JPH0593681A - Measuring device of crack opening displacement - Google Patents

Measuring device of crack opening displacement

Info

Publication number
JPH0593681A
JPH0593681A JP24633991A JP24633991A JPH0593681A JP H0593681 A JPH0593681 A JP H0593681A JP 24633991 A JP24633991 A JP 24633991A JP 24633991 A JP24633991 A JP 24633991A JP H0593681 A JPH0593681 A JP H0593681A
Authority
JP
Japan
Prior art keywords
leaf springs
crack opening
opening displacement
surface acoustic
acoustic wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24633991A
Other languages
Japanese (ja)
Inventor
Masaki Koga
政樹 小賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP24633991A priority Critical patent/JPH0593681A/en
Publication of JPH0593681A publication Critical patent/JPH0593681A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To detect precisely an initial stage of a crack opening. CONSTITUTION:In a measuring device of a crack opening displacement by a clip gage method, surface acoustic wave rosonators 11a and 11b are provided on leaf springs 4A and 4B of a clip gage and the amount of deflection of the leaf springs caused by the crack opening displacement is detected as the amount of change of a resonance frequency of the resonators. Leaf springs 4A, 4B, 15A and 15B are made of metal or constructed of a piezoelectric material, and the surface acoustic wave resonators 11A and 11B are stuck on the springs made of metal, while resonator electrodes 16A and 16B are formed directly on those constructed of the piezoelectric material.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、クリップゲージ法によ
るき裂開口変位測定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a crack opening displacement measuring device using a clip gauge method.

【0002】[0002]

【従来の技術】金属やセラミックス,プラスチック等の
材料の破壊力学試験において、き裂端に生じる塑性領域
が十分小さい小規模降伏の条件が満たされる場合には応
力拡大係数の概念を中心とした線形破壊力学が有効とさ
れるが、小規模降伏が満たされない塑性領域が広範囲に
及ぶ場合にはき裂開口変位(COD)を測定する非線形
(弾塑性)破壊力学が有効とされ、き裂開口変位の測定
によってき裂先端での塑性域形成や平面ひずみ破壊靭性
ICの計測等がなされる。
2. Description of the Related Art In a fracture mechanics test of materials such as metals, ceramics, and plastics, when the small-scale yield condition is sufficiently small that the plastic region at the crack end is sufficiently small, the linearity centered on the concept of stress intensity factor is used. Although the fracture mechanics is effective, the nonlinear (elasto-plastic) fracture mechanics that measures the crack opening displacement (COD) is effective when the small-scale yield is not satisfied and the plastic region covers a wide range. The formation of a plastic zone at the crack tip and the measurement of plane strain fracture toughness K IC are carried out by the measurement.

【0003】図4はき裂開口変位測定装置を示す。予き
裂1Aが加えられた切欠試料1には予き裂1Aを挟んで
クリップゲージ2が装着され、荷重出力端3A,3B,
3Cにより予き裂1Aの下位と試料1の両側からの3点
曲げ応力が図示矢印方向に加えられ、この曲げ応力によ
る予き裂1A部位の開口変位がクリップゲージ2の先端
変位として測定される。
FIG. 4 shows a crack opening displacement measuring device. A clip gauge 2 is attached to the notch sample 1 to which the pre-crack 1A has been added, with the pre-crack 1A interposed therebetween, and the load output ends 3A, 3B,
3C applies three-point bending stress from the lower side of the precrack 1A and both sides of the sample 1 in the direction of the arrow shown in the figure, and the opening displacement of the precrack 1A portion due to this bending stress is measured as the tip displacement of the clip gauge 2. ..

【0004】クリップゲージ2は図5に示す構成にされ
る。2枚の金属製板バネ4A,4Bはその一端部が上下
の丸座金5A,5Bとスペーサ6を介してボルト7とナ
ット8により締付け固定される。また、板バネ4A,4
Bの夫々の一面にはひずみゲージ9A,9Bがエポキシ
樹脂等の高分子接着剤によって貼付けられ、さらに先端
部には切欠きが設けられ、この切欠きで試料1に取付け
られたナイフエッジ10A,10Bに係止される。
The clip gauge 2 is constructed as shown in FIG. One end of each of the two metal plate springs 4A and 4B is fixed by tightening a bolt 7 and a nut 8 via upper and lower round washers 5A and 5B and a spacer 6. Also, the leaf springs 4A, 4
Strain gauges 9A and 9B are attached to one surface of each of B by a polymer adhesive such as an epoxy resin, and a notch is provided at the tip, and the knife edge 10A attached to the sample 1 by this notch, 10B is locked.

【0005】このようなクリップゲージ2は板バネ4
A,4Bの弾性によって試料1のナイフエッジ10A,
10Bに係止され、荷重出力部3A〜3Cによる試料1
への3点曲げ負荷を加えたときのき裂開口量を板バネ4
A,4Bのたわみ量として作用させ、このたわみ量をひ
ずみゲージ9A,9Bの圧縮ひずみ増加量として検出す
る。このときのクリップ開口変位Vgに対し、き裂先端
開口変位(CTOD)φの推定は次式から求められる。
Such a clip gauge 2 has a leaf spring 4
Due to the elasticity of A and 4B, the knife edge 10A of the sample 1
Sample 1 by the load output parts 3A to 3C locked to 10B
The amount of crack opening when a 3-point bending load is applied to the leaf spring 4
The deflection amounts of A and 4B are caused to act, and the deflection amounts are detected as the compression strain increase amounts of the strain gauges 9A and 9B. For the clip opening displacement Vg at this time, the crack tip opening displacement (CTOD) φ can be estimated from the following equation.

【0006】[0006]

【数1】 [Equation 1]

【0007】但し、上式中の各変数は図6に示す関係に
あり、aはき裂長さ、rは回転係数、wは試料板厚、z
はナイフエッジ板厚である。また、CODとCTODの
関係は、き裂の任意位置における開口をCODと呼び、
き裂先端位置における開口をCTODと呼ぶ。
However, the variables in the above equation have the relation shown in FIG. 6, where a is the crack length, r is the rotation coefficient, w is the sample plate thickness, and z is the sample plate thickness.
Is the knife edge plate thickness. Also, regarding the relationship between COD and CTOD, the opening at any position of the crack is called COD,
The opening at the crack tip position is called CTOD.

【0008】[0008]

【発明が解決しようとする課題】従来のクリップゲージ
法によるき裂開口変位測定装置では、き裂先端の塑性鈍
化の程度をCODから推定するものであるが、き裂開口
に伴う金属板バネのたわみ減少をひずみゲージで検出す
る構成では検出感度上金属のように塑性変形能が大きい
試料でもき裂開口の初期段階を精度良く検出できない問
題があった。
In the conventional crack gauge displacement measuring device using the clip gauge method, the degree of plastic blunting of the crack tip is estimated from COD. In the configuration in which the deflection reduction is detected by the strain gauge, there is a problem in that the initial stage of crack opening cannot be accurately detected even in the case of a sample having a large plastic deformability such as metal due to the detection sensitivity.

【0009】また、同様の理由により、セラミックスや
ガラスのように破壊に至るまでの変形が極めて小さい材
料では従来のクリップゲージによる方法では測定精度が
悪いため破壊靭性KICの測定は困難であった。
For the same reason, it is difficult to measure the fracture toughness K IC for a material such as ceramics or glass that is extremely small in deformation until it breaks because the conventional clip gauge method has poor measurement accuracy. ..

【0010】さらに、ひずみゲージを用いる方式ではき
裂開口量の測定中の温度変化に起因する測定値の変動も
大きくなること、及び金属製板バネの表面にエポキシ樹
脂等の高分子接着剤でひずみゲージを貼付けた構造では
高温状態での測定ができない問題があった。
Further, in the method using the strain gauge, the variation of the measured value due to the temperature change during the measurement of the crack opening amount becomes large, and the surface of the metal leaf spring is coated with a polymer adhesive such as epoxy resin. The structure with a strain gauge attached has a problem that measurement cannot be performed at high temperatures.

【0011】本発明の目的は、き裂開口の初期段階を精
度良く検出し、さらに温度変動を少なく検出し、また高
温状態で測定できるき裂開口変位測定装置を提供するこ
とにある。
An object of the present invention is to provide a crack opening displacement measuring device capable of accurately detecting the initial stage of crack opening, detecting less temperature fluctuation, and measuring in a high temperature state.

【0012】[0012]

【課題を解決するための手段】本発明は、前記課題の解
決を図るため、試料の切欠き部を挟んでクリップゲージ
の一対の板バネを取付け、試料の切欠き部のき裂開口変
位を前記一対の板バネのたわみ量の検出値から求めるク
リップゲージ法によるき裂開口変位測定装置において、
前記一対の板バネは金属製又は圧電材料で構成し、前記
一対の板バネの表面又は裏面に夫々貼付け又は圧電材料
が基板として電極が形成され該板バネのたわみ量を共振
周波数の変化量として検出する一対の弾性表面波共振子
を備えたことを特徴とする。
According to the present invention, in order to solve the above-mentioned problems, a pair of leaf springs of a clip gauge are attached with a notch portion of a sample sandwiched between them so that crack opening displacement of the notch portion of the sample can be prevented. In the crack opening displacement measuring device by the clip gauge method obtained from the detected value of the deflection amount of the pair of leaf springs,
The pair of leaf springs are made of metal or a piezoelectric material, and electrodes are formed on the front surface or the back surface of the pair of leaf springs, respectively, or the piezoelectric material serves as a substrate, and the deflection amount of the leaf springs is used as the change amount of the resonance frequency. It is characterized by comprising a pair of surface acoustic wave resonators for detection.

【0013】[0013]

【作用】上記構成によれば、クリップゲージの板バネの
たわみ量の検出素子を該板バネに設けた弾性表面波共振
子とし、き裂開口変位による板バネのたわみ量を共振子
の共振周波数の変化量として検出する。これにより、き
裂開口変位の初期段階になる板バネのたわみ角1度以内
での変化に直線性を有して共振周波数の変化量として検
出する。
According to the above construction, the element for detecting the deflection amount of the leaf spring of the clip gauge is a surface acoustic wave resonator provided on the leaf spring, and the deflection amount of the leaf spring due to the displacement of the crack opening is used as the resonance frequency of the resonator. Is detected as the change amount of. As a result, the change within the bending angle of the leaf spring within 1 degree at the initial stage of the crack opening displacement has linearity and is detected as the change amount of the resonance frequency.

【0014】また、弾性表面波共振子は周波数温度特性
の変曲点が室温等の測定温度条件に合ったものを使用す
ることで温度変動に対する測定値の変動を抑制可能とす
る。
Further, by using a surface acoustic wave resonator in which the inflection point of the frequency-temperature characteristic meets the measured temperature condition such as room temperature, it is possible to suppress the fluctuation of the measured value due to the temperature fluctuation.

【0015】さらに、板バネを水晶等の圧電材料にて構
成し、この圧電材料を基板としてこの表面に弾性表面波
共振子の電極を形成することで板バネと弾性表面波共振
子との間に高分子接着剤の介在を無くし、高温状態での
高分子接着剤の熱塑性による測定不能を無くす。
Further, the leaf spring is made of a piezoelectric material such as quartz, and the piezoelectric material is used as a substrate to form an electrode of the surface acoustic wave resonator on this surface, whereby the leaf spring and the surface acoustic wave resonator are separated from each other. In addition, the presence of the polymer adhesive is eliminated, and the measurement failure due to the thermoplasticity of the polymer adhesive at high temperature is eliminated.

【0016】[0016]

【実施例】図1は本発明の一実施例を示すクリップゲー
ジの構成図である。同図が図5と異なる部分はひずみゲ
ージに代えて1ポート型の一対の弾性表面波共振子11
A,11Bを設けた点にある。この共振子11A,11
Bは、圧電基板12の表面にインターディジタル型トラ
ンスジューサ13と反射器14A,14Bがパターン電
極膜として分離形成される。トランスジューサ13は、
電気と弾性表面波の相互のエネルギー変換を行い、この
弾性表面波は圧電基板12上を両側に伝搬して反射器1
4A,14Bに至り、反射器14A,14Bで反射され
てトランスジューサ13に戻ることで共振した電気出力
として取出される。
1 is a block diagram of a clip gauge showing an embodiment of the present invention. 5 is different from FIG. 5 in that the strain gauge is replaced by a pair of 1-port surface acoustic wave resonators 11.
The point is that A and 11B are provided. This resonator 11A, 11
In B, the interdigital transducer 13 and the reflectors 14A and 14B are separately formed as pattern electrode films on the surface of the piezoelectric substrate 12. The transducer 13
Mutual energy conversion between electricity and surface acoustic waves is performed, and the surface acoustic waves propagate to both sides on the piezoelectric substrate 12 and are reflected by the reflector 1.
4A and 14B, reflected by the reflectors 14A and 14B, and returned to the transducer 13 to be extracted as a resonated electric output.

【0017】また、弾性表面波の周波数は、トランスジ
ューサ13を構成する一対のすだれ状電極13A,13
Bが交さするピッチで決まり、反射器14A,14Bの
ピッチも該周波数に合わせて形成される。
The frequency of the surface acoustic wave is determined by the pair of interdigital electrodes 13A and 13A forming the transducer 13.
It is determined by the pitch where B intersects, and the pitch of the reflectors 14A and 14B is also formed according to the frequency.

【0018】上述のように、一対の弾性表面波共振子1
1A,11Bを板バネ4A,4Bの表面に夫々接着剤で
貼付けたクリップゲージは、従来と同様に図4に示すよ
うに試料1に取付けられ、試料1のき裂開口変位を共振
子11A,11Bの共振周波数の変化量(シフト量)と
して検出する。
As described above, the pair of surface acoustic wave resonators 1
The clip gauges 1A and 11B are attached to the surfaces of the leaf springs 4A and 4B with adhesives, respectively, and the clip gauges are attached to the sample 1 as shown in FIG. The amount of change (shift amount) of the resonance frequency of 11B is detected.

【0019】即ち、試料1のき裂開口変位の進行による
板バネ4A,4Bの縮み変形で圧電基板12の縮み変形
を得、この変形によりトランスジューサ13の電極13
A,13B間の距離の縮み(ピッチの減少)に伴う共振
周波数の変化量として検出する。この検出において、き
裂開口変位(図6のVg)は相対する2枚の板バネ4
A,4Bのたわみ変位減少量の和であるため、夫々の弾
性表面波共振子11A,11Bの共振周波数変化量に対
応するVgの換算値の和として求められる。
That is, the contraction deformation of the leaf springs 4A and 4B due to the progress of the crack opening displacement of the sample 1 causes the contraction deformation of the piezoelectric substrate 12, and this deformation causes the electrode 13 of the transducer 13 to be deformed.
It is detected as the amount of change in the resonance frequency due to the contraction of the distance between A and 13B (reduction of pitch). In this detection, the crack opening displacement (Vg in FIG. 6) is determined by the two leaf springs 4 facing each other.
Since it is the sum of the flexural displacement reduction amounts of A and 4B, it is obtained as the sum of the converted values of Vg corresponding to the resonance frequency change amounts of the surface acoustic wave resonators 11A and 11B.

【0020】本実施例において、板バネ4A,4Bの長
さを30mmとした場合、板バネのたわみ角の変動幅が
き裂開口変位の初期段階になる1度以内であれば、たわ
み角と共振子11A,11Bの共振周波数の変化量との
関係はほぼ直線性を有し、共振周波数が200MHzの
共振子では約0.02度の測定精度を確保できる。
In the present embodiment, when the lengths of the leaf springs 4A and 4B are set to 30 mm, if the variation width of the deflection angle of the leaf springs is within 1 degree, which is the initial stage of the crack opening displacement, the deflection angle and the resonance occur. The relationship with the amount of change in the resonance frequency of the daughters 11A and 11B is substantially linear, and a resonator with a resonance frequency of 200 MHz can secure measurement accuracy of about 0.02 degrees.

【0021】また、共振子11A,11Bの圧電基板1
2としては、室温付近に周波数温度特性の変曲点を持つ
水晶圧電基板(例えばSTカット板)を用いることによ
り、室温での測定に温度変化があるもこれに起因する測
定値の変化量は従来のひずみゲージ計測に較べて低減で
きる。このときの水晶基板の厚さは0.1mm以上のも
のにされる。
Further, the piezoelectric substrate 1 of the resonators 11A and 11B
As for 2, by using a quartz crystal piezoelectric substrate (for example, an ST cut plate) having an inflection point of the frequency-temperature characteristic near room temperature, there is a temperature change in the measurement at room temperature, but the amount of change in the measured value due to this It can be reduced compared to the conventional strain gauge measurement. At this time, the crystal substrate has a thickness of 0.1 mm or more.

【0022】図2は本発明の他の実施例を示すクリップ
ゲージ構成図である。本実施例では板バネ4A,4Bに
代えて水晶製板バネ15A,15Bとし、この板バネ1
5A,15Bの外側表面を基板面として弾性表面波共振
子電極16A,16Bを直接に形成している。
FIG. 2 is a block diagram of a clip gauge showing another embodiment of the present invention. In this embodiment, crystal leaf springs 15A and 15B are used instead of the leaf springs 4A and 4B.
Surface acoustic wave resonator electrodes 16A and 16B are directly formed with the outer surfaces of 5A and 15B as substrate surfaces.

【0023】水晶製板バネ15A,15Bは、例えば水
晶のSTカット板で形成され、板バネ部15A,15B
はその一端部が座金5A,5B,5C,5Dとスペーサ
6を介してボルト7とナット8により締付け固定される
と共に反対側の先端には切欠きが形成される。
The crystal leaf springs 15A, 15B are formed of, for example, quartz ST cut plates, and the leaf spring portions 15A, 15B are formed.
Its one end is fastened and fixed by bolts 7 and nuts 8 via washers 5A, 5B, 5C, 5D and spacers 6, and a notch is formed at the tip on the opposite side.

【0024】弾性表面波共振子電極16A,16Bは、
板バネ部15A,15Bの表面に真空蒸着法によって図
1の場合と同様の1ポート型電極構造に形成される。
The surface acoustic wave resonator electrodes 16A and 16B are
A 1-port type electrode structure similar to that of FIG. 1 is formed on the surfaces of the leaf spring portions 15A and 15B by vacuum deposition.

【0025】本実施例によるクリップゲージは、図1の
ものと同様に試料1に取付けられ、試料1のき裂開口変
位を共振子16A,16Bの共振周波数の変化量(シフ
ト量)として検出する。
The clip gauge according to this embodiment is attached to the sample 1 as in the case of FIG. 1, and the crack opening displacement of the sample 1 is detected as the change amount (shift amount) of the resonance frequency of the resonators 16A and 16B. ..

【0026】ここで、注目すべきことは、水晶製板バネ
15A,15Bを弾性表面波共振子の基板としてその表
面に弾性表面波共振子の電極16A,16Bが直接に形
成されるため、金属製板バネと弾性表面波共振子との貼
付けのための接着剤が介在しなくなり、高温状態(例え
ば摂氏150度〜200度以上)での測定にも板バネ部
15A,15Bと電極16A,16B間の塑性発生が無
く、き裂開口変位を確実に電極16A,16Bの共振周
波数変化として作用させることができる。
Here, it should be noted that since the crystal leaf springs 15A and 15B are used as the substrate of the surface acoustic wave resonator and the electrodes 16A and 16B of the surface acoustic wave resonator are directly formed on the surface thereof, metal is used. The adhesive for sticking the leaf spring and the surface acoustic wave resonator does not intervene, and the leaf spring portions 15A and 15B and the electrodes 16A and 16B can be used for measurement in a high temperature state (for example, 150 degrees Celsius to 200 degrees Celsius or more). There is no plasticity between the cracks, and the crack opening displacement can be reliably acted as a change in the resonance frequency of the electrodes 16A and 16B.

【0027】なお、水晶のキューリー点は摂氏500度
程度あり、この温度以下の温度であれば測定可能とな
る。このとき、測定温度に合わせた変曲点を持つ水晶を
使用することで温度変動による測定値変化を抑制でき
る。
The Curie point of quartz is about 500 degrees Celsius, and measurement is possible at temperatures below this temperature. At this time, by using a crystal having an inflection point matched to the measured temperature, it is possible to suppress a change in the measured value due to a temperature change.

【0028】本実施例において、板バネ15A,15B
の材料としては、水晶以外の圧電材料、例えばニオブ酸
リチウム(LiNbO3)やタンタル酸リチウム(Li
TaO3)も使用できる。また、板バネ15A,15B
を第2図のようにスペーサ6を介して締付け固定する代
わりにスペーサ6に相当する部分を基部として、この基
部と板バネ部15A,15Bとを水晶等の圧電材料にて
一体形成する構造としても良い。
In this embodiment, the leaf springs 15A and 15B are used.
Examples of the material include piezoelectric materials other than quartz, such as lithium niobate (LiNbO 3 ) and lithium tantalate (Li).
TaO 3 ) can also be used. Also, the leaf springs 15A and 15B
2 has a structure in which the base portion and the leaf spring portions 15A and 15B are integrally formed of a piezoelectric material such as quartz, instead of tightening and fixing via the spacer 6 as shown in FIG. Is also good.

【0029】なお、上述までの実施例において、弾性表
面波共振子11A,11B又は共振子電極16A,16
Bは図3に示す2ポート型の一対の弾性表面波共振子又
は共振子電極にして同等の作用効果を得ることができ
る。また、共振子11A,11Bを板バネ4A,4Bへ
貼付け又は板バネ部15A,15Bに共振子電極16
A,16Bを形成するのに、板バネ4A,4B又は板バ
ネ部15A,15Bの裏面(内側面)とする構成でも良
い。この場合、き裂開口変位の進みは共振子の伸び変形
として計測される。
In the above-described embodiments, the surface acoustic wave resonators 11A and 11B or the resonator electrodes 16A and 16A.
B can be a pair of two-port surface acoustic wave resonators or resonator electrodes shown in FIG. 3 to obtain the same effect. Further, the resonators 11A and 11B are attached to the leaf springs 4A and 4B, or the resonator electrodes 16 are attached to the leaf spring portions 15A and 15B.
In forming A and 16B, the back surface (inner side surface) of the leaf springs 4A and 4B or the leaf spring portions 15A and 15B may be used. In this case, the progress of the crack opening displacement is measured as the elongation deformation of the resonator.

【0030】[0030]

【発明の効果】以上のとおり、本発明によれば、クリッ
プゲージの板バネのたわみ量を該板バネに貼付け又は圧
電材料の板バネ部を基板として共振子電極を形成した弾
性表面波共振子の共振周波数の変化量として検出する構
成としたため、き裂開口変位の初期段階にも直線性を有
して検出することができ、塑性変形能の大小に拘わらず
き裂開口の初期段階での変位を精度良く検出、測定でき
る効果がある。また、弾性表面波共振子はその圧電基板
として水晶圧電基板を用いることができ、室温付近に周
波数温度特性の変曲点を持つものを圧電基板とした共振
子とすることで温度変動に伴う測定値の変動を少なくす
ることができる。
As described above, according to the present invention, a surface acoustic wave resonator in which a deflection amount of a leaf spring of a clip gauge is attached to the leaf spring or a leaf electrode portion of a piezoelectric material is used as a substrate to form a resonator electrode. Since it is configured to detect as the amount of change in the resonance frequency, it can be detected with linearity even in the initial stage of crack opening displacement, and it can be detected in the initial stage of crack opening regardless of the magnitude of plastic deformability. There is an effect that the displacement can be accurately detected and measured. In addition, the surface acoustic wave resonator can use a quartz crystal piezoelectric substrate as its piezoelectric substrate.Measurement due to temperature fluctuations can be made by using a piezoelectric substrate that has an inflection point of frequency-temperature characteristics near room temperature. The fluctuation of the value can be reduced.

【0031】また、板バネを圧電材料で構成し、これを
基板として弾性表面波共振子電極を形成することによ
り、板バネに高分子接着剤で共振子を貼付けることが無
く、高温状態での測定も可能となる。
Further, the leaf spring is made of a piezoelectric material, and the surface acoustic wave resonator electrode is formed by using this as a substrate, so that the leaf spring does not have to be attached with a polymer adhesive, and the leaf spring is kept in a high temperature state. Can be measured.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示すクリップゲージの構成
図。
FIG. 1 is a configuration diagram of a clip gauge showing an embodiment of the present invention.

【図2】本発明の他の実施例を示すクリップゲージの構
成図。
FIG. 2 is a configuration diagram of a clip gauge showing another embodiment of the present invention.

【図3】本発明における他の実施例の共振子構成図。FIG. 3 is a configuration diagram of a resonator according to another embodiment of the present invention.

【図4】き裂開口変位測定装置の構成図。FIG. 4 is a configuration diagram of a crack opening displacement measuring device.

【図5】従来のクリップゲージ構成図。FIG. 5 is a conventional clip gauge configuration diagram.

【図6】き裂先端開口変位の態様図。FIG. 6 is a diagram showing how the crack tip opening is displaced.

【符号の説明】[Explanation of symbols]

2…クリップゲージ、4A,4B…板バネ、11A,1
1B…弾性表面波共振子、12…圧電基板、13…トラ
ンスジューサ、14A,14B…反射器、15A,15
B…水晶製板バネ部、16A,16B…弾性表面波共振
子電極。
2 ... Clip gauge, 4A, 4B ... Leaf spring, 11A, 1
1B ... Surface acoustic wave resonator, 12 ... Piezoelectric substrate, 13 ... Transducer, 14A, 14B ... Reflector, 15A, 15
B ... Quartz leaf springs, 16A, 16B ... Surface acoustic wave resonator electrodes.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 試料の切欠き部を挟んでクリップゲージ
の一対の板バネを取付け、試料の切欠き部のき裂開口変
位を前記一対の板バネのたわみ量の検出値から求めるク
リップゲージ法によるき裂開口変位測定装置において、
前記一対の板バネは金属製又は圧電材料で構成し、前記
一対の板バネの表面又は裏面に夫々貼付け又は圧電材料
を基板として電極が形成され該板バネのたわみ量を共振
周波数の変化量として検出する一対の弾性表面波共振子
を備えたことを特徴とするき裂開口変位測定装置。
1. A clip gauge method in which a pair of leaf springs of a clip gauge are attached to sandwich a notch portion of a sample, and a crack opening displacement of the notch portion of the sample is obtained from a detected value of a deflection amount of the pair of leaf springs. In the crack opening displacement measuring device by
The pair of leaf springs are made of metal or a piezoelectric material, and electrodes are formed on the front surface or the back surface of the pair of leaf springs, respectively, or by using the piezoelectric material as a substrate, and the deflection amount of the leaf springs is taken as the change amount of the resonance frequency. A crack opening displacement measuring device comprising a pair of surface acoustic wave resonators for detecting.
JP24633991A 1991-02-20 1991-09-26 Measuring device of crack opening displacement Pending JPH0593681A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24633991A JPH0593681A (en) 1991-02-20 1991-09-26 Measuring device of crack opening displacement

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP3-25953 1991-02-20
JP2595391 1991-02-20
JP24633991A JPH0593681A (en) 1991-02-20 1991-09-26 Measuring device of crack opening displacement

Publications (1)

Publication Number Publication Date
JPH0593681A true JPH0593681A (en) 1993-04-16

Family

ID=26363658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24633991A Pending JPH0593681A (en) 1991-02-20 1991-09-26 Measuring device of crack opening displacement

Country Status (1)

Country Link
JP (1) JPH0593681A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011530700A (en) * 2008-08-06 2011-12-22 クオーツ サイズミック センサーズ,インク. High resolution digital earthquake and gravity sensor and method
KR20220116974A (en) * 2021-02-16 2022-08-23 부산대학교 산학협력단 Method of measuring fracture toughness considering the plastic rotational factor based on double clip gauge

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011530700A (en) * 2008-08-06 2011-12-22 クオーツ サイズミック センサーズ,インク. High resolution digital earthquake and gravity sensor and method
US8616054B2 (en) 2008-08-06 2013-12-31 Quartz Seismic Sensors, Inc. High-resolution digital seismic and gravity sensor and method
KR20220116974A (en) * 2021-02-16 2022-08-23 부산대학교 산학협력단 Method of measuring fracture toughness considering the plastic rotational factor based on double clip gauge

Similar Documents

Publication Publication Date Title
US4623813A (en) Load sensor using a piezoelectric S.A.W. device
Xu et al. Flexible surface acoustic wave strain sensor based on single crystalline LiNbO3 thin film
US8258674B2 (en) Surface acoustic wave sensor and system
US7825568B2 (en) Electro acoustic sensor for high pressure environments
EP2791665B1 (en) Identification of environmental sensor changes and temperature sensor changes with a two layer bulk acoustic wave resonator
Chen et al. Bendable transparent ZnO thin film surface acoustic wave strain sensors on ultra-thin flexible glass substrates
Li et al. Highly sensitive surface acoustic wave flexible strain sensor
CN108931292B (en) Method for calibrating at least one sensor
Shu et al. The investigation of integrated SAW strain sensor based on AlN/TC4 structure
US20190383695A1 (en) Systems and Methods for Monitoring Plastic Deformation of a Structured Material
US20220196490A1 (en) Resonator device
Feng et al. Flexible strain sensor based on ultra-thin quartz plate
JP5387919B2 (en) Surface acoustic wave torque / temperature sensor with improved temperature sensitivity
US20230366755A1 (en) Resonator device
Yang et al. Study on the sensitivity of diaphragm-type SAW pressure sensor
JPH0593681A (en) Measuring device of crack opening displacement
Dick Characterizing effective d31 values for PZT from the nonlinear oscillations of clamped-clamped micro-resonators
Ogi et al. Determination of elastic, anelastic, and piezoelectric coefficients of piezoelectric materials from a single specimen by acoustic resonance spectroscopy
Weber et al. Sensor for ambient pressure and material strains using a thin film bulk acoustic resonator
CN114793103A (en) Acoustic wave resonator suitable for multi-parameter sensing
WO2004082137A2 (en) Method of construction of saw devices
JP3225625B2 (en) Back strain measuring device
Belkhelfa et al. Design optimization of SAW temperature sensor based one port resonator using FEM simulation
Delicado et al. Influence of induced stress on AlN-solidly mounted resonators
Pan et al. Double beam laser interferometer measurements of surface displacements at the resonance frequencies of PZT piezoelectric ceramic resonators