 8 ... Filter, 9 ... Lens 10 ... One-dimensional or two-dimensional photodetector, 11 ... Image amplifier, 12 ... Lower buffer tank, 13 ... Upper buffer tank, 14 ... DN
A fragment peak, 15 ... DNA fragment outlet, 16 ... DNA
Fragment injection port, 17 ... Electrophoresis separation ribbon.

フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 7235−2J 331 Z Continuation of front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location 7235-2J 331 Z

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】試料断片が泳動する泳動路の途中の検出位
置にレーザー光を照射し、該レーザー光の照射により生
じる蛍光標識物質の発光の実時間推移を検出して前記試
料断片が前記検出位置を通過したとの情報を得る実時間
検出の電気泳動装置において、表面に微細な溝が設けら
れた第1の平板と、該第1の平板に密着する第2の平板
と有し、該第1,第2の平板で形成される微細な管を泳
動路とすることを特徴とする細溝型電気泳動装置。
1. The sample fragment is detected by irradiating a detection position in the middle of a migration path along which a sample fragment migrates with laser light and detecting a real-time transition of the emission of a fluorescent labeling substance caused by the irradiation of the laser light. In an electrophoretic device for real-time detection that obtains information that a position has been passed, the electrophoretic device has a first flat plate having fine grooves on its surface, and a second flat plate in close contact with the first flat plate. A narrow groove type electrophoretic device characterized in that a fine tube formed of the first and second flat plates is used as a migration path.
【請求項2】前記泳動路にはゲルが充填されていること
を特徴とする請求項1に記載の細溝型電気泳動装置。
2. The narrow groove type electrophoretic device according to claim 1, wherein the migration path is filled with gel.
【請求項3】前記第1の平板には、泳動路となる複数の
溝と、該複数の溝と直角方向に前記レーザー光を通すた
めの溝とが設けられることを特徴とする請求項1に記載
の細溝型電気泳動装置。
3. The first flat plate is provided with a plurality of grooves serving as migration paths, and a groove for passing the laser light in a direction perpendicular to the plurality of grooves. The narrow groove type electrophoretic device according to.
【請求項4】前記第2の平板には、上記溝の位置に対応
させて試料注入口と断片流出口が設けられることを特徴
とする請求項1に記載の細溝型電気泳動装置。
4. The narrow groove type electrophoretic device according to claim 1, wherein the second flat plate is provided with a sample injection port and a fragment outflow port corresponding to the positions of the grooves.
【請求項5】前記第1,第2の平板の少なくも一方はガ
ラス材で形成される請求項1に記載の細溝型電気泳動装
置。
5. The narrow groove type electrophoretic device according to claim 1, wherein at least one of the first and second flat plates is made of a glass material.
【請求項6】前記第1,第2の平板の少なくも一方は表
面を絶縁物でコーティングした金属板であることを特徴
とする請求項1に記載の細溝型電気泳動装置。
6. The narrow groove type electrophoretic device according to claim 1, wherein at least one of the first and second flat plates is a metal plate whose surface is coated with an insulating material.
【請求項7】前記第1の平板の溝が平板を削ることによ
り形成されることを特徴とする請求項1に記載の細溝型
電気泳動装置。
7. The narrow groove type electrophoretic device according to claim 1, wherein the groove of the first flat plate is formed by cutting the flat plate.
【請求項8】前記第1の平板の溝は線状あるはリボン状
の突起物を平板に固着させることにより形成するか、又
は2枚の平板間にリボンあるいはワイヤー状物を挟み込
んで泳動路を形成することを特徴とする請求項1に記載
の細溝型電気泳動装置。
8. The groove of the first flat plate is formed by fixing a linear or ribbon-shaped projection to the flat plate, or a ribbon or a wire-shaped product is sandwiched between two flat plates to form a migration path. The narrow groove type electrophoretic device according to claim 1, wherein
JP3139986A 1990-11-30 1991-06-12 Groove electrophoresis device Expired - Fee Related JP2910319B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3139986A JP2910319B2 (en) 1990-11-30 1991-06-12 Groove electrophoresis device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2-337074 1990-11-30
JP33707490 1990-11-30
JP3139986A JP2910319B2 (en) 1990-11-30 1991-06-12 Groove electrophoresis device

Publications (2)

Publication Number Publication Date
JPH0593711A true JPH0593711A (en) 1993-04-16
JP2910319B2 JP2910319B2 (en) 1999-06-23

Family

ID=26472635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3139986A Expired - Fee Related JP2910319B2 (en) 1990-11-30 1991-06-12 Groove electrophoresis device

Country Status (1)

Country Link
JP (1) JP2910319B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5582705A (en) * 1995-05-19 1996-12-10 Iowa State University Research Foundation, Inc. Multiplexed capillary electrophoresis system
WO1997011362A1 (en) * 1995-09-18 1997-03-27 Otsuka Pharmaceutical Co., Ltd. Multi-capillary electrophoretic apparatus
WO2000022426A1 (en) * 1998-10-09 2000-04-20 Hitachi, Ltd. Capillary electrophoretic system, sample analyzer and liquid sample cassette for electrophoretic separation
JP2003503715A (en) * 1999-07-07 2003-01-28 スリーエム イノベイティブ プロパティズ カンパニー Detection article with fluid control film
US7497937B2 (en) * 2004-09-03 2009-03-03 Combisep, Inc. Microfabricated chip and method of use
JP2014097463A (en) * 2012-11-15 2014-05-29 Tadashi Kishimoto Electrophoresis apparatus, electrophoresis and concentration, separation and analytical methods using the electrophoresis

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5582705A (en) * 1995-05-19 1996-12-10 Iowa State University Research Foundation, Inc. Multiplexed capillary electrophoresis system
US5695626A (en) * 1995-05-19 1997-12-09 Iowa State University Research Foundation Capillaries for use in a multiplexed capillary electrophoresis system
US5741411A (en) * 1995-05-19 1998-04-21 Iowa State University Research Foundation Multiplexed capillary electrophoresis system
WO1997011362A1 (en) * 1995-09-18 1997-03-27 Otsuka Pharmaceutical Co., Ltd. Multi-capillary electrophoretic apparatus
WO2000022426A1 (en) * 1998-10-09 2000-04-20 Hitachi, Ltd. Capillary electrophoretic system, sample analyzer and liquid sample cassette for electrophoretic separation
US6787017B1 (en) 1998-10-09 2004-09-07 Hitachi, Ltd. Capillary electrophoretis system, sample analyzer and liquid sample cassette for electrophoretic separation
JP2003503715A (en) * 1999-07-07 2003-01-28 スリーエム イノベイティブ プロパティズ カンパニー Detection article with fluid control film
US7497937B2 (en) * 2004-09-03 2009-03-03 Combisep, Inc. Microfabricated chip and method of use
JP2014097463A (en) * 2012-11-15 2014-05-29 Tadashi Kishimoto Electrophoresis apparatus, electrophoresis and concentration, separation and analytical methods using the electrophoresis

Also Published As

Publication number Publication date
JP2910319B2 (en) 1999-06-23

Similar Documents

Publication Publication Date Title
US5192412A (en) Electrophoretic apparatus having arrayed electrophoresis lanes
EP0284660B1 (en) Apparatus for determining base sequence
US5366608A (en) Electrophoresis gel migration apparatus
US6103533A (en) Molecular imaging
JP3559648B2 (en) Capillary array electrophoresis device
US5051162A (en) Fluorescence detection type electrophoresis apparatus and its supporting vessel
EP1835281B1 (en) Multiplexed capillary electrophoresis system
JP2000131282A (en) Capillary array electrophoretic device
JP2910319B2 (en) Groove electrophoresis device
JP3450947B2 (en) Fluorescence detection type capillary array electrophoresis device
JP2974537B2 (en) Capillary array, electrophoresis method and electrophoresis apparatus
JP2840586B2 (en) Light detection electrophoresis device
JPH10132784A (en) Apparatus for determining dna base sequence
JP3695631B2 (en) Electrophoresis device
JP3839412B2 (en) Fluorescence detection type capillary array electrophoresis apparatus
JPH07134101A (en) Dna base sequence determining apparatus
JPH0658341B2 (en) DNA nucleotide sequencer
JP3938032B2 (en) Electrophoresis method and electrophoresis apparatus
JP2000097908A (en) Electrophoresis apparatus
JPH06174694A (en) Gene segragating and detecting apparatus
JPH011960A (en) DNA base sequencing device
JP2008267925A (en) Electrophoresis method, electrophoretic member and electrophoretic apparatus
JPH07103940A (en) Thin type gel electrophoretic apparatus
Jiang Development of 32-capillary direct-reading multi-wavelength spectrometer for capillary electrophoresis with laser-induced fluorescence detection
JPH08233739A (en) Fluorescence detection method in fluorescence detection electrophoresis

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080409

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090409

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090409

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100409

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110409

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees