JPH0593188A - Production of infrared-visible ray conversion phosphor - Google Patents

Production of infrared-visible ray conversion phosphor

Info

Publication number
JPH0593188A
JPH0593188A JP27892491A JP27892491A JPH0593188A JP H0593188 A JPH0593188 A JP H0593188A JP 27892491 A JP27892491 A JP 27892491A JP 27892491 A JP27892491 A JP 27892491A JP H0593188 A JPH0593188 A JP H0593188A
Authority
JP
Japan
Prior art keywords
phosphor
infrared
manufacturing
samarium
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27892491A
Other languages
Japanese (ja)
Other versions
JP2698857B2 (en
Inventor
Yasuaki Tamura
保暁 田村
Junichi Owaki
純一 大脇
Atsushi Shibukawa
篤 渋川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP27892491A priority Critical patent/JP2698857B2/en
Publication of JPH0593188A publication Critical patent/JPH0593188A/en
Application granted granted Critical
Publication of JP2698857B2 publication Critical patent/JP2698857B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To produce the title phosphor within a shorter production time while preventing its properties from being deteriorated by oxidation caused by the oxygen get mixed in the sintering atmosphere due to careless handling in its production. CONSTITUTION:The title process comprises the steps of: mixing a powdery alkaline earth metal chalcogenide phosphor A containing at least one element selected from among europium, cerium, manganese and copper with a powdery alkaline earth metal chalcogenide phosphor B containing at least one element selected from among samarium, bismuth and lead, and fusing the phosphor A powder with the phosphor B powder together by heating the resulting mixture under pressure. Thus, the title phosphor which can be produced within a shorter production time and does not deteriorate so much in its properties in a sintering process can be provided by mixing the phosphor containing the principal activator with the phosphor containing the subsidiary activator and heating the resulting mixture under pressure.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は赤外可視変換蛍光体の製
造方法に係わり、特に、製造時間を短縮しまた、焼結工
程における品質低下の少ない赤外可視変換蛍光体の製造
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing an infrared-visible conversion phosphor, and more particularly to a method for manufacturing an infrared-visible conversion phosphor which shortens the manufacturing time and causes less quality deterioration in the sintering process.

【0002】[0002]

【従来の技術】赤外光を可視光に変換する赤外可視変換
蛍光体は今までに多数知られているが、その中でも書き
込み光エネルギを蓄積し、赤外光照射により読みだすこ
とができる赤外輝尽蛍光体は光書換えメモリ材料、光情
報処理用材料として近年注目を集めている。赤外輝尽蛍
光体とは、あらかじめ短波長の光、あるいは、X線、放
射線などで励起した後、赤外光で刺激すると可視域の発
光を発生する蛍光体であり、半導体レーザやYAGレー
ザなどの赤外光検出などに広く用いられている。硫化カ
ルシウム(CaS)や硫化ストロンチウム(SrS)に
ユーロピウム(Eu)とサマリウム(Sm)あるいはセ
リウム(Ce)とサマリウム(Sm)などを添加した蛍
光体が赤外可視変換効率の高い蛍光体として知られてい
る。
2. Description of the Related Art Many infrared-visible conversion phosphors for converting infrared light into visible light are known so far. Among them, writing light energy can be stored and read by irradiation with infrared light. Infrared stimulated phosphors have been attracting attention in recent years as optical rewriting memory materials and optical information processing materials. The infrared stimulable phosphor is a phosphor that emits light in the visible range when stimulated with infrared light after being excited with short-wavelength light, X-rays, radiation, or the like in advance, such as a semiconductor laser or a YAG laser. It is widely used for detecting infrared light. A phosphor obtained by adding europium (Eu) and samarium (Sm) or cerium (Ce) and samarium (Sm) to calcium sulfide (CaS) or strontium sulfide (SrS) is known as a phosphor with high infrared-visible conversion efficiency. ing.

【0003】本赤外可視変換蛍光体とその製造方法につ
いての技術的背景を記述するに先立ち、赤外輝尽蛍光体
の動作原理を説明する。
Before describing the technical background of the present infrared-visible conversion phosphor and its manufacturing method, the operating principle of the infrared-stimulated phosphor will be described.

【0004】図1a、図1bは赤外輝尽蛍光体の1つで
あるCaS:Eu:Smのバンドモデルを示す図であ
る。本蛍光体は以下の励起過程(図1a)、発光過程
(図1b)の2つの過程によって動作する。
FIGS. 1a and 1b are diagrams showing a band model of CaS: Eu: Sm, which is one of infrared stimulable phosphors. The present phosphor operates by the following two processes, an excitation process (FIG. 1a) and a light emission process (FIG. 1b).

【0005】励起過程(図1a) (1)励起光(青−緑)1の照射によりEu2+はイオン
化され、伝導帯上に電子2を放出し、Eu3+となる。
Excitation process (FIG. 1a) (1) Upon irradiation with excitation light (blue-green) 1, Eu 2+ is ionized and electrons 2 are emitted on the conduction band to become Eu 3+ .

【0006】(2)伝導帯上に励起された電子はSm3+
に捕獲されSm2+になる。
(2) The electrons excited on the conduction band are Sm 3+
Are captured by Sm 2+ .

【0007】発光過程(図1b) (3)赤外光3の刺激によりSm3+に捕獲されていた電
子は、伝導帯上に励起されSm2+はSm3+となる。
Emission process (FIG. 1b) (3) Electrons trapped in Sm 3+ by stimulation of infrared light 3 are excited on the conduction band and Sm 2+ becomes Sm 3+ .

【0008】(4)伝導帯上に励起された電子はEu3+
に捕獲されEu3+はEu2+になる。このときEu2+は発
光遷移により基底状態に遷移し、光4を放出する。この
ときの発光を赤外輝尽発光(赤)と呼ぶ。
(4) Electrons excited on the conduction band are Eu 3+
Eu 3+ is captured by and becomes Eu 2+ . At this time, Eu 2+ transits to the ground state by the emission transition and emits the light 4. The emission at this time is called infrared stimulated emission (red).

【0009】すなわち、以上(1)〜(4)の過程を経
ることにより赤外輝尽発光が生じる。上記より明らかな
ように、励起のとき記録の書き込みになり、刺激のと
き、記録の読みだしとなる。
That is, infrared stimulated emission is generated by passing through the above steps (1) to (4). As is clear from the above, recording is written during excitation, and recording is read during stimulation.

【0010】この動作原理からわかるように、Eu元素
が励起光、赤外輝尽発光に関する波長特性を決定し、S
m元素が赤外刺激に対する波長特性を決定している。こ
のように励起光、赤外輝尽発光に関する波長特性をつか
さどる元素を主活性剤、赤外刺激に対する波長特性をつ
かさどる元素を副活性剤とよんでいる。
As can be seen from this operating principle, the Eu element determines the wavelength characteristics relating to excitation light and infrared stimulated emission, and S
The m element determines the wavelength characteristic for infrared stimulation. The element that controls the wavelength characteristics of excitation light and infrared stimulated emission is called a main activator, and the element that controls the wavelength characteristics of infrared stimulation is called a sub-activator.

【0011】この赤外輝尽蛍光体はその動作特性からわ
かるように、エネルギ蓄積型の蛍光体でありこの性質を
利用して、メモリ材料として用いることができる。ま
た、蛍光体中に添加する活性剤の種類と母体材料の選択
により動作波長をある程度変えることができるという波
長選択性を有している。
As can be seen from the operating characteristics, the infrared stimulable phosphor is an energy storage type phosphor, and by utilizing this property, it can be used as a memory material. Further, it has wavelength selectivity that the operating wavelength can be changed to some extent by selecting the type of activator added to the phosphor and the matrix material.

【0012】[0012]

【発明が解決する問題点】しかし、従来の製法すなわ
ち、蛍光体母体中に主活性剤と副活性剤を共に添加混合
した焼結した蛍光体では、メモリ特性、波長選択性共に
充分でなくまた、情報書込み後に、アフターグローを伴
うため、次の情報を書込むのに時間が数秒程度必要とさ
れ、このため高速情報書込みができないなどの欠点があ
った。
However, the conventional manufacturing method, that is, the sintered phosphor in which the main activator and the sub-activator are added and mixed in the phosphor matrix is not sufficient in both memory characteristics and wavelength selectivity. However, after writing information, afterglow is involved, so that it takes about several seconds to write the next information, which is disadvantageous in that high-speed information writing cannot be performed.

【0013】そこで本発明者等は、上記問題を解決する
蛍光体とその製造方法を発明し、動作波長選択幅が広
く、メモリ特性、赤外可視変換効率共に高く、また光情
報の高速書込み、読みだしが可能な赤外可視変換蛍光体
とその製造方法を実現したが、その製造法で多数回蛍光
体を製造し検討した結果、前回発明した蛍光体の製造法
すなわち、アルカリ土類金属カルコゲナイドを蛍光体母
体材料とし、ユーロピウム、セリウム、マンガン、銅の
中から選択された少なくとも1種の元素を添加した粉末
状蛍光体Aとサマリウム、ビスマス、鉛の中から選択さ
れた少なくとも1種の元素を添加した粉末状蛍光体Bを
混合した後、加熱焼結し蛍光体A粉末粒子と蛍光体B粉
末粒子を融着させることにより赤外可視変換蛍光体を製
造する方法では、蛍光体Aと蛍光体Bを混合した後の焼
結工程に時間を要するという欠点と、製造過程における
取り扱いの不注意によって焼結雰囲気ガス中に混入した
酸素により蛍光体が酸化し、特性が劣化する場合がある
ことが判明した。
Therefore, the inventors of the present invention invented a phosphor and a method for manufacturing the same that solve the above problems, and have a wide operating wavelength selection range, high memory characteristics and high infrared-visible conversion efficiency, and high-speed writing of optical information. We realized a readable infrared-visible conversion phosphor and its manufacturing method, and as a result of manufacturing and examining the phosphor a number of times by that manufacturing method, the phosphor manufacturing method previously invented, that is, alkaline earth metal chalcogenide Is used as a phosphor host material, and at least one element selected from europium, cerium, manganese, and copper and at least one element selected from samarium, bismuth, and lead is added. In the method for producing an infrared-visible conversion phosphor by mixing powdered phosphor B added with and then heating and sintering it to fuse phosphor A powder particles and phosphor B powder particles, The disadvantage that the sintering process after mixing the body A and the phosphor B takes time, and the phosphor is oxidized by oxygen mixed in the sintering atmosphere gas due to careless handling in the manufacturing process, and the characteristics are deteriorated. It turns out that there are cases.

【0014】[0014]

【問題点を解決するための手段】本発明は、上記問題点
に鑑みなされたものであり、アルカリ土類金属カルコゲ
ナイドを蛍光体母体材料とし、ユーロピウム、セリウ
ム、マンガン、銅の中から選択された少なくとも1種の
元素を添加した粉末状蛍光体Aとサマリウム、ビスマ
ス、鉛の中から選択された少なくとも1種の元素を添加
した粉末状蛍光体Bを混合する工程、前記混合物を加圧
しながら加熱し、前記蛍光体A粉末粒子と蛍光体B粉末
粒子を融着させ赤外可視変換蛍光体を形成させる工程を
含むことを特徴とする。
The present invention has been made in view of the above problems, and is selected from europium, cerium, manganese, and copper using an alkaline earth metal chalcogenide as a phosphor host material. A step of mixing the powdered phosphor A added with at least one element and the powdered phosphor B added with at least one element selected from samarium, bismuth and lead, and heating the mixture under pressure Then, the method includes the step of fusing the phosphor A powder particles and the phosphor B powder particles to form an infrared-visible conversion phosphor.

【0015】すなわち、前記両蛍光体を混合した後、加
圧しながら加熱して蛍光体粒子を融着させて製造するこ
とにより上記問題を解決し製造時間を短縮しまた、焼結
工程における品質低下の少ない赤外可視変換蛍光体の製
造方法よりを可能としたものである。
That is, after mixing both the phosphors, the phosphor particles are fused by heating under pressure to solve the above problems, shorten the manufacturing time, and reduce the quality in the sintering process. It is possible to obtain a method of producing an infrared-visible conversion phosphor having a small amount.

【0016】本発明による赤外可視変換蛍光体の製造方
法によれば、上述のようにユーロピウム、セリウム、マ
ンガン、銅の中から選択された少なくとも1種の元素を
添加したアルカリ金属カルコゲナイド母体の粉末状蛍光
体Aとサマリウム、ビスマス、鉛の中から選択された少
なくとも1種の元素を添加したアルカリ金属カルコゲナ
イド母体の粉末状蛍光体Bとを混合するものであるが、
この混合比は本発明において基本的に限定されるもので
はなく、製造される蛍光体の特性によって種々変化させ
ることができる。
According to the method for producing an infrared-visible conversion phosphor of the present invention, a powder of an alkali metal chalcogenide matrix to which at least one element selected from europium, cerium, manganese, and copper is added as described above. A phosphor-like phosphor A and a powdery phosphor B of an alkali metal chalcogenide matrix to which at least one element selected from samarium, bismuth and lead is added,
This mixing ratio is not fundamentally limited in the present invention, and can be variously changed depending on the characteristics of the manufactured phosphor.

【0017】一方、粉末状蛍光体A、Bの平均粒径は、
好ましくは1μm以下であるのがよい。1μmを越える
と、蛍光体A、Bの相互作用が生じにくくなるからであ
る。
On the other hand, the average particle size of the powdered phosphors A and B is
It is preferably 1 μm or less. This is because when it exceeds 1 μm, the interaction between the phosphors A and B becomes difficult to occur.

【作用】通常蛍光体を焼結する際には、蛍光体を焼結炉
に設置し、炉内にArガスなどの不活性ガスや硫化水素
などの酸化防止ガスなどを混合したガスを流しながら1
000℃以上の高温で数時間加熱焼結する。このときに
炉内のガス置換が不十分であったり、雰囲気ガスの純度
が悪かった場合に雰囲気ガス中に酸素が混入し加熱焼結
時に蛍光体が酸化し特性劣化を引き起こすものである。
[Function] Usually, when a phosphor is sintered, the phosphor is placed in a sintering furnace and a gas mixed with an inert gas such as Ar gas or an antioxidant gas such as hydrogen sulfide is flowed in the furnace. 1
It is heated and sintered at a high temperature of 000 ° C. or higher for several hours. At this time, if gas replacement in the furnace is insufficient or if the purity of the atmosphere gas is poor, oxygen is mixed into the atmosphere gas, and the phosphor is oxidized during heating and sintering, causing characteristic deterioration.

【0018】そこで本発明の方法では、蛍光体粉末を混
合した後、加圧しながら加熱して製造するため、加圧時
に余分な空気を排摂し、また加熱時に雰囲気ガスを必要
としないため雰囲気ガスの純度の影響を受けずに蛍光体
を形成できる。このため、取り扱い不注意によって生じ
る蛍光体の酸化など、蛍光体特性劣化要因がなくなるた
め、歩止まりよく高品質の蛍光体を製造できる。また、
加圧により蛍光体粒子間の固相反応が促進されるため加
熱時間が短くて済み製造時間を短縮できる。
Therefore, according to the method of the present invention, since the phosphor powder is mixed and then heated while being pressurized, excess air is exhausted at the time of pressurization, and no atmospheric gas is required at the time of heating, so that the atmosphere The phosphor can be formed without being affected by the purity of the gas. For this reason, there is no cause of deterioration of phosphor characteristics such as phosphor oxidation caused by careless handling, so that a high quality phosphor with good yield can be manufactured. Also,
The pressurization accelerates the solid-phase reaction between the phosphor particles, which shortens the heating time and shortens the manufacturing time.

【0019】以上記載した効果によって本発明の赤外可
視変換蛍光体の製造方法を用いることにより製造時間を
短縮しまた、焼結工程における品質低下の少ない蛍光体
の製造方法を提供することができる。
Due to the above-mentioned effects, by using the method for producing an infrared-visible conversion phosphor of the present invention, it is possible to shorten the production time and to provide a method for producing a phosphor in which the quality is less deteriorated in the sintering step. ..

【0020】[0020]

【実施例】以下本発明の赤外可視変換蛍光体の製造方法
について具体的な実施例に基づき詳細に説明する。
EXAMPLES The method for producing the infrared-visible conversion phosphor of the present invention will be described below in detail based on specific examples.

【0021】[0021]

【実施例1】硫化カルシウム(CaS)を蛍光体母体材
料とし元素Aとしてユーロピウム(Eu)、元素Bとし
てサマリウム(Sm)を選択して製造した例について詳
細に説明する。
Example 1 An example in which calcium sulfide (CaS) is used as a phosphor matrix material and europium (Eu) is selected as the element A and samarium (Sm) is selected as the element B will be described in detail.

【0022】上記蛍光体を製造するに当たって、まず、
酸化ユーロピウム(Eu23)を500ppm添加した
CaS蛍光体と酸化サマリウム(Sm23)を150p
pm添加したCaS蛍光体を製造する。これら蛍光体を
ボールミルにより平均粒径が1μm以下になるまで充分
粉砕した後両蛍光体を混合する。この混合した粉末をプ
レス治具内に設置し10t/cm2の圧力で加圧し10
00℃で20分間保持した。この後温度が室温になるま
で放置しプレス治具から蛍光体を取り出し粉砕し平均粒
径50μm程度の粉末とした。このようにして得られた
蛍光体を走査電子顕微鏡内に設置し、電子線照射によっ
て蛍光体から発する蛍光を電子線を走査しながら検査す
ることによりユーロピウムの濃度分布とサマリウムの濃
度分布が異なるように添加されていることが確認され
た。
In manufacturing the above phosphor, first,
CaS phosphor containing 500 ppm of europium oxide (Eu 2 O 3 ) and samarium oxide (Sm 2 O 3 ) 150 p
A pm-doped CaS phosphor is manufactured. These phosphors are sufficiently pulverized by a ball mill until the average particle diameter becomes 1 μm or less, and then both phosphors are mixed. This mixed powder is placed in a pressing jig and pressed at a pressure of 10 t / cm 2 to 10
Hold at 00 ° C for 20 minutes. After that, the phosphor was taken out from the pressing jig and pulverized into a powder having an average particle size of about 50 μm by allowing the temperature to reach room temperature. The phosphor thus obtained is placed in a scanning electron microscope, and the fluorescence emitted from the phosphor by electron beam irradiation is inspected while scanning the electron beam so that the concentration distribution of europium and the concentration distribution of samarium differ from each other. Was confirmed to be added to.

【0023】本方法で多数回蛍光体を製造しその特性の
バラツキを調べたところバラツキは1%以下で、また、
化学分析においても酸化の徴候は見られず本発明の製造
方法によって製造された蛍光体の特性の再現性が良好で
あることが示された。さらに、従来の方法では蛍光体焼
結に1時間以上必要としていたが、本方法では20分で
済み製造時間短縮に効果を有することが明かとなった。
When the phosphor was manufactured a number of times by this method and the variation in its characteristics was examined, the variation was 1% or less.
In the chemical analysis, no sign of oxidation was observed, indicating that the phosphor manufactured by the manufacturing method of the present invention has good reproducibility of characteristics. Furthermore, although it took 1 hour or more to sinter the phosphor in the conventional method, it became clear that this method only requires 20 minutes and is effective in shortening the manufacturing time.

【0024】[0024]

【実施例2】元素Aとしてセリウム(Ce)を添加した
セレン化ストロンチウム(SrSe)と、元素Bとして
サマリウム(Sm)を添加した硫化カルシウム(Ca
S)とからなる蛍光体内を製造した例について詳細に説
明する。
Example 2 Strontium selenide (SrSe) added with cerium (Ce) as the element A and calcium sulfide (Ca added with samarium (Sm) as the element B)
An example of manufacturing a phosphor body including S) will be described in detail.

【0025】上記蛍光体を製造するに当たって、まず、
酸化セリウム(CeO2)を1500ppm添加したS
rSe蛍光体と酸化サマリウム(Sm23)を150p
pm添加したCaS蛍光体を製造する。これら蛍光体を
ジェットミルにより平均粒径が1μm以下になるまで充
分粉砕した後両蛍光体を混合する。この混合した粉末を
プレス治具内に設置し10t/cm2の圧力で加圧し1
000℃で20分間保持した。この後温度が室温になる
まで放置しプレス治具から蛍光体を取り出し粉砕し平均
粒径50μm程度の粉末とした。このようにして得られ
た蛍光体を走査電子顕微鏡内に設置し、電子線照射によ
って蛍光体から発する蛍光を電子線を走査しながら検査
することによりユーロピウムの濃度分布とサマリウムの
濃度分布が異なるように添加されていることが確認され
た。
In manufacturing the above phosphor, first,
S added with 1500 ppm of cerium oxide (CeO 2 ).
150p of rSe phosphor and samarium oxide (Sm 2 O 3 )
A pm-doped CaS phosphor is manufactured. These phosphors are sufficiently pulverized by a jet mill until the average particle diameter becomes 1 μm or less, and then both phosphors are mixed. This mixed powder is placed in a press jig and pressed with a pressure of 10 t / cm 2
Hold at 000 ° C for 20 minutes. After that, the phosphor was taken out from the pressing jig and pulverized into a powder having an average particle size of about 50 μm by allowing the temperature to reach room temperature. The phosphor thus obtained is placed in a scanning electron microscope, and the fluorescence emitted from the phosphor by electron beam irradiation is inspected while scanning the electron beam so that the concentration distribution of europium and the concentration distribution of samarium differ from each other. Was confirmed to be added to.

【0026】本方法で多数回蛍光体を製造しその特性の
バラツキを調べたところバラツキは1%以下で、また、
化学分析においても酸化の徴候は見られず本発明の製造
方法によって製造された蛍光体の特性の再現性が良好で
あることが示された。さらに、従来の方法では蛍光体焼
結に1時間以上必要としていたが、本方法では20分で
済み製造時間短縮に効果を有することが明かとなった。
When the phosphor was manufactured a number of times by this method and the variation in its characteristics was examined, the variation was 1% or less.
In the chemical analysis, no sign of oxidation was observed, indicating that the phosphor manufactured by the manufacturing method of the present invention has good reproducibility of characteristics. Furthermore, although it took 1 hour or more to sinter the phosphor in the conventional method, it became clear that this method only requires 20 minutes and is effective in shortening the manufacturing time.

【0027】[0027]

【実施例3】元素Aとしてユーロピウム(Eu)を添加
した硫化カルシウム(CaS)蛍光体微粉末と、元素B
としてサマリウム(Sm)を添加した硫化カルシウム
(CaS)蛍光体微粉末を混合後、加圧しながら加熱し
製造した例について詳細に説明する。
Example 3 Calcium sulfide (CaS) phosphor fine powder to which europium (Eu) was added as element A, and element B
A detailed description will be given of an example in which calcium sulfide (CaS) phosphor fine powder to which samarium (Sm) has been added is mixed and then heated while being pressurized.

【0028】上記蛍光体を製造するに当たって、まず、
蛍光体焼成後のCaS中でのEu濃度が500ppmと
なるように炭酸カルシウムと酸化ユーロピウム、炭酸ナ
トリウム、硫黄を混合しアルミナ製るつぼ内に充填し蓋
をして電気炉中に設置し1000℃で1時間加熱する。
このようにして得られた焼結体を粉砕し水洗することに
より未反応原料を除去する。この後エタノールで洗浄し
乾燥させると、平均粒径が100nm以下のCaS:E
u蛍光体微粒子が得られる。蛍光体焼結後のCaS中で
のSm濃度が100ppmとなるように炭酸カルシウム
と酸化サマリウム、炭酸ナトリウム、硫黄を混合しアル
ミナ製るつぼ内に充填し蓋をして電気炉中に設置し10
00℃で1時間加熱する。このようにして得られた焼結
体を粉砕し水洗することにより未反応原料を除去する。
この後エタノールで洗浄し乾燥させると、平均粒径10
0nm以下のCaS:Sm蛍光体微粒子が得られる。
In manufacturing the above phosphor, first,
Calcium carbonate, europium oxide, sodium carbonate, and sulfur were mixed so that the Eu concentration in CaS after burning the phosphor would be 500 ppm, and the mixture was filled in an alumina crucible, covered with a lid, and placed in an electric furnace at 1000 ° C. Heat for 1 hour.
The unreacted raw material is removed by crushing the sintered body thus obtained and washing with water. After that, when washed with ethanol and dried, CaS: E having an average particle size of 100 nm or less
u phosphor fine particles are obtained. Calcium carbonate, samarium oxide, sodium carbonate, and sulfur were mixed so that the Sm concentration in CaS after sintering the phosphor would be 100 ppm, and the mixture was filled in an alumina crucible, covered with a lid, and placed in an electric furnace.
Heat at 00 ° C. for 1 hour. The sintered body thus obtained is crushed and washed with water to remove unreacted raw materials.
After that, when washed with ethanol and dried, an average particle size of 10
CaS: Sm phosphor fine particles having a particle size of 0 nm or less are obtained.

【0029】上記の方法で得られたCaS:Eu蛍光体
微粒子とCaS:Sm蛍光体微粒子を混合した後プレス
治具内に設置し10t/cm2の圧力で加圧し1000
℃で20分間保持した。この後温度が室温になるまで放
置しプレス治具から蛍光体を取り出し粉砕し平均粒径5
0μm程度の粉末とした。このようにして得られた蛍光
体を走査電子顕微鏡内に設置し、電子線照射によって蛍
光体から発する蛍光を電子線を走査しながら検査するこ
とによりユーロピウムの濃度分布とサマリウムの濃度分
布が異なるように添加されていることが確認された。
The CaS: Eu phosphor fine particles obtained by the above method and the CaS: Sm phosphor fine particles were mixed and then placed in a pressing jig and pressurized at a pressure of 10 t / cm 2 to 1000
Hold at 20 ° C for 20 minutes. After that, the phosphor is taken out from the pressing jig and ground until the temperature reaches room temperature, and the average particle size is 5
The powder was about 0 μm. The phosphor thus obtained is placed in a scanning electron microscope, and the fluorescence emitted from the phosphor by electron beam irradiation is inspected while scanning the electron beam so that the concentration distribution of europium and the concentration distribution of samarium differ from each other. Was confirmed to be added to.

【0030】本方法で多数回蛍光体を製造しその特性の
バラツキを調べたところバラツキは1%以下で、また、
化学分析においても酸化の徴候は見られず本発明の製造
方法によって製造された蛍光体の特性の再現性が良好で
あることが示された。さらに、従来の方法では蛍光体焼
結に1時間以上必要としていたが、本方法では20分で
済み製造時間短縮に効果を有することが明かとなった。
When the phosphor was manufactured a number of times by this method and the variation in its characteristics was examined, the variation was 1% or less.
In the chemical analysis, no sign of oxidation was observed, indicating that the phosphor manufactured by the manufacturing method of the present invention has good reproducibility of characteristics. Furthermore, although it took 1 hour or more to sinter the phosphor in the conventional method, it became clear that this method only requires 20 minutes and is effective in shortening the manufacturing time.

【0031】[0031]

【発明の効果】以上述べてきたように、赤外可視変換蛍
光体の製造方法を本発明構成の赤外可視変換蛍光体の製
造方法とすること、すなわち、主活性剤を添加した蛍光
体と副活性剤を添加した蛍光体を混合した後、加圧しな
がら加熱して製造する製造方法によって製造時間を短縮
しまた、焼結工程における品質低下の少ない赤外可視変
換蛍光体の製造方法を提供することができた。
As described above, the method for producing the infrared-visible conversion phosphor is the method for producing the infrared-visible conversion phosphor having the constitution of the present invention, that is, the phosphor to which the main activator is added. A method for manufacturing an infrared-visible conversion phosphor with less quality deterioration in the sintering process by shortening the manufacturing time by a manufacturing method in which a phosphor with a sub-activator added is mixed and then heated under pressure is manufactured. We were able to.

【図面の簡単な説明】[Brief description of drawings]

【図1a】赤外輝尽蛍光体の動作原理を示す図。FIG. 1a is a diagram showing the operating principle of an infrared stimulable phosphor.

【図1b】赤外輝尽蛍光体の動作原理を示す図。FIG. 1b is a diagram showing the operating principle of an infrared stimulable phosphor.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】アルカリ土類金属カルコゲナイドを蛍光体
母体材料とし、ユーロピウム、セリウム、マンガン、銅
の中から選択された少なくとも1種の元素を添加した粉
末状蛍光体Aとサマリウム、ビスマス、鉛の中から選択
された少なくとも1種の元素を添加した粉末状蛍光体B
を混合する工程、前記混合物を加圧しながら加熱し、前
記蛍光体A粉末粒子と蛍光体B粉末粒子を融着させる工
程を含むことを特徴とする赤外可視変換蛍光体の製造方
法。
1. A powdered phosphor A containing an alkaline earth metal chalcogenide as a phosphor base material and at least one element selected from europium, cerium, manganese and copper, and samarium, bismuth and lead. Powdered phosphor B to which at least one element selected from the above is added
And a step of heating the mixture while pressurizing the mixture to fuse the phosphor A powder particles and the phosphor B powder particles to each other.
JP27892491A 1991-10-01 1991-10-01 Method for producing infrared-visible conversion phosphor Expired - Fee Related JP2698857B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27892491A JP2698857B2 (en) 1991-10-01 1991-10-01 Method for producing infrared-visible conversion phosphor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27892491A JP2698857B2 (en) 1991-10-01 1991-10-01 Method for producing infrared-visible conversion phosphor

Publications (2)

Publication Number Publication Date
JPH0593188A true JPH0593188A (en) 1993-04-16
JP2698857B2 JP2698857B2 (en) 1998-01-19

Family

ID=17603982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27892491A Expired - Fee Related JP2698857B2 (en) 1991-10-01 1991-10-01 Method for producing infrared-visible conversion phosphor

Country Status (1)

Country Link
JP (1) JP2698857B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08302342A (en) * 1995-05-09 1996-11-19 Futaba Corp Phosphor
US7974535B2 (en) 2005-03-28 2011-07-05 Pioneer Corporation Remote control system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08302342A (en) * 1995-05-09 1996-11-19 Futaba Corp Phosphor
US7974535B2 (en) 2005-03-28 2011-07-05 Pioneer Corporation Remote control system

Also Published As

Publication number Publication date
JP2698857B2 (en) 1998-01-19

Similar Documents

Publication Publication Date Title
Wickersheim et al. Luminescent behavior of the rare earths in yttrium oxide and related hosts
Bredol et al. Designing luminescent materials
JP2001139942A (en) GREEN LIGHT-EMITTING SrAl12019 LUMINESCENT MATERIAL ACTIVATED WITH Mn2+
Scholl et al. Luminescence of YAG: Tm, Tb
JP2007238827A (en) Phosphor for display device and field emission type display device
Kore et al. Study of anomalous emission and irradiation effect on the thermoluminescence properties of barium aluminate
JP2656760B2 (en) Luminescent substance for radiation detector, method for producing ceramic comprising the luminescent substance, and additive for rare earth metal oxysulfide luminous substance ceramic
Peters Luminescent Properties of Thiogallate Phosphors: II. Ce3+‐Activated Phosphors for Flying Spot Scanner Applications
CN110511754B (en) Tantalate-based light excitation luminescent material and preparation method thereof
US3855143A (en) Luminescent lithium silicate activated with trivalent cerium
JP4788875B2 (en) Boron nitride crystal having fluorescent emission characteristics to which an activator such as rare earth is added, its production method, and boron nitride phosphor
JP2698857B2 (en) Method for producing infrared-visible conversion phosphor
US3423325A (en) Terbium or terbium and gadolinium activated mixed alkaline earth alkali metal borate luminescent substance
US3718600A (en) Method of manufacturing a luminescent silicate activated by bivalent europium
JP2656761B2 (en) Luminescent substance for radiation detector, method for producing ceramic comprising the luminescent substance, and additive for rare earth metal oxysulfide luminous substance ceramic
JP2001123162A (en) Phosphor for photomemory and method for producing the same
US2628201A (en) Zinc-magnesium oxide luminescent materials and methods of making same
CN101298556B (en) Method for improving quantum cracked oxide based phosphor, its production method and design rule thereof
US3857054A (en) Discharge device and method for generating near infrared radiations
JPS5930882A (en) Rare earth element-added yttria-gadolinia ceramic scintillator and manufacture
US3943400A (en) Cathode-ray tube provided with a luminescent silicate
US6623661B2 (en) Method for producing photostimulable phosphor
US3925239A (en) Method of manufacturing a luminescent alkaline earth halophosphate
US4350604A (en) Phosphor
US3856697A (en) Luminescent alkali metal gallate

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees