JPH059365B2 - - Google Patents

Info

Publication number
JPH059365B2
JPH059365B2 JP59198633A JP19863384A JPH059365B2 JP H059365 B2 JPH059365 B2 JP H059365B2 JP 59198633 A JP59198633 A JP 59198633A JP 19863384 A JP19863384 A JP 19863384A JP H059365 B2 JPH059365 B2 JP H059365B2
Authority
JP
Japan
Prior art keywords
iodide
reaction
niobium
metal
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59198633A
Other languages
Japanese (ja)
Other versions
JPS6177603A (en
Inventor
Hajime Sudo
Keiichiro Nishizawa
Koyata Takahashi
Itsuo Hirano
Tetsushi Iwamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP19863384A priority Critical patent/JPS6177603A/en
Publication of JPS6177603A publication Critical patent/JPS6177603A/en
Publication of JPH059365B2 publication Critical patent/JPH059365B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Description

【発明の詳細な説明】 本発明はニオブ等の金属沃化物の製造方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing metal iodides such as niobium.

ニオブ等の金属沃化物は、医薬品、触媒および
センサーなどに広く使用されている。
Metal iodides such as niobium are widely used in pharmaceuticals, catalysts and sensors.

特に近年電子材料や高純度金属製造用の原料と
して、高純度で活性に富む金属沃化物が要求され
ている。
Particularly in recent years, highly pure and highly active metal iodides have been required as raw materials for electronic materials and high purity metal production.

従来、金属沃化物は、当該金属と、沃素ガスを
直接反応させて得る方法が主流である。しかしこ
の様な方法では、原料に用いる金属自身が高価な
金属は、したがつて製品沃化金属も高価となる。
反応速度を速くするには高温度が必要となる。高
温度ではほとんどの金属が沃素化されるので反応
装置等の材質に制限がある。等等の理由で工業規
模での大量生産は困難であつた。
Conventionally, metal iodides have been mainly obtained by directly reacting the metal with iodine gas. However, in such a method, the metal itself used as a raw material is expensive, and therefore the metal iodide product is also expensive.
High temperatures are required to speed up the reaction. At high temperatures, most metals are iodinated, so there are restrictions on the materials for the reactor, etc. For these reasons, mass production on an industrial scale has been difficult.

本発明の目的は、この様な従来の方法よりも安
価に又、簡単な方法で高純度の金属沃化物を製造
する方法を提供することにある。
An object of the present invention is to provide a method for producing highly pure metal iodides at a lower cost and simpler method than such conventional methods.

即ち、本発明は、比較的安価に得られる金属の
塩化物を気相、液相又は固相で沃化水素(HI)、
及び沃素ガス(I2)と反応させることにより金属
沃化物を製造する方法である。
That is, the present invention provides hydrogen iodide (HI),
This is a method for producing metal iodides by reacting with iodine gas (I 2 ).

以下にその詳細を説明する。 The details will be explained below.

本発明で用いるニオブの塩化物については、
NbCl5、NbCl4、NbCl3、Nb3Cl8、NbCl2等の塩
化物である。又、HIは、I2とH2の反応で得られ
るもの、沃化水素酸を脱水素したものなどで乾燥
したものを用いる。
Regarding the niobium chloride used in the present invention,
These are chlorides such as NbCl 5 , NbCl 4 , NbCl 3 , Nb 3 Cl 8 and NbCl 2 . Further, as HI, one obtained by the reaction of I 2 and H 2 or one dried by dehydrogenating hydriodic acid is used.

塩化物とHIとの反応は、対象金属をHとする
と MClx+XHI−>MIx+XHCl で示される。
The reaction between chloride and HI is expressed as MClx+XHI−>MIx+XHCl, where H is the target metal.

原料の塩化物は、固体、液体あるいは気体のい
ずれでもよく、反応温度と取扱いの容易さから適
宜決定する。特に固相で供給する場合、原料塩化
物の形状を調整しておけば任意の形状の沃化物が
容易に得られる。
The raw material chloride may be solid, liquid, or gas, and is appropriately determined based on the reaction temperature and ease of handling. Particularly when supplied in a solid phase, iodide in any shape can be easily obtained by adjusting the shape of the raw material chloride.

反応温度は特に制限はないが、得られる沃化物
の融点以下で反応させれば容易に微粉末の沃化物
が得られる。通常100〜700℃である。
The reaction temperature is not particularly limited, but if the reaction is carried out at a temperature below the melting point of the obtained iodide, a finely powdered iodide can be easily obtained. Usually 100-700℃.

本発明での反応圧力は、通常大気圧でよいが、
装置面から許されるならば、減圧下もしくは加圧
下で行なうことも可能である。
The reaction pressure in the present invention may normally be atmospheric pressure, but
If permitted by the equipment, it is also possible to carry out under reduced pressure or increased pressure.

また、HIは還元剤であるので反応温度が高い
と高原子価の塩化物にHIを反応させても低原子
価の沃化物が得られる。しかし、本発明ではHI
とI2を併用するので高原子価の沃化物が容易に得
られる。
Furthermore, since HI is a reducing agent, if the reaction temperature is high, a low-valent iodide can be obtained even if a high-valent chloride is reacted with HI. However, in the present invention, HI
By using I 2 and I 2 together, a high valence iodide can be easily obtained.

併用するI2の濃度は任意であるが、1%から50
%が適当である。I2濃度が低いと効果が少なく、
又、50%を越えるとHIの分解が抑制せられ反応
速度が遅くなる。
The concentration of I2 used in combination is arbitrary, but it ranges from 1% to 50%.
% is appropriate. When the I2 concentration is low, the effect is small;
Moreover, when it exceeds 50%, the decomposition of HI is suppressed and the reaction rate becomes slow.

本発明によれば、高収率で微細な金属化物が得
られ、反応は比較的低温での瞬間的な反応である
のできわめて効率よく沃化物を得る。又原料塩化
物も比較的安価に得られるので経済的である 次に実施例で本発明を詳述する。
According to the present invention, a fine metal compound can be obtained in high yield, and since the reaction is an instantaneous reaction at a relatively low temperature, iodide can be obtained very efficiently. In addition, the raw material chloride can be obtained at a relatively low cost, making it economical.The present invention will now be described in detail with reference to Examples.

実施例 1 市販のフエロニオブを塩素化精製して得た粒度
直径が10〜100μの五塩化ニオブ10gをHIと向流
になるように反応管に供給(0.15g/min)し、
I22%を含むHIを0.7g/minの速度で流した。反
応部はあらかじめ150℃に保つた。反応管下部で
捕集した沃化物の組成はHb12.3%、フリー沃素
0.4%、結合沃素87.3%の五沃化ニオブ(NbI5
であつた。収率は97%であつた。
Example 1 10 g of niobium pentachloride with a particle size diameter of 10 to 100 μ obtained by chlorinating and refining commercially available ferroniobium was fed into a reaction tube (0.15 g/min) in countercurrent to HI.
HI containing 2% I 2 was flowed at a rate of 0.7 g/min. The reaction area was kept at 150°C in advance. The composition of iodide collected at the bottom of the reaction tube was 12.3% Hb and free iodine.
Niobium pentaiodide (NbI 5 ) with 0.4% and 87.3% combined iodine
It was hot. The yield was 97%.

実施例 2 実施例1で用いた五塩化ニオブを200℃に加熱
し、アルゴンガスをキヤリアーガスとして横型の
反応缶に供給(0.15g/min)した。HIガス、I2
ガス(分圧100mmHg)を0.7g/minで供給した。
反応温度は300℃に保つた。
Example 2 Niobium pentachloride used in Example 1 was heated to 200°C, and argon gas was supplied as a carrier gas (0.15 g/min) to a horizontal reaction vessel. HI gas, I2
Gas (partial pressure 100 mmHg) was supplied at 0.7 g/min.
The reaction temperature was kept at 300°C.

得られた五沃化ニオブは25gで、フリー沃素
0.2%、収率は95%であつた。
The obtained niobium pentaiodide was 25g, free iodine
The yield was 95%.

Claims (1)

【特許請求の範囲】[Claims] 1 ニオブの塩化物に沃化水素と、沃素との混合
ガスを接触させて反応させニオブを沃化物として
回収することを特徴とするニオブ沃化物の製造方
法。
1. A method for producing niobium iodide, which comprises bringing niobium chloride into contact with a mixed gas of hydrogen iodide and iodine to react and recovering niobium as iodide.
JP19863384A 1984-09-25 1984-09-25 Production of iodide Granted JPS6177603A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19863384A JPS6177603A (en) 1984-09-25 1984-09-25 Production of iodide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19863384A JPS6177603A (en) 1984-09-25 1984-09-25 Production of iodide

Publications (2)

Publication Number Publication Date
JPS6177603A JPS6177603A (en) 1986-04-21
JPH059365B2 true JPH059365B2 (en) 1993-02-04

Family

ID=16394445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19863384A Granted JPS6177603A (en) 1984-09-25 1984-09-25 Production of iodide

Country Status (1)

Country Link
JP (1) JPS6177603A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2730225B1 (en) * 1995-02-02 1997-04-11 Rhone Poulenc Chimie PROCESS FOR THE PREPARATION OF IRIDIUM IODIDES AND THEIR USE AS CATALYSTS

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB991335A (en) * 1961-10-17 1965-05-05 Exxon Research Engineering Co Preparation of partially reduced transition metal bromides and iodides

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB991335A (en) * 1961-10-17 1965-05-05 Exxon Research Engineering Co Preparation of partially reduced transition metal bromides and iodides

Also Published As

Publication number Publication date
JPS6177603A (en) 1986-04-21

Similar Documents

Publication Publication Date Title
US4435379A (en) Process for treating chlorinated hydrocarbons
US2745735A (en) Method of producing titanium
JP3272689B2 (en) Direct synthesis of methylchlorosilane
GB1565220A (en) Production of aluminum chloride and silicon chloride from clay
JPS6191335A (en) Method for recovering platinum group metal
JPH059365B2 (en)
US3130010A (en) Process for production of high purity cesium metal and cesium compounds
US2619406A (en) Method for the solid phase production of a disilicide
US2961293A (en) Purification of hafnium tetrahalide
US3407031A (en) Process for the manufacture of inorganic chlorides
JP7219625B2 (en) Method for producing 1-chloro-2,2-difluoroethylene
JPH1053414A (en) Production of metal disulfide and formation of bimetal trisulfide by further treatment thereof
US2850379A (en) Process for production of refractory metals
JPS61500661A (en) Aluminum chloride purification method
JPH09227965A (en) Refined metal ruthenium powder and its production
JPH0134208B2 (en)
US3056649A (en) Tantalum and columbium pentafluoride production
US2956872A (en) Preparation of refractory metals
JP2613260B2 (en) Method for producing trichlorosilane
US5211921A (en) Process of making niobium oxide
JP2864037B2 (en) Method for producing antimony pentafluoride
JP3564852B2 (en) Method for producing high purity metal ruthenium powder
US2557744A (en) Preparation of a metal carbonyl from tungsten or molybdenum oxychloride
US5188810A (en) Process for making niobium oxide
JP3406597B2 (en) Method for producing niobium oxide