JPH0593685A - Measuring method of density and measuring apparatus of density using the same - Google Patents

Measuring method of density and measuring apparatus of density using the same

Info

Publication number
JPH0593685A
JPH0593685A JP6605491A JP6605491A JPH0593685A JP H0593685 A JPH0593685 A JP H0593685A JP 6605491 A JP6605491 A JP 6605491A JP 6605491 A JP6605491 A JP 6605491A JP H0593685 A JPH0593685 A JP H0593685A
Authority
JP
Japan
Prior art keywords
density
sample
measured
value
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6605491A
Other languages
Japanese (ja)
Other versions
JP3133359B2 (en
Inventor
Kenichi Hasegawa
賢一 長谷川
Kuniyoshi Watanabe
邦芳 渡辺
Tatsuo Oyama
達夫 大山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokimec Inc
Original Assignee
Tokimec Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokimec Inc filed Critical Tokimec Inc
Priority to JP6605491A priority Critical patent/JP3133359B2/en
Publication of JPH0593685A publication Critical patent/JPH0593685A/en
Application granted granted Critical
Publication of JP3133359B2 publication Critical patent/JP3133359B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measurement Of Radiation (AREA)

Abstract

PURPOSE:To realize practical density measurement by conducting a corrective processing in consideration of the particle size of a sample to be measured. CONSTITUTION:A gamma-ray pulse is radiated from a radiation source 5 to a sample to be measured and a count value for a unit time of the gamma-ray pulse transmitted through the sample is determined for each of a plurality of energy ranges. Moreover, the value of a variable of the actual particle size of the sample is determined by substituting the count values in an approximation formula into which the variable of the particle size is introduced, and furthermore the true density is determined by substituting this value of the variable in an operation formula for calculating the density.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、γ線パルスを被測定試
料に放射してその被測定試料中を通過してきたγ線パル
スの数を計数し、その計数値から被測定試料の密度を求
める密度測定方法及び密度測定装置に関し、特に、被測
定試料の粒度を考慮した補正処理を行うことによって実
際に即した密度測定を実現する密度測定方法及び密度測
定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention counts the number of γ-ray pulses that have radiated a γ-ray pulse to a sample to be measured and has passed through the sample to be measured, and the density of the sample to be measured is calculated from the counted value. The present invention relates to a density measuring method and a density measuring apparatus to be obtained, and more particularly, to a density measuring method and a density measuring apparatus for realizing a density measurement that is actually performed by performing a correction process in consideration of a particle size of a sample to be measured.

【0002】[0002]

【従来例】従来、道路舗装用アスファルトやコンクリー
ト等の試料の密度を測定するための密度測定装置が知ら
れている。このような密度測定装置は、被測定試料へγ
線パルスを放射する放射線源と、放射線源から夫々異な
った間隔で配置された一対の検出センサ(NaIシンチ
レ−ションカウンタ)とを該被測定試料面に設置し、被
測定試料中を通過して来たγ線パルスを各検出センサで
検出して、夫々の単位時間当たりのパルス数を計数す
る。そして、夫々の検出センサの各計数値N1とN2に
ついて、次式(1)の演算を行うことにより、試料密度
ρを算出していた。
2. Description of the Related Art Conventionally, there has been known a density measuring device for measuring the density of a sample such as asphalt for road paving or concrete. Such a density measuring device is designed to
A radiation source that emits a line pulse and a pair of detection sensors (NaI scintillation counters) arranged at different intervals from the radiation source are installed on the surface of the sample to be measured, and pass through the sample to be measured. The incoming γ-ray pulse is detected by each detection sensor, and the number of pulses per unit time is counted. Then, the sample density ρ is calculated by performing the calculation of the following equation (1) for each count value N1 and N2 of each detection sensor.

【0003】[0003]

【数1】 [Equation 1]

【0004】又、このような一対の検出センサを使用す
るのではなく、一個の検出センサのみでパルス数を計数
し、この計数値を次式(2)に適用することによって直
接に密度を求めるものもあった。
Further, instead of using such a pair of detection sensors, the number of pulses is counted by only one detection sensor, and the counted value is applied to the following equation (2) to directly determine the density. There were things.

【0005】[0005]

【数2】 [Equation 2]

【0006】[0006]

【発明が解決しようとする課題】しかしながら、このよ
うな従来の密度測定装置にあっては、被測定試料の粒度
を考慮していない、即ち粒度がγ線密度測定に対して影
響しないと見なして測定を行っていたので、実際の試料
の密度とは誤差を生じていた。又は、このような誤差が
最小となるように、予め被測定試料と同様のものを作成
し、その試料毎に密度測定装置の感度調整等を行った後
に密度測定を行っていたが、極めて煩雑であった。
However, in such a conventional density measuring apparatus, it is considered that the particle size of the sample to be measured is not taken into consideration, that is, the particle size does not affect the γ-ray density measurement. Since the measurement was performed, there was an error from the actual density of the sample. Or, to minimize such an error, a sample similar to the sample to be measured was prepared in advance, and the density was measured after adjusting the sensitivity of the density measuring device for each sample, but it is extremely complicated. Met.

【0007】試料の密度測定を行う場合に試料の粒度を
考慮することの必要性を説明する。図6に示すように、
舗装用アスファルトやコンクリートのような被測定試料
は間隔Pで分布した多数の粒子群(q1,q2など)の
集まりとみなし、各粒子の間は空隙であると仮定するこ
とができる。そして、被測定試料の表面に設けた放射線
源1からγ線パルスを放射し、被測定試料中を通過して
きたγ線パルスの数を検出センサ2で計数すると、γ線
パルスが被測定試料の浅い部分(即ち、放射線源から近
い部分)の粒子群q1で一次散乱する散乱エネルギー
と、γ線パルスが被測定試料の深い部分(即ち、放射線
源から遠い部分)の粒子群q2で一次散乱する散乱エネ
ルギーとを比較した場合には、粒子によって散乱される
γ線パルスのエネルギーEγと散乱角θとの関係は、放
射線源1の放射時における既知のエネルギーをE0とす
れば、
The necessity of considering the particle size of the sample when measuring the density of the sample will be explained. As shown in FIG.
A sample to be measured such as pavement asphalt or concrete can be regarded as a group of a large number of particle groups (q1, q2, etc.) distributed at intervals P, and it can be assumed that there are voids between the particles. Then, when a γ-ray pulse is emitted from the radiation source 1 provided on the surface of the sample to be measured and the number of γ-ray pulses that have passed through the sample to be measured is counted by the detection sensor 2, the γ-ray pulse of the sample to be measured is The scattering energy that is primarily scattered by the particle group q1 in the shallow portion (that is, the portion near the radiation source) and the γ-ray pulse is primarily scattered by the particle group q2 in the deep portion (that is, the portion far from the radiation source) of the sample to be measured. When the scattering energy is compared, the relationship between the energy Eγ of the γ-ray pulse scattered by the particle and the scattering angle θ is E0, where E0 is the known energy at the time of radiation of the radiation source 1.

【0008】[0008]

【数3】 [Equation 3]

【0009】[0009]

【数4】 [Equation 4]

【0010】の式(3),(4)で表すことができ、一
次散乱では散乱角θに応じて散乱エネルギーが変化す
る。したがって、図7に示すように、ある特定の粒子q
1とq2についての散乱モデルを考えた場合、放射線源
1から深さD1の粒子q1に向かって放射されるγ線パ
ルスと一次散乱によって検出センサ2へ向かって散乱さ
れる散乱γ線パルスとの成す角度(散乱角)をθ1とす
れば、この角度θ1は、放射線源1と検出センサ2及び
粒子q1の位置を頂点とする三角形の外周円C1の円周
角となり、この外周円C1上に位置する粒子による一次
散乱の散乱エネルギーは、何れの散乱エネルギーも等し
くなる。
It can be expressed by the equations (3) and (4), and in the primary scattering, the scattering energy changes according to the scattering angle θ. Therefore, as shown in FIG.
Considering the scattering model for 1 and q2, the γ-ray pulse emitted from the radiation source 1 toward the particle q1 having the depth D1 and the scattered γ-ray pulse scattered toward the detection sensor 2 by the primary scattering are considered. If the angle formed (scattering angle) is θ1, this angle θ1 becomes the circumferential angle of a triangular outer circle C1 having the positions of the radiation source 1, the detection sensor 2, and the particle q1 as vertices, and on this outer circle C1. The scattered energy of the primary scattering by the particles located is equal to any scattered energy.

【0011】同様に、深さD2(D2>D1)の粒子q
2に向かって放射されるγ線パルスと一次散乱によって
検出センサ2へ向かって散乱される散乱γ線パルスとの
成す角度(散乱角)をθ2とすれば、この角度θ2は、
放射線源1と検出センサ2及び粒子q2の位置を頂点と
する三角形の外周円C2の円周角となり、この外周円C
2上に位置する粒子による一次散乱の散乱エネルギー
は、何れの散乱エネルギーも等しくなる。
Similarly, a particle q having a depth D2 (D2> D1)
If the angle (scattering angle) formed by the γ-ray pulse emitted toward 2 and the scattered γ-ray pulse scattered toward the detection sensor 2 by the primary scattering is θ2, this angle θ2 is
The circumferential angle of a triangular outer circle C2 whose vertices are the positions of the radiation source 1, the detection sensor 2, and the particle q2, and this outer circle C
The scattered energy of the primary scattering by the particles located on 2 is equal to any scattered energy.

【0012】そして、深さがD2>D1の関係であれ
ば、散乱角はθ2>θ1の関係となると共に、深さD1
の場合の散乱γ線パルスのエネルギーEγ1と深さD2
の場合のγ線パルスのエネルギーEγ2の関係は、Eγ
1>Eγ2となる。更に、図6及び図7は二次元的モデ
ルであるが、実際の三次元的な場合においてもこの関係
は成立し、D2>D1、θ2>θ1ならばEγ1>Eγ
2の関係を満足する。
If the depth is D2> D1, the scattering angle is θ2> θ1 and the depth D1 is
Energy of scattered γ-ray pulse Eγ1 and depth D2
In the case of, the relation of the energy Eγ2 of the γ-ray pulse is Eγ
1> Eγ2. Further, although FIGS. 6 and 7 are two-dimensional models, this relationship holds even in an actual three-dimensional case, and if D2> D1 and θ2> θ1, then Eγ1> Eγ.
Satisfies the relationship of 2.

【0013】このように、試料の浅い部分と深い部分の
粒子によるγ線パルスへの影響は異なり、より実際的な
密度測定を行うためには、この粒度を考慮する必要があ
る。本発明はこのような従来の課題に鑑みてなされたも
のであり、実際に即した試料密度の測定を行い得る密度
測定方法及び密度測定装置を提供することを目的とす
る。
As described above, the influence of the particles in the shallow portion and the deep portion of the sample on the γ-ray pulse is different, and this grain size must be taken into consideration in order to perform more practical density measurement. The present invention has been made in view of such conventional problems, and an object of the present invention is to provide a density measuring method and a density measuring apparatus capable of actually measuring the sample density.

【0014】[0014]

【課題を解決するための手段】このような目的を達成す
るために本発明は、被測定試料に対して放射線源からγ
線パルスを放射し、被測定試料中を通過してきたγ線パ
ルスの単位時間当たりの数を計数して、その計数値から
試料の密度を求める密度測定方法及び密度測定装置を対
象とする。
In order to achieve such an object, the present invention is directed to a sample to be measured from a radiation source by γ
The present invention is directed to a density measuring method and a density measuring apparatus which count a number of γ-ray pulses per unit time that radiates a line pulse and has passed through a sample to be measured, and obtains the density of the sample from the counted value.

【0015】そして、本発明は検出センサで検出したγ
線パルスの計数値を複数のエネルギー範囲毎に求め、更
に、粒度の変数を導入した後述の近似式にこれらの計数
値を代入することによって試料の実際の粒度の変数値を
求め、更に、この変数値を密度算出のための演算式に代
入することによって真の密度を求めるようにした。
In the present invention, γ detected by the detection sensor
The count value of the line pulse is obtained for each of a plurality of energy ranges, and further, the variable value of the actual particle size of the sample is obtained by substituting these count values in the approximation formula described later in which the variable of the particle size is introduced. The true density is obtained by substituting the variable value into the arithmetic expression for density calculation.

【0016】[0016]

【作用】ここで、ある2つの異なるエネルギー範囲内で
計測された散乱γ線により、前述の方法で算出された密
度を考えた場合に、その算出された密度をρH, ρL と
する。粒度の影響により、実際に計測されたものをρH
′, ρL ′とすると、
When the density calculated by the above-mentioned method is considered by the scattered γ-rays measured within two different energy ranges, the calculated densities are ρH and ρL. Due to the effect of particle size, the actual measured value is ρH
If ′, ρL ′,

【0017】[0017]

【数5】 [Equation 5]

【0018】[0018]

【数6】 [Equation 6]

【0019】のように、EL ,EH 分だけ誤差を発生し
たとする。この時、(6)式を(5)式で割ると、
As described above, it is assumed that an error is generated by EL and EH. At this time, if equation (6) is divided by equation (5),

【0020】[0020]

【数7】 [Equation 7]

【0021】となるが、ρL /ρH の値は、計測系の幾
何的配置が変化しなければ、常に一定の値をとると思わ
れるので定数とする。また、一般に、EH とEL を比較
した場合には、
However, the value of ρL / ρH is assumed to be a constant value as long as the geometrical arrangement of the measurement system does not change, and is therefore a constant. Also, in general, when comparing EH and EL,

【0022】[0022]

【数8】 [Equation 8]

【0023】の関係があり、EL が、EH の2次以上の
関数として表せるのであれば、
If E L can be expressed as a function of second-order or higher of E H,

【0024】[0024]

【数9】 [Equation 9]

【0025】として、(5)式は、As the equation (5),

【0026】[0026]

【数10】 [Equation 10]

【0027】のように書ける。関数f(β)の形が不変
である限りは、β即ち、ρL ′/ρH ′を求める事が出
来れば、真の密度を求めることが出来る。従ってこの関
数f(β)として妥当と考えられる近似式を導入し、粒
度による影響を補正することにより、従来の粒度を考慮
しない場合と比較して、より現実に即した結果を得るこ
とができる。
It can be written as As long as the shape of the function f (β) is invariant, if β, that is, ρL '/ ρH' can be obtained, the true density can be obtained. Therefore, by introducing an approximate expression that is considered valid as this function f (β) and correcting the influence of the granularity, it is possible to obtain a more realistic result as compared with the case where the conventional granularity is not considered. ..

【0028】[0028]

【実施例】以下、本発明の一実施例による密度測定装置
を図2に基づいて説明する。図2において、3は被測定
試料の表面に設置する表面型密度測定装置であり、筺体
4内には、被測定試料にγ線パルスを放射するための放
射線源5が設けられると共に、放射線源5から異なった
距離L1,L2の位置に、被測定試料を通ってきたγ線
パルスを検出するための一対の検出センサ6,7が設け
られている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A density measuring device according to an embodiment of the present invention will be described below with reference to FIG. In FIG. 2, 3 is a surface-type density measuring device installed on the surface of the sample to be measured. Inside the housing 4, a radiation source 5 for irradiating the sample to be measured with γ-ray pulses is provided, and at the same time, a radiation source A pair of detection sensors 6 and 7 for detecting the γ-ray pulse that has passed through the sample to be measured are provided at different distances L1 and L2 from the position 5.

【0029】尚、これらの検出センサ6,7はNaIシ
ンチレーションカウンタが適用され、予め設定されるエ
ネルギー範囲(図1においてはET〜EMの範囲)でエ
ネルギーの検出レベルを順次に変化させ、夫々のエネル
ギー値におけるγ線パルスの数を計数するという走査処
理を行う、或いは全計測散乱γ線エネルギー範囲の複数
のウィンドウについて、一括計数を行うことで、パルス
ハイト図に相当する計数値のデータを得る。
A NaI scintillation counter is applied to these detection sensors 6 and 7, and the detection level of energy is sequentially changed within a preset energy range (range of ET to EM in FIG. 1), and each of them is changed. The scanning process of counting the number of γ-ray pulses in the energy value is performed, or the count value corresponding to the pulse height diagram is obtained by collectively counting a plurality of windows in the entire measured scattered γ-ray energy range. ..

【0030】更に、各検出センサ6,7で計数されたγ
線パルスの計数値のデータS1,S2は、図3に示すよ
うに、第1の演算部18及び補正演算部19を有する処
理部に入力されて、密度ρT の計測データを出力する。
尚、これらの演算部18,19は、マイクロプロセサ等
の演算処理装置で構成されている。又、図1で示したエ
ネルギー範囲WLとWHに分けるための基準のエネルギ
ー値EWは、適宜に設定される。
Further, γ counted by each detection sensor 6 and 7
As shown in FIG. 3, the line pulse count value data S1 and S2 are input to a processing unit having a first calculation unit 18 and a correction calculation unit 19, and output measurement data of the density ρ T.
The arithmetic units 18 and 19 are composed of arithmetic processing devices such as microprocessors. Further, the reference energy value EW for dividing into the energy ranges WL and WH shown in FIG. 1 is set appropriately.

【0031】まず、実施例による密度測定の原理を図1
に示すパルスハイト図と共に説明する。図1は、被測定
試料の表面にγ線パルスを放射する放射線源を設置する
と共に、該放射線源から夫々異なった距離L1,L2
(但し、L1<L2)の位置に一対の検出センサを設置
して、夫々の検出センサに到達する散乱γ線パルスの単
位時間当たりの数を計数し、横軸を散乱γ線パルスのエ
ネルギー、縦軸を各エネルギー毎の計数値として示して
ある。又、グラフ(A)は放射線源から近い距離L1に
設置された検出センサによる計測結果、グラフ(B)は
放射線源から遠い距離L2に設置された検出センサによ
る計測結果を示す。更に、放射線源から発せられるγ線
パルスの弁別エネルギーレベルEM、エネルギーレベル
ETは密度測定装置の測定限界であり、この範囲内での
計測結果を示す。
First, the principle of density measurement according to the embodiment is shown in FIG.
It will be described together with the pulse height diagram shown in FIG. In FIG. 1, a radiation source that emits a γ-ray pulse is installed on the surface of a sample to be measured, and different distances L1 and L2 from the radiation source are set.
(However, a pair of detection sensors are installed at the position of L1 <L2), the number of scattered γ-ray pulses reaching each detection sensor per unit time is counted, and the horizontal axis represents the energy of scattered γ-ray pulses, The vertical axis is shown as the count value for each energy. Graph (A) shows the measurement result by the detection sensor installed at a distance L1 close to the radiation source, and graph (B) shows the measurement result by the detection sensor installed at a distance L2 far from the radiation source. Further, the discrimination energy level EM and energy level ET of the γ-ray pulse emitted from the radiation source are the measurement limits of the density measuring device, and the measurement results within this range are shown.

【0032】このようなパルスハイト図において、適宜
のエネルギーレベルEWを基準とした場合に、EWとE
Mの間のエネルギー範囲WH内の計数値は被測定試料の
浅い部分に関する値が優勢であり、ETとEWの間のエ
ネルギー範囲WL内の計数値は被測定試料の深い部分に
関する値が優勢となる。したがって、まず、グラフ
(A)についてのエネルギー範囲WHにおける全計数値
をNH1、エネルギー範囲WLにおける全計数値をNL1、
全範囲WL÷WHにおける全計数値をN1 、グラフ
(A)を関数f(Eγ)とすれば、次の式(11),
(12),(13)で表せる。
In such a pulse height diagram, when an appropriate energy level EW is used as a reference, EW and E
The count value in the energy range WH between M is predominant in the shallow part of the measured sample, and the count value in the energy range WL between ET and EW is predominant in the deep part of the measured sample. Become. Therefore, first, the total count value in the energy range WH for the graph (A) is NH1, the total count value in the energy range WL is NL1,
If the total count value in the entire range WL ÷ WH is N1 and the graph (A) is the function f (Eγ), the following equation (11),
It can be represented by (12) and (13).

【0033】[0033]

【数11】 [Equation 11]

【0034】[0034]

【数12】 [Equation 12]

【0035】[0035]

【数13】 [Equation 13]

【0036】同様に、グラフ(B)についてのエネルギ
ー範囲WHでの全計数値をNH2、エネルギー範囲WLに
おける全計数値をNL2、全範囲WL+WHにおける全計
数値をN2、グラフ(B)を関数g(Eγ)で示せば、
式(14),(15),(16)で表せる。
Similarly, for the graph (B), the total count value in the energy range WH is NH2, the total count value in the energy range WL is NL2, the total count value in the total range WL + WH is N2, and the graph (B) is a function g. (Eγ)
It can be expressed by equations (14), (15) and (16).

【0037】[0037]

【数14】 [Equation 14]

【0038】[0038]

【数15】 [Equation 15]

【0039】[0039]

【数16】 [Equation 16]

【0040】そして、夫々の計数値N1 ,NH1,NL1,
N2 ,NH2,NL2から各エネルギー範囲毎に密度を算出
すると、範囲WHの計測結果からの密度ρH 、範囲WL
の計測結果からの密度ρL 、範囲WH+WLの計測結果
からの密度ρHLは、
The respective count values N1, NH1, NL1,
When the density is calculated for each energy range from N2, NH2, and NL2, the density ρH from the measurement result of the range WH, the range WL
The density ρ L from the measurement result of and the density ρ HL from the measurement result of the range WH + WL are

【0041】[0041]

【数17】 [Equation 17]

【0042】[0042]

【数18】 [Equation 18]

【0043】[0043]

【数19】 [Formula 19]

【0044】から求まる。尚、上記式(17)〜(1
9)中、AH ,AL ,A,BH ,BL ,Bは定数値であ
る。ここで、従来のように粒度の影響がないものと見な
して密度測定を行った場合には、ρH =ρL =ρHLが成
立することとなるが、実際の試料測定では前述したよう
に粒度を考慮する必要がある。
It can be obtained from In addition, the above formulas (17) to (1
In 9), AH, AL, A, BH, BL, and B are constant values. Here, when the density measurement is performed assuming that there is no influence of the particle size as in the conventional case, ρH = ρL = ρHL holds, but in the actual sample measurement, the particle size is considered as described above. There is a need to.

【0045】そこで、本実施例の原理では、次式(2
0)〜(22)の近似式で示されるように、補正前の試
料の密度と真の密度との関係については、試料の粒度に
関するパラメータを導入した近似式が成立すると仮定し
た。
Therefore, according to the principle of this embodiment, the following equation (2
As shown by the approximation formulas 0) to (22), it was assumed that the relation between the density of the sample before correction and the true density is satisfied by the approximation formula in which the parameter related to the particle size of the sample is introduced.

【0046】[0046]

【数20】 [Equation 20]

【0047】[0047]

【数21】 [Equation 21]

【0048】[0048]

【数22】 [Equation 22]

【0049】尚、ρT は被測定試料の真の密度であり被
測定試料の質量吸収計数の逆数に比例する。又、ρH は
エネルギー範囲WHの計測結果から求まる補正前の実測
の密度、ρL はエネルギー範囲WLの計測結果から求ま
る補正前の実測の密度、ρHLはエネルギー範囲WHLの
計測結果から求まる補正前の実測の密度である。更に、
RD は被測定試料の粒度に関する未知変数、XH ,XL
,XHLは定数である。
ΡT is the true density of the sample to be measured and is proportional to the reciprocal of the mass absorption coefficient of the sample to be measured. Further, ρH is the measured density before correction obtained from the measurement result of the energy range WH, ρL is the measured density before correction obtained from the measurement result of the energy range WL, and ρHL is the measured density before correction obtained from the measurement result of the energy range WHL. Is the density of. Furthermore,
RD is an unknown variable relating to the particle size of the sample to be measured, XH, XL
, XHL are constants.

【0050】ここで、被測定試料の各エネルギー範囲毎
(即ち、試料の深さ毎)に求まる密度ρH ,ρL ,ρHL
がこれらの式(20)〜(22)で成立すると仮定し
た場合において、上記式(20)と(21)の比をとれ
ば、
Here, the densities ρH, ρL, ρHL obtained for each energy range of the sample to be measured (that is, for each sample depth).
Assuming that Eqs. (20) to (22) hold, the ratio of Eqs. (20) and (21) above gives

【0051】[0051]

【数23】 [Equation 23]

【0052】の近似式が成り立ち、式(23)の右辺の
第3項以降は極めて小さな値となるので無視するものと
すれば、粒度に関する未知変数RD の値を求められる。
そして、このように確定した変数値RD を上記式(2
2)に代入すると、真の密度ρT を求めることができ
る。
The approximate expression (3) holds and the third and subsequent terms on the right side of expression (23) have extremely small values, so if they are ignored, the value of the unknown variable RD relating to the granularity can be obtained.
Then, the variable value RD thus determined is expressed by the above equation (2)
Substituting into 2), the true density ρT can be obtained.

【0053】[0053]

【数24】 [Equation 24]

【0054】このように、本実施例の原理は、ある深さ
毎に求める実測の試料密度は、真の試料密度と粒度及び
深さの変数で規定されるものとし、近似式中の粒度に関
する未知変数と深さに関連する未知変数を特定化してお
き、実測の試料密度から真の密度を求めるものである。
即ち、実際の処理手順に従って更に説明すれば、まず、
密度測定装置を初期の時点で校正する際等に、予め密度
ρT が既知で粒度が均質な被測定試料(以下、基準試料
という)について各エネルギー範囲WH,WL,WHL
についての密度ρH ,ρL ,ρHLを測定し、次に、式
(20)〜(22)に測定結果を代入して、逆算するこ
とにより未知の定数XH ,XL ,XHLを求める。即ち、
既知の試料にあっては、変数RD は定数、密度ρT 及び
ρH ,ρL,ρHLは既知であるから、ここで未知の定数
XH ,XL ,XHLが求まる。そして、求められたこれら
の変数を上記式(20)〜(22)に代入する。
As described above, according to the principle of the present embodiment, the actually measured sample density determined for each depth is defined by the true sample density, the particle size, and the depth variable, and the particle size in the approximate expression is related. The unknown variable and the unknown variable related to the depth are specified, and the true density is obtained from the measured sample density.
That is, further explaining according to the actual processing procedure, first,
When calibrating the density measuring device at an initial point, etc., each energy range WH, WL, WHL of a sample to be measured (hereinafter referred to as a reference sample) whose density ρT is known in advance and whose particle size is uniform
The densities ρ H, ρ L and ρ HL are measured, then the measurement results are substituted into the equations (20) to (22) and back calculated to obtain unknown constants X H, XL and XHL. That is,
In the known sample, the variable RD is a constant, and the densities ρT and ρH, ρL, ρHL are known, so that unknown constants XH, XL, XHL are obtained here. Then, these obtained variables are substituted into the above equations (20) to (22).

【0055】次に、実際に密度を求めようとする被測定
試料の計測を行い、この計測で実測された各エネルギー
範囲WH,WL,WHLについての密度ρH ,ρL ,ρ
HLを上記式(20)〜(22)に代入し、先に求めた定
数XH ,XL ,XHLを使って更に式(23)の演算を行
うことによって被測定試料の未知変数値RD を求める。
即ち、ここで式(23)の演算を行うことにより、実際
に密度を求めようとする被測定試料の粒度の変数値RD
が確定することとなる。
Next, the sample to be measured for which the density is to be actually obtained is measured, and the densities ρ H, ρ L, ρ for the respective energy ranges WH, WL, WHL actually measured by this measurement are measured.
The unknown variable value RD of the sample to be measured is obtained by substituting HL into the above equations (20) to (22) and using the previously obtained constants XH, XL, XHL to further perform the operation of the equation (23).
That is, the variable value RD of the particle size of the sample to be measured for which the density is actually obtained by performing the calculation of the equation (23) here
Will be confirmed.

【0056】そして、この変数値RD 及び先に求めた定
数XHL及びρHLを式(24)に代入することにより、実
際に密度を求めようとする被測定試料の真の密度ρT が
もとまることとなる。更に、他の実施例を図4と共に説
明する。この実施例は、他の種類の検出センサを適用し
た場合である。
Then, by substituting the variable value RD and the constants XHL and ρHL previously obtained in the equation (24), the true density ρT of the sample to be actually measured can be obtained. Become. Further, another embodiment will be described with reference to FIG. This embodiment is a case where another type of detection sensor is applied.

【0057】前実施例では、上記式(17)〜(19)
に示すように、検出センサを一対設けて夫々の計数値の
比から密度を求めるものであるが、検出センサを1個だ
けにして、該検出センサから求まる各エネルギー範囲毎
の実測の計数値NL ,NH ,NHLを次式(25)〜(2
7)に代入し、これらの式から求まる補正前の密度ρL
,ρH ,ρHLを上記式(20)〜(24)に適用して
も粒度を考慮した補正処理を行うことができる。
In the previous embodiment, the above equations (17) to (19) are used.
As shown in FIG. 3, a pair of detection sensors is provided and the density is obtained from the ratio of the respective count values. However, only one detection sensor is provided, and the measured count value NL for each energy range obtained from the detection sensor is obtained. , NH, NHL are expressed by the following equations (25) to (2
Substituting into 7), the density ρL before correction obtained from these equations
, .Rho.H, .rho.HL can be applied to the above equations (20) to (24) to perform the correction process considering the granularity.

【0058】[0058]

【数25】 [Equation 25]

【0059】[0059]

【数26】 [Equation 26]

【0060】[0060]

【数27】 [Equation 27]

【0061】このように上記近似式(20)〜(24)
を導入して、これらの式中の未知変数を特定化してお
き、更に実測した密度の測定値をこれらの式に代入・演
算処理すると、従来の粒度を考慮しない場合と比較し
て、より実現に即し且つ精度の良い結果を得ることがで
きる。即ち、同図において、3は被測定試料の表面に設
置する表面型密度測定装置であり、筺体4内には、被測
定試料にγ線パルスを放射するための放射線源5が設け
られると共に、被測定試料を通ってきたγ線パルスを検
出するための検出センサ(NaIシンチレーションカウ
ンタ)8が放射線源5から適宜の間隔で設けられてい
る。
Thus, the above approximate expressions (20) to (24)
Introducing the above, the unknown variables in these equations are specified, and the measured values of the density that are actually measured are substituted into these equations and arithmetic processing is performed. It is possible to obtain accurate and accurate results. That is, in the figure, 3 is a surface-type density measuring device installed on the surface of the sample to be measured, and in the housing 4, a radiation source 5 for emitting a γ-ray pulse to the sample to be measured is provided, A detection sensor (NaI scintillation counter) 8 for detecting the γ-ray pulse that has passed through the sample to be measured is provided at an appropriate interval from the radiation source 5.

【0062】検出センサ8は、予め設定されるエネルギ
ー範囲においてエネルギーの検出レベルを順次に変化さ
せ、夫々のエネルギー値におけるγ線パルスの数を計数
するという走査処理を行う、或いは全計測散乱γ線エネ
ルギー範囲の複数のウィンドウについて、一括計数を行
うことで、図1に示すようなパルスハイト図に相当する
計数値のデータを得る。
The detection sensor 8 performs a scanning process in which the detection level of energy is sequentially changed within a preset energy range and the number of γ-ray pulses at each energy value is counted, or all the measured scattered γ-rays are used. Collective counting is performed on a plurality of windows in the energy range to obtain count value data corresponding to the pulse height diagram as shown in FIG.

【0063】そして、この実施例では、検出センサ8が
一個だけであるから、一種類の計数値のデータを求め
る。そして、演算部(図示せず)が、該検出センサ8か
ら求まる各エネルギー範囲毎の実測の計数値NL ,NH
,NHLを前記式(25)〜(27)に代入し、これらの
式から求まる補正前の密度ρL ,ρH ,ρHLを上記式
(20)〜(24)に適用することにより真の密度ρT
を求める演算処理を行う。
In this embodiment, since there is only one detection sensor 8, one type of count value data is obtained. Then, a calculation unit (not shown) measures the count values NL and NH for each energy range obtained from the detection sensor 8.
, NHL into the above equations (25) to (27) and applying the uncorrected densities ρ L, ρ H, and ρ HL obtained from these equations to the above equations (20) to (24), the true density ρ T
Is calculated.

【0064】更に、演算部(図示せず)は、上記式(2
3)及び(24)における未知の変数を、前記実施例に
おいて説明したように、近似式(20)〜(22)を適
用して予め装置の校正時等において確定し、該校正後の
実測処理においては、式(23)及び(24)だけで補
正処理を行うことによって、未知の被測定試料の真の密
度を算出する。
Further, the arithmetic unit (not shown) is provided with the above equation (2).
The unknown variables in 3) and (24) are applied in advance to the approximation formulas (20) to (22) as described in the above-described embodiment, and are determined in advance when the device is calibrated, and the actual measurement process after the calibration is performed. In (1), the true density of the unknown sample to be measured is calculated by performing the correction process only with the equations (23) and (24).

【0065】更に他の実施例を図5と共に説明する。こ
の密度測定装置3は、筐体4内に放射線源5を設けると
共に、コリメーター機能を有する遮蔽材9に収容された
一対のGM管10,11が異なった位置に設けられてい
る。そして演算部(図示せず)がこれらの検出センサか
ら得られた計数値に基づいて演算処理することにより試
料の密度を算出する。尚、各GM管10,11のγ線パ
ルスの入射角θ1,θ2が異なるように設置されてい
る。
Still another embodiment will be described with reference to FIG. In this density measuring device 3, a radiation source 5 is provided in a housing 4, and a pair of GM tubes 10 and 11 housed in a shielding material 9 having a collimator function are provided at different positions. Then, an arithmetic unit (not shown) performs arithmetic processing based on the count values obtained from these detection sensors to calculate the density of the sample. The GM tubes 10 and 11 are arranged so that the incident angles θ1 and θ2 of the γ-ray pulse are different.

【0066】このGM管自体は、γ線パルスの散乱エネ
ルギー別の計数値を直接計数するものではないが、被測
定試料を通ってGM管10,11に達するγ線パルスの
散乱γ線エネルギーEγと散乱角θの関係が、前記式
(3),(4)で表すことのできる特性を有している。
したがって、異なった入射角θ1とθ2に設定されたこ
れらのGM管10,11には、夫々の散乱角に応じたエ
ネルギーEγに対応するγ線が検出されることとなり、
夫々のGM管10,11で前記第1の実施例同様に計数
値を求めることができる。
The GM tube itself does not directly count the counted values of the scattered energy of the γ-ray pulse, but the scattered γ-ray energy Eγ of the γ-ray pulse reaching the GM tubes 10 and 11 through the sample to be measured. And the scattering angle θ have the characteristics that can be expressed by the equations (3) and (4).
Therefore, the γ-rays corresponding to the energy Eγ corresponding to the respective scattering angles are detected in these GM tubes 10 and 11 set to different incident angles θ1 and θ2.
The count value can be obtained with the respective GM tubes 10 and 11 as in the first embodiment.

【0067】そして、GM管10,11による計数値に
ついて、演算部(図示せず)が、前記式(20)〜(2
4)の演算を行うことにより真の密度ρT を求める。
尚、上記式(23)及び(24)における未知の変数
は、前記原理説明において説明したように、演算部(図
示せず)が、近似式(20)〜(22)を適用して予め
装置の校正時等において確定しておき、該校正後の実測
作業においては、式(23)及び(24)だけで補正処
理を行うことにより未知の被測定試料の真の密度を算出
する。
Then, with respect to the count values by the GM tubes 10 and 11, a calculation unit (not shown) uses the equations (20) to (2).
The true density ρT is obtained by performing the calculation of 4).
As to the unknown variables in the above equations (23) and (24), the arithmetic unit (not shown) applies the approximate equations (20) to (22) to the device in advance, as described in the above description of the principle. Is confirmed at the time of calibration, etc., and in the actual measurement work after the calibration, the true density of the unknown sample to be measured is calculated by performing the correction processing only by the equations (23) and (24).

【0068】[0068]

【発明の効果】以上説明したように本発明によれば、被
測定試料に対して放射線源からγ線パルスを放射し,被
測定試料中を通過してきたγ線パルスの単位時間当たり
の数を計数して、その計数値から試料の密度を求める密
度測定方法及び密度測定装置において、該検出センサで
検出したγ線パルスの計数値を複数のエネルギー範囲毎
に求め、更に、粒度の変数を導入した近似式にこれらの
計数値を代入することによって試料の実際の粒度の変数
値を求め、更に、この変数値を密度算出のための演算式
に代入することによって真の密度を求めるので、試料の
粒度のパラメータを導入して実際に即した試料密度を求
めることができる。
As described above, according to the present invention, the γ-ray pulse is emitted from the radiation source to the sample to be measured, and the number of γ-ray pulses passing through the sample to be measured per unit time is calculated. In the density measuring method and the density measuring apparatus for counting and determining the density of the sample from the counted value, the counted value of the γ-ray pulse detected by the detection sensor is calculated for each of a plurality of energy ranges, and a variable of particle size is introduced. The variable value of the actual particle size of the sample is obtained by substituting these count values into the approximated equation, and the true density is obtained by substituting this variable value into the calculation formula for density calculation. It is possible to obtain a sample density that is actually suitable by introducing the parameter of particle size.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の密度測定の原理を説明するためのパル
スハイト図である。
FIG. 1 is a pulse height diagram for explaining the principle of density measurement of the present invention.

【図2】本発明の一実施例の密度測定装置の構成を示す
概略構成説明図である。
FIG. 2 is a schematic configuration explanatory diagram showing a configuration of a density measuring device according to an embodiment of the present invention.

【図3】図2に示す密度測定装置の演算処理部の構成を
示すブロック図である。
3 is a block diagram showing a configuration of an arithmetic processing unit of the density measuring device shown in FIG.

【図4】本発明の他の実施例の密度測定装置の構成を示
す概略構成説明図である。
FIG. 4 is a schematic configuration explanatory view showing a configuration of a density measuring device according to another embodiment of the present invention.

【図5】本発明の更に他の実施例の密度測定装置の構成
を示す概略構成説明図である。
FIG. 5 is a schematic configuration explanatory view showing a configuration of a density measuring device according to still another embodiment of the present invention.

【図6】密度測定において粒度を考慮すべきことを説明
するための説明図である。
FIG. 6 is an explanatory diagram for explaining that particle size should be considered in density measurement.

【図7】密度測定において粒度を考慮すべきことを説明
するための他の説明図である。
FIG. 7 is another explanatory diagram for explaining that the particle size should be considered in the density measurement.

【符号の説明】[Explanation of symbols]

WL;散乱γ線パルスの低エネルギー範囲 WH;散乱γ線パルスの高エネルギー範囲 3;密度測定装置 4;筐体 5;放射線源 6,7;検出センサ 10,11;GM管 18;第1の演算部 19;補正処理演算部 WL; low energy range of scattered γ-ray pulse WH; high energy range of scattered γ-ray pulse 3; density measuring device 4; housing 5; radiation source 6, 7; detection sensor 10, 11; GM tube 18; first Calculation unit 19; Correction processing calculation unit

フロントページの続き (72)発明者 大山 達夫 東京都大田区南蒲田2丁目16番46号 株式 会社トキメツク内Front page continuation (72) Inventor Tatsuo Oyama 2-16-46 Minami-Kamata, Ota-ku, Tokyo Within Tokimetsuku Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 被測定試料に対して放射線源からγ線パ
ルスを放射し、被測定試料中を通過してきたγ線パルス
の単位時間当たりの数を計数して、その計数値から試料
の密度を求める密度測定方法において、 前記計数値を複数のエネルギー範囲毎に求め、粒度の変
数を導入した近似式にこれらの計数値を代入することに
よって試料の粒度の変数値を求め、該変数値を密度算出
のための演算式に代入することによって補正した密度を
求めることを特徴とする密度測定方法。
1. A γ-ray pulse is emitted from a radiation source to a sample to be measured, the number of γ-ray pulses passing through the sample to be measured per unit time is counted, and the density of the sample is calculated from the counted value. In the density measurement method for obtaining the above, the count value is obtained for each of a plurality of energy ranges, the variable value of the particle size of the sample is obtained by substituting these count values into the approximate expression introducing the variable of the particle size, and the variable value is A density measuring method, characterized in that a corrected density is obtained by substituting it in an arithmetic expression for density calculation.
【請求項2】 被測定試料に対して放射線源からγ線パ
ルスを放射し、被測定試料中を通過してきたγ線パルス
の単位時間当たりの数を計数して、その計数値から試料
の密度を求める密度測定装置において、 前記γ線パルスの単位時間当たりの計数値を複数のエネ
ルギー範囲毎に検出する検出手段と、 粒度の変数を導入した近似式に該検出手段からの計数値
を代入することによって試料の粒度の変数値を求める第
1の演算手段と、 該変数値を密度算出のための演算式に代入することによ
って補正した密度を求める補正演算手段を有することを
特徴とする密度測定装置。
2. A γ-ray pulse is emitted from a radiation source to the sample to be measured, the number of γ-ray pulses passing through the sample to be measured is counted, and the density of the sample is calculated from the counted value. In the density measuring device for determining, the detection means for detecting the count value of the γ-ray pulse per unit time for each of a plurality of energy ranges, and the count value from the detection means is substituted into an approximate expression introducing a variable of particle size. The density measurement is characterized by having a first calculation means for obtaining a variable value of the particle size of the sample by the above, and a correction calculation means for obtaining a corrected density by substituting the variable value into an arithmetic expression for density calculation. apparatus.
JP6605491A 1991-03-29 1991-03-29 Surface scattering type density measuring method and surface scattering type density measuring device using the same Expired - Fee Related JP3133359B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6605491A JP3133359B2 (en) 1991-03-29 1991-03-29 Surface scattering type density measuring method and surface scattering type density measuring device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6605491A JP3133359B2 (en) 1991-03-29 1991-03-29 Surface scattering type density measuring method and surface scattering type density measuring device using the same

Publications (2)

Publication Number Publication Date
JPH0593685A true JPH0593685A (en) 1993-04-16
JP3133359B2 JP3133359B2 (en) 2001-02-05

Family

ID=13304780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6605491A Expired - Fee Related JP3133359B2 (en) 1991-03-29 1991-03-29 Surface scattering type density measuring method and surface scattering type density measuring device using the same

Country Status (1)

Country Link
JP (1) JP3133359B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010524005A (en) * 2007-12-14 2010-07-15 シュルンベルジェ ホールディングス リミテッド Radial density information from betatron density sonde
JP2011503521A (en) * 2007-12-21 2011-01-27 シュルンベルジェ ホールディングス リミテッド Formation density and Pe extraction method using pulse accelerator based on rock density tool

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010524005A (en) * 2007-12-14 2010-07-15 シュルンベルジェ ホールディングス リミテッド Radial density information from betatron density sonde
JP2011503521A (en) * 2007-12-21 2011-01-27 シュルンベルジェ ホールディングス リミテッド Formation density and Pe extraction method using pulse accelerator based on rock density tool

Also Published As

Publication number Publication date
JP3133359B2 (en) 2001-02-05

Similar Documents

Publication Publication Date Title
US4725963A (en) Method and apparatus for dimensional analysis and flaw detection of continuously produced tubular objects
JPH0574794B2 (en)
CN109655875B (en) Weak signal source positioning method based on four sensors
CN106501839A (en) A kind of profile of beam dosage measuring apparatus
CN106761666B (en) Method and device for four-probe scattering gamma logging and nonlinear data inversion
EP0892284A2 (en) Method and apparatus for diagnostic imaging
JP3133359B2 (en) Surface scattering type density measuring method and surface scattering type density measuring device using the same
Westerman et al. Physical specification of a gamma camera
US4407415A (en) Method of grade determination including compensation
JPH01227050A (en) Method and apparatus for measuring density and others of object
EP0324178B1 (en) Method and apparatus for measuring radioactivity
JPH04319644A (en) Density measuring method and density measuring instrument using thereof
JP2023048575A (en) Radioactivity measuring device and radioactivity measuring method
Miller et al. Combining radiography and passive measurements for radiological threat localization in cargo
JPH04319645A (en) Density measuring method and density measuring instrument using same
JPH0552734A (en) Density measuring method
JPH04194772A (en) Radiation measuring device
US5166964A (en) Method and apparatus for measuring density
CN112269205A (en) Method for determining a parameter of a radiation detector
US2962590A (en) Radiation detecting
JPH06103279B2 (en) Component analysis method
Nuyts et al. An analytical model for Compton scatter in a homogeneously attenuating medium
JPS6244680A (en) Bed density logging using two detector and line source
JPH0711573B2 (en) Radioactivity measuring method and apparatus
JPH05180942A (en) Radioactivity measuring instrument for radioactive waste packed in drum

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees