JPH0593277A - Plasma cvd apparatus - Google Patents

Plasma cvd apparatus

Info

Publication number
JPH0593277A
JPH0593277A JP25377691A JP25377691A JPH0593277A JP H0593277 A JPH0593277 A JP H0593277A JP 25377691 A JP25377691 A JP 25377691A JP 25377691 A JP25377691 A JP 25377691A JP H0593277 A JPH0593277 A JP H0593277A
Authority
JP
Japan
Prior art keywords
electrode
high frequency
film
frequency electrode
plasma cvd
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25377691A
Other languages
Japanese (ja)
Inventor
Akira Doi
陽 土居
So Kuwabara
創 桑原
Takahiro Nakahigashi
孝浩 中東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd filed Critical Nissin Electric Co Ltd
Priority to JP25377691A priority Critical patent/JPH0593277A/en
Publication of JPH0593277A publication Critical patent/JPH0593277A/en
Pending legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To prevent the sticking and mixing of particles into a formed film than heretofore and to execute high speed film forming in a plasma CVD apparatus in which a ground electrode is opposed to a high frequency electrode. CONSTITUTION:In a plasma CVD apparatus in which a high frequency electrode 2 and a substrate holder 3 served also as a ground electrode are opposed, a meshy intermediate electrode 10 is arranged between the high frequency electrode 2 and the substrate holder 3, the intermediate electrode 10 is impressed with positive voltage against a ground by a power source 10a and the type of the high frequency electrode 2 is a magnetron one.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は各種半導体デバイスの製
造、液晶表示装置の製造、基体上への超電導膜の形成、
機械部品等への耐腐食性、耐磨耗性膜の形成等に利用さ
れるプラズマCVD装置、特に、高周波電極と接地電極
を対向させたプラズマCVD装置に関する。
BACKGROUND OF THE INVENTION The present invention relates to the production of various semiconductor devices, the production of liquid crystal display devices, the formation of superconducting films on substrates,
The present invention relates to a plasma CVD apparatus used for forming a corrosion resistant and abrasion resistant film on mechanical parts and the like, and particularly to a plasma CVD apparatus in which a high frequency electrode and a ground electrode are opposed to each other.

【0002】[0002]

【従来の技術】高周波電極と接地電極を対向させたプラ
ズマCVD装置は、代表例として平行平板電極型のプラ
ズマCVD装置を挙げることができるが、それは図2に
例示するように、真空室1中に平板状の高周波電極2
と、平板状の接地電極を兼ねる基体ホルダ3とを平行に
向かい合わせて配置し、高周波電極2にはマッチングボ
ックス4を介して高周波電源5を接続するとともに、基
体ホルダ3を接地し、且つ、ヒータ6にて基体ホルダ3
上に設置される基体9を成膜温度に制御できるように
し、さらに、真空室1内を所定の成膜真空度に維持する
ための真空ポンプを含む排気系7及び真空室1内に原料
ガスを供給するためのガス導入口8を設けたものであ
る。高周波電極2は原料ガスの噴射ノズルを兼ねてい
る。
2. Description of the Related Art As a plasma CVD apparatus in which a high frequency electrode and a ground electrode are opposed to each other, a parallel plate electrode type plasma CVD apparatus can be mentioned as a typical example. As shown in FIG. Flat plate high frequency electrode 2
And a substrate holder 3 also serving as a flat plate-shaped ground electrode are arranged in parallel to face each other, a high frequency power source 5 is connected to the high frequency electrode 2 via a matching box 4, and the substrate holder 3 is grounded, and Heater 6 for substrate holder 3
The base material 9 installed on the substrate 9 can be controlled to a film forming temperature, and further, an exhaust system 7 including a vacuum pump for maintaining the inside of the vacuum chamber 1 at a predetermined film forming vacuum degree and a source gas in the vacuum chamber 1. The gas inlet 8 for supplying the gas is provided. The high frequency electrode 2 also serves as a nozzle for injecting the raw material gas.

【0003】基体ホルダ3には、例えば半導体デバイス
基板9が設置され、しかるのち、該基板9がヒータ6に
て所定の成膜温度に制御されるとともに真空室1内が所
定の成膜真空度に維持されつつガス導入口8から原料ガ
スが供給され、このガスに高周波電極2から高周波電圧
が印加されることで該ガスがプラズマ化し、このプラズ
マに基板9表面が曝されることで、該表面に所望の薄膜
が形成される。
A semiconductor device substrate 9, for example, is installed on the substrate holder 3, and then the substrate 9 is controlled to a predetermined film forming temperature by a heater 6 and the inside of the vacuum chamber 1 has a predetermined film forming vacuum degree. The raw material gas is supplied from the gas introduction port 8 while being maintained at a high temperature, and a high frequency voltage is applied to the gas from the high frequency electrode 2, so that the gas is turned into plasma, and the surface of the substrate 9 is exposed to the plasma. A desired thin film is formed on the surface.

【0004】[0004]

【発明が解決しようとする課題】しかし、この種の従来
プラズマCVD装置においては、例えば、原料ガスとし
てモノシラン、ジシラン、モノクロルシラン、トリクロ
ルシラン等で代表されるSi無機化合物ガスを主たる親
ガスとする原料ガスを供給し、1Torr前後の成膜真
空度のもとに、該ガスを高周波電圧(ラジオ高周波)印
加にてプラズマ分解し、Si膜(主としてアモルファス
シリコン膜)、SiNx膜に代表されるSi化合物膜を
シリコンウエハ基板、ガラス基板等に形成する場合、中
性又はイオン化したラジカルがガス放電空間で発生した
あと消滅しがたく、親ガス分子と2次反応して高次のS
i化合物を形成し、これが成長して膜欠陥の原因となる
パーティクルとなり、基板膜に付着したり、混入したり
する。パーティクルの発生が多い状態で成膜すると、高
次Si化合物が基板トレーや真空室内壁に付着して、や
がて剥落し、ダストパーティクルとして基板上に降り注
ぐ現象が短時間のうちに発生し、基板膜に付着したり、
混入したりする。また、高速成膜の目的でRF電力を上
げると、さらにパーティクルの発生が顕著となり、生産
性(スループット)向上の上で大きな障害となってい
る。
However, in this type of conventional plasma CVD apparatus, for example, a main inorganic gas is a Si inorganic compound gas represented by monosilane, disilane, monochlorosilane, trichlorosilane or the like as a raw material gas. A raw material gas is supplied, and the gas is plasma decomposed by applying a high frequency voltage (radio high frequency) under a film forming vacuum degree of about 1 Torr, and a Si film (mainly an amorphous silicon film) or a SiNx film is representative. When a compound film is formed on a silicon wafer substrate, a glass substrate, etc., neutral or ionized radicals are hard to disappear after they are generated in the gas discharge space, and secondary reactions with parent gas molecules cause a higher S
The i compound is formed and grows to become particles that cause film defects, and adheres to or mixes with the substrate film. When a film is formed in a state where many particles are generated, a high-order Si compound adheres to the substrate tray or the inner wall of the vacuum chamber and is eventually peeled off, which causes dust particles to fall on the substrate in a short time. Adhere to
It mixes. Further, when the RF power is increased for the purpose of high-speed film formation, particles are more prominently generated, which is a big obstacle in improving productivity (throughput).

【0005】そこで本発明は、高周波電極に接地電極を
対向させたプラズマCVD装置であって、成膜へのパー
ティクル付着や混入を従来より防止できるプラズマCV
D装置を提供することを課題とする。また、本発明は、
高周波電極に接地電極を対向させたプラズマCVD装置
であって、高速成膜を行える前記プラズマCVD装置を
提供することを課題とする。
Therefore, the present invention is a plasma CVD apparatus in which a high frequency electrode and a ground electrode are opposed to each other, and plasma CV capable of preventing particles from adhering to or mixing into a film is conventionally formed.
An object is to provide a D device. Further, the present invention is
It is an object of the present invention to provide a plasma CVD device in which a ground electrode is opposed to a high frequency electrode, and the plasma CVD device can perform high-speed film formation.

【0006】[0006]

【課題を解決するための手段】本発明者は前記課題を解
決するにあたり、プラズマCVD装置の気相中に発生す
るパーティクル生成の原因となる特定のラジカルは、通
常、負に帯電していること、従って、基体ホルダの前に
正電位部を設ければ、この部分で負帯電ラジカルがトラ
ップされ、成膜に寄与する中性又は正に帯電したラジカ
ルを優先的に基体へ進め得ることに着目し、また、高周
波電極をマグネトロンタイプに形成すれば、親ガスの分
解速度が速くなり、それだけ成膜速度を上げ得ることに
着目し、本発明を完成した。
In order to solve the above-mentioned problems, the inventor of the present invention has found that specific radicals, which cause particles generated in the gas phase of a plasma CVD apparatus, are usually negatively charged. Therefore, if a positive potential portion is provided in front of the substrate holder, negatively charged radicals are trapped in this portion, and neutral or positively charged radicals that contribute to film formation can be preferentially advanced to the substrate. The present invention has been completed, paying attention to the fact that if the high-frequency electrode is formed into a magnetron type, the decomposition rate of the parent gas is increased, and the film formation rate can be increased accordingly.

【0007】すなわち本発明は、先ず、高周波電極と接
地電極を対向させたプラズマCVD装置において、前記
高周波電極と接地電極との間にメッシュ状の中間電極を
配置し、該中間電極に接地に対して正電圧を印加できる
ように構成したことを特徴とするプラズマCVD装置を
提供するものである。また、本発明は、高速成膜を実現
するために、高周波電極をマグネトロンタイプに形成し
た前記プラズマCVD装置を提供するものである。
That is, according to the present invention, first, in a plasma CVD apparatus in which a high frequency electrode and a ground electrode are opposed to each other, a mesh-shaped intermediate electrode is arranged between the high frequency electrode and the ground electrode, and the intermediate electrode is grounded. The present invention provides a plasma CVD apparatus characterized in that a positive voltage can be applied thereto. The present invention also provides the plasma CVD apparatus in which a high frequency electrode is formed in a magnetron type in order to realize high speed film formation.

【0008】前記メッシュ状電極の材質としては、ステ
ンレススチール、モリブデン、カーボン等が考えられ
る。また、この電極の開口形状も四角形、丸形等各種考
えられる。開口寸法も本発明の課題を解決できる範囲で
任意であり、例えば四角開口、丸形開口については、一
辺又は直径が0.5〜2mm程度を例示できる。前記メ
ッシュ状電極に印加する正電圧の大きさは、基体の種
類、形成すべき膜の種類、高周波電力の大きさ等の条件
によって異なるが、一般的な成膜条件では、例えば0<
正電圧<200Vの範囲を例示できる。但しこれに限定
されない。ガラス基板やシリコンウエハにa−Si膜や
SiNx膜を形成するときは、略この範囲でよい。
As the material of the mesh electrode, stainless steel, molybdenum, carbon, etc. can be considered. Further, various shapes such as a square shape and a round shape can be considered for the opening shape of this electrode. The opening size is also arbitrary within the range in which the problems of the present invention can be solved. For example, for a square opening or a round opening, one side or a diameter of about 0.5 to 2 mm can be exemplified. The magnitude of the positive voltage applied to the mesh electrode varies depending on conditions such as the type of substrate, the type of film to be formed, and the magnitude of high frequency power, but under general film forming conditions, for example, 0 <
A range of positive voltage <200V can be exemplified. However, it is not limited to this. When forming an a-Si film or a SiNx film on a glass substrate or a silicon wafer, it may be in this range.

【0009】[0009]

【作用】本発明装置によると、成膜中、高周波電極と接
地電極との間に設けたメッシュ状電極に正電圧を印加す
ることにより、気相中に発生するパーティクル生成の原
因となる負帯電ラジカルがこのメッシュ状電極と高周波
電極の間にトラップされる一方、成膜に寄与するラジカ
ルが優先的に基体へ進行し、基体膜へのパーティクルの
付着や混入が従来より防止される。
According to the apparatus of the present invention, by applying a positive voltage to the mesh electrode provided between the high-frequency electrode and the ground electrode during film formation, negative charging that causes generation of particles generated in the gas phase is achieved. While the radicals are trapped between the mesh-shaped electrode and the high frequency electrode, the radicals that contribute to film formation preferentially advance to the substrate, and adhesion and mixing of particles to the substrate film can be prevented more than before.

【0010】高周波電極をマグネトロンタイプに形成す
るときは、高周波電極に設けた磁石に基づくE(電界)
×B(磁場)効果により、電子旋回及びドリフト運動
(電子のサイクロトロン運動)が生じ、高周波電極近傍
のプラズマ密度が高くなり、原料ガスの分解速度が速ま
り、成膜速度向上に寄与するラジカルの濃度が高められ
る。
When forming the high frequency electrode in the magnetron type, E (electric field) based on the magnet provided in the high frequency electrode is used.
Due to the × B (magnetic field) effect, electron swirl and drift motion (electron cyclotron motion) occur, the plasma density in the vicinity of the high-frequency electrode increases, the decomposition rate of the source gas increases, and the radicals that contribute to the film formation rate increase. The concentration is increased.

【0011】[0011]

【実施例】以下、本発明の実施例を図面を参照して説明
する。図1は本発明の一実施例の概略構成を示してい
る。このプラズマCVD装置は平行平板電極型プラズマ
CVD装置で、高周波電極2と基体ホルダ3との間にメ
ッシュ状電極10を配置し、これに電圧可変の電源10
aから正電圧を印加できるようにしてある点、及び高周
波電極の裏面に複数の永久磁石Mが配置してあり、高周
波電極2がマグネトロンタイプに形成されている点を除
いて、図2の従来装置と同構造である。従来装置におけ
る部品と同じ部品については同じ参照符号を付してあ
る。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a schematic configuration of an embodiment of the present invention. This plasma CVD apparatus is a parallel plate electrode type plasma CVD apparatus, in which a mesh-shaped electrode 10 is arranged between a high frequency electrode 2 and a substrate holder 3 and a voltage-variable power source 10 is provided therein.
2 except that a positive voltage can be applied from a and that a plurality of permanent magnets M are arranged on the back surface of the high frequency electrode and the high frequency electrode 2 is formed in a magnetron type. It has the same structure as the device. The same parts as those in the conventional apparatus are designated by the same reference numerals.

【0012】磁石Mは、それぞれ円筒形のもので、2重
リング形に配置してある。この装置によると、基体ホル
ダ3には、例えば半導体デバイス基板9が設置され、し
かるのち、該基板9がヒータ6にて所定の成膜温度に制
御されるとともに真空室1内が所定の成膜真空度に維持
されつつガス導入口8から原料ガスが供給され、このガ
スに高周波電極2から高周波電圧が印加されることで該
ガスがプラズマ化し、このプラズマに基板9表面が曝さ
れることで、該表面に所望の薄膜が形成される。
The magnets M each have a cylindrical shape and are arranged in a double ring shape. According to this apparatus, for example, a semiconductor device substrate 9 is installed on the substrate holder 3, and then the substrate 9 is controlled to a predetermined film forming temperature by the heater 6 and a predetermined film is formed in the vacuum chamber 1. A raw material gas is supplied from the gas introduction port 8 while maintaining the degree of vacuum, and a high frequency voltage is applied to the gas from the high frequency electrode 2, whereby the gas is turned into plasma, and the surface of the substrate 9 is exposed to this plasma. , A desired thin film is formed on the surface.

【0013】この薄膜形成中、高周波電極2と接地電極
である基体ホルダ3との間に設けたメッシュ状電極10
に電源10aにて正電圧が印加され、気相中に発生する
パーティクル生成の原因となる負帯電ラジカルがこのメ
ッシュ状電極10と高周波電極2の間にトラップされる
一方、成膜に寄与するラジカルが優先的に基体9へ進行
し、基体膜へのパーティクルの付着や混入が従来より防
止される。
During the formation of this thin film, the mesh electrode 10 provided between the high frequency electrode 2 and the substrate holder 3 which is a ground electrode.
A positive voltage is applied to the electrode 10a by a power source 10a, and negatively charged radicals that cause particles generated in the gas phase are trapped between the mesh electrode 10 and the high frequency electrode 2, while radicals that contribute to film formation. Is preferentially advanced to the substrate 9, and particles are prevented from adhering to or mixing with the substrate film as compared with the conventional case.

【0014】高周波電極2はマグネトロンタイプに形成
してあるので、該高周波電極に設けた永久磁石Mと電界
の作用で電子のサイクロトロン運動が生じ、高周波電極
2近傍のガスの分解速度が速まり、成膜速度向上に寄与
するラジカルの濃度が高められ、それだけ高速成膜され
る。具体的実施例として次の条件で成膜を行ってみた。 実施例1:アモルファスシリコン膜の形成 成膜条件 成膜真空度 : 0.5〜1.0Torr 基板温度 : 300℃ 高周波電極 : 直径 8インチ (但し、マグネ
トロンタイプでなく従来タイプのものを使用) 高周波電力 : 200W 13.56MHz 基体ホルダ : 直径 8インチ 使用ガス : SiH4 50CCM H2 150CCM メッシュ状電極 : ステンレス鋼製、各開口は一辺1
mmの四角形、全体サイズ 直径10インチ 印加電圧 +50V 基板 : 6インチ シリコンウエハ 結果 成膜速度 : 約250Å/min 膜厚 : 3000Å パーティクル欠陥: μmオーダー以上の欠陥無し。
Since the high frequency electrode 2 is formed as a magnetron type, cyclotron motion of electrons occurs due to the action of the electric field with the permanent magnet M provided on the high frequency electrode, and the decomposition rate of the gas in the vicinity of the high frequency electrode 2 increases. The concentration of radicals that contribute to the improvement of the film formation rate is increased, and the film formation is performed at a higher speed. As a specific example, film formation was performed under the following conditions. Example 1: Formation of amorphous silicon film Film forming conditions Film forming vacuum degree: 0.5 to 1.0 Torr Substrate temperature: 300 ° C. High frequency electrode: Diameter 8 inches (However, conventional type is used instead of magnetron type) High frequency Electric power: 200W 13.56MHz Substrate holder: Diameter 8 inches Gas used: SiH 4 50CCM H 2 150CCM Mesh electrode: Stainless steel, each opening has one side
mm square, overall size 10 inches in diameter Applied voltage +50 V Substrate: 6 inches Silicon wafer result Deposition rate: Approximately 250 Å / min Film thickness: 3000 Å Particle defect: No defect of μm order or more.

【0015】なお、メッシュ状電極を設置しなかった点
を除いて、上記と同じ成膜状件で従来装置により膜形成
を行い、膜厚3000Å形成後、該膜内に存在するパー
ティクル欠陥を測定したところ、μmオーダーの欠陥が
10個/cm2 、10μmオーダーの欠陥が2〜3個/
cm2 存在した。 実施例2:アモルファスシリコン膜の形成 成膜条件 高周波電極 : 直径 8インチ(マグネトロンタ
イプ) 永久磁石 : Sm−Co系の磁力約5000ガ
ウスの円筒形磁石を2重リング形に配置 使用ガス : SiH4 50CCM H2 150CCM メッシュ状電極 : 実施例1と同じ 印加電圧 +60V その他の成膜状件は実施例1と同じ。 結果 成膜速度 : 約400Å/min 膜厚 : 2000Å パーティクル欠陥: μmオーダー以上の欠陥無し。 実施例3:アモルファスシリコン膜の形成 高周波電極がマグネトロンタイプでなく、従来タイプの
ものである点を除いて、実施例2と同じ成膜状件による
膜形成も行ったが、同様にμmオーダー以上のパーティ
クル欠陥は認められなかった。しかし、マグネトロンタ
イプの高周波電極を採用しなかったので、成膜速度は実
施例2の方がこの実施例3より1.5倍速かった。
A film was formed by a conventional apparatus under the same film forming conditions as above, except that the mesh electrode was not installed, and after measuring the film thickness of 3000 Å, the particle defects existing in the film were measured. As a result, 10 μm order defects / cm 2 , 10 μm order defects 2-3 /
There was cm 2 . Example 2: Formation of amorphous silicon film Film-forming conditions High-frequency electrode: Diameter of 8 inches (magnetron type) Permanent magnet: Sm-Co type magnet with a magnetic force of about 5000 gauss arranged in a double ring type Gas used: SiH 4 50 CCM H 2 150 CCM mesh electrode: same as in Example 1 applied voltage +60 V Other film forming conditions are the same as in Example 1. Results Deposition rate: Approx. 400Å / min Film thickness: 2000Å Particle defect: No defect of μm order or more. Example 3: Formation of amorphous silicon film A film was formed according to the same film formation conditions as in Example 2 except that the high frequency electrode was not of the magnetron type but of the conventional type. No particle defect was observed. However, since the magnetron type high frequency electrode was not adopted, the film forming rate in Example 2 was 1.5 times faster than in Example 3.

【0016】なお、高周波電極がマグネトロンタイプで
なく、従来タイプのものである点、及びメッシュ状電極
を設置しなかった点を除いて、実施例2、3と同じ成膜
状件で従来装置により膜形成を行い、膜厚2000Å形
成後、該膜内に存在するパーティクル欠陥を測定したと
ころ、μmオーダーの欠陥が4個/cm2 、10μmオ
ーダーの欠陥が1〜2個/cm2 存在した。 実施例4:a−SiNx膜の形成 成膜条件 成膜真空度 : 0.5〜1.0Torr 基板温度 : 350℃ 高周波電極 : 直径 8インチ (但し、マグネ
トロンタイプでなく従来タイプのものを使用) 高周波電力 : 200W 13.56MHz 基体ホルダ : 直径 8インチ 使用ガス : SiH4 50CCM N2 50CCM NH3 150CCM メッシュ状電極 : 実施例1と同じ 印加電圧 +40V 基板 : 6インチ シリコンウエハ 結果 成膜速度 : 約500Å/min 膜厚 : 3000Å パーティクル欠陥: μmオーダー以上の欠陥無し。
It should be noted that, except that the high-frequency electrode is not a magnetron type but a conventional type, and that a mesh-shaped electrode is not provided, the same film formation conditions as in Examples 2 and 3 are obtained by the conventional apparatus. When a film was formed and a film thickness of 2000 Å was formed and the number of particle defects existing in the film was measured, there were 4 μm-order defects / cm 2 and 10 μm-order defects 1-2 cm / cm 2 . Example 4: Formation of a-SiNx film Film forming conditions Film forming vacuum degree: 0.5 to 1.0 Torr Substrate temperature: 350 ° C. High frequency electrode: Diameter 8 inches (however, a conventional type is used instead of a magnetron type) High-frequency power: 200W 13.56MHz Substrate holder: Diameter 8 inches Gas used: SiH 4 50CCM N 2 50CCM NH 3 150CCM Mesh electrode: Same as in Example 1 Applied voltage + 40V Substrate: 6 inches Silicon wafer result Film formation rate: Approx. 500Å / Min Film thickness: 3000Å Particle defect: No defect of μm order or more.

【0017】なお、メッシュ状電極を設置しなかった点
を除いて、前記と同じ成膜状件で従来装置により膜形成
を行い、膜厚3000Å形成後、該膜内に存在するパー
ティクル欠陥を測定したところ、μmオーダーの欠陥が
9個/cm2 、10μmオーダーの欠陥が3〜4個/c
2 存在した。
A film was formed by a conventional apparatus under the same film forming conditions as described above except that the mesh electrode was not installed, and after forming a film of 3000 Å, particle defects existing in the film were measured. Then, 9 μm-order defects / cm 2 , 10 μm-order defects 3-4 / c
m 2 was present.

【0018】[0018]

【発明の効果】本発明によると、高周波電極に接地電極
を対向させたプラズマCVD装置において、成膜へのパ
ーティクル付着や混入を従来より防止できる効果があ
る。また、前記高周波電極をマグネトロンタイプに形成
するときは、高速成膜を行える。
According to the present invention, it is possible to prevent particles from adhering to or mixing in a film in a plasma CVD apparatus in which a ground electrode is opposed to a high frequency electrode, as compared with the prior art. Further, when forming the high frequency electrode in a magnetron type, high speed film formation can be performed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の概略構成を示す図である。FIG. 1 is a diagram showing a schematic configuration of an embodiment of the present invention.

【図2】従来例の概略構成を示す図である。FIG. 2 is a diagram showing a schematic configuration of a conventional example.

【符号の説明】[Explanation of symbols]

1 真空室 2 高周波電極 M 永久磁石 3 基体ホルダ 4 マッチングボックス 5 高周波電源 6 ヒータ 7 排気系 8 ガス導入口 9 基板 10 メッシュ状電極 10a 電源 1 Vacuum Chamber 2 High Frequency Electrode M Permanent Magnet 3 Substrate Holder 4 Matching Box 5 High Frequency Power Supply 6 Heater 7 Exhaust System 8 Gas Inlet 9 Substrate 10 Mesh Electrode 10a Power Supply

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 高周波電極と接地電極を対向させたプラ
ズマCVD装置において、前記高周波電極と接地電極と
の間にメッシュ状の中間電極を配置し、該中間電極に接
地に対して正電圧を印加できるように構成したことを特
徴とするプラズマCVD装置。
1. In a plasma CVD apparatus in which a high frequency electrode and a ground electrode are opposed to each other, a mesh-shaped intermediate electrode is arranged between the high frequency electrode and the ground electrode, and a positive voltage is applied to the intermediate electrode with respect to ground. A plasma CVD apparatus characterized in that it is configured so that it can be performed.
【請求項2】 前記高周波電極をマグネトロンタイプに
形成した請求項1記載のプラズマCVD装置。
2. The plasma CVD apparatus according to claim 1, wherein the high frequency electrode is formed in a magnetron type.
JP25377691A 1991-10-01 1991-10-01 Plasma cvd apparatus Pending JPH0593277A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25377691A JPH0593277A (en) 1991-10-01 1991-10-01 Plasma cvd apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25377691A JPH0593277A (en) 1991-10-01 1991-10-01 Plasma cvd apparatus

Publications (1)

Publication Number Publication Date
JPH0593277A true JPH0593277A (en) 1993-04-16

Family

ID=17255992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25377691A Pending JPH0593277A (en) 1991-10-01 1991-10-01 Plasma cvd apparatus

Country Status (1)

Country Link
JP (1) JPH0593277A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010001535A (en) * 2008-06-20 2010-01-07 Fujifilm Corp Method of forming gas barrier film, and gas barrier film

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63286570A (en) * 1987-05-15 1988-11-24 Nissin Electric Co Ltd Thin film formation device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63286570A (en) * 1987-05-15 1988-11-24 Nissin Electric Co Ltd Thin film formation device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010001535A (en) * 2008-06-20 2010-01-07 Fujifilm Corp Method of forming gas barrier film, and gas barrier film

Similar Documents

Publication Publication Date Title
US5105761A (en) Diffusion plasma-assisted chemical treatment apparatus
EP0658918B1 (en) Plasma processing apparatus
US4971667A (en) Plasma processing method and apparatus
EP0574100B1 (en) Plasma CVD method and apparatus therefor
JP3224011B2 (en) Plasma-excited chemical vapor deposition apparatus and plasma etching apparatus
US20210280389A1 (en) Large-area vhf pecvd chamber for low-damage and high-throughput plasma processing
JPH0776781A (en) Plasma vapor growth device
JPH0593277A (en) Plasma cvd apparatus
JPH10265212A (en) Production of microcrystal and polycrystal silicon thin films
JPH0593276A (en) Plasma cvd apparatus
JPH0766138A (en) Plasma cvd system
JP3160194B2 (en) Plasma processing method and plasma processing apparatus
JP2925399B2 (en) Plasma CVD apparatus and deposition film forming method using the same
JP2658665B2 (en) Plasma CVD equipment
JPS6119799Y2 (en)
JP3282326B2 (en) Plasma processing equipment
JP2573970B2 (en) Semiconductor thin film manufacturing equipment
JP2691399B2 (en) Plasma processing method
JPS62235471A (en) Deposited film forming device by plasma cvd method
JP3347383B2 (en) Microwave plasma processing equipment
JPH05139883A (en) High frequency plasma cvd device
JPS619577A (en) Plasma chemical vapor phase growing method
JPH05156452A (en) Plasma cvd method and device therefor
JP2002016006A (en) Device and method for surface treatment
JPH0729829A (en) Method and system for dc discharge plasma processing

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19950711