JPH0593076A - Compound semiconductor-high polymer complex fine particle and its production - Google Patents

Compound semiconductor-high polymer complex fine particle and its production

Info

Publication number
JPH0593076A
JPH0593076A JP3068915A JP6891591A JPH0593076A JP H0593076 A JPH0593076 A JP H0593076A JP 3068915 A JP3068915 A JP 3068915A JP 6891591 A JP6891591 A JP 6891591A JP H0593076 A JPH0593076 A JP H0593076A
Authority
JP
Japan
Prior art keywords
fine particles
compound semiconductor
polymer
high polymer
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3068915A
Other languages
Japanese (ja)
Other versions
JP3182693B2 (en
Inventor
Hiroshi Hosokawa
宏 細川
Takemoto Kamata
健資 鎌田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP06891591A priority Critical patent/JP3182693B2/en
Publication of JPH0593076A publication Critical patent/JPH0593076A/en
Application granted granted Critical
Publication of JP3182693B2 publication Critical patent/JP3182693B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE:To enhance moldability by improving stability of particle diameter of a complex consisting of compound semiconductor fine particles and high polymer to circumference. CONSTITUTION:Complex fine particles consisting of compound semiconductor fine particles which formed a complex with a polar high polymer. The comlex fine particles are produced by producing a compound semiconductor colloid by a chemical reaction in a high polymer solution.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は化合物半導体と極性高分
子からなる複合微粒子及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to composite fine particles composed of a compound semiconductor and a polar polymer and a method for producing the same.

【0002】[0002]

【従来の技術】化合物半導体微粒子は、光技術及び電子
技術の分野において極めて重要な役割を担う材料または
原料の一つである。例えば、代表的なII−VI族化合
物半導体であるCdS(硫化カドミウム)の超微粒子を
ドープした無機ガラスは、シャープカットフィルタとし
て既に実用化されており、光・電子技術の中で確固たる
地位を占めている。このCdS超微粒子ドープガラスに
代表される化合物半導体超微粒子ドープガラスは、最
近、非線形光学材料としても期待が高まっており、同様
の化合物半導体であるCuCl(塩化第一銅)超微粒子
ドープガラスにおいても光デバイスに要求される実用特
性を満足する3次の非線形光学効果が実現されたとの報
告(中村新男、他:1990年春期応用物理学会要旨集
p.1150)がなされている。
2. Description of the Related Art Fine particles of compound semiconductor are one of the materials or raw materials that play an extremely important role in the fields of optical technology and electronic technology. For example, an inorganic glass doped with ultrafine particles of CdS (cadmium sulfide), which is a typical II-VI group compound semiconductor, has already been put to practical use as a sharp cut filter and occupies a solid position in the optical and electronic technologies. ing. The compound semiconductor ultrafine particle-doped glass typified by the CdS ultrafine particle-doped glass has recently been expected to be used as a nonlinear optical material, and also in the similar compound semiconductor CuCl (cuprous chloride) ultrafine particle-doped glass. It has been reported that a third-order nonlinear optical effect satisfying the practical characteristics required for optical devices has been realized (Shino Nakamura, et al .: Abstracts of the Society of Applied Physics, 1990, p.1150).

【0003】このような化合物半導体超微粒子ドープガ
ラスは、主として気相法により製造されており、半導体
微粒子を熱処理によりガラス中に析出させ、この熱処理
の条件により微粒子の粒径を制御する。しかしながら、
この方法では半導体微粒子の濃度を高くすることが困難
であり、さらに、デバイス化工程において重要な薄膜化
も容易ではないという問題がある。
Such compound semiconductor ultrafine particle-doped glass is mainly produced by a vapor phase method, and semiconductor fine particles are precipitated in the glass by heat treatment, and the particle diameter of the fine particles is controlled by the conditions of this heat treatment. However,
This method has a problem that it is difficult to increase the concentration of the semiconductor fine particles, and further, it is not easy to form a thin film which is important in the device forming process.

【0004】かかる問題点を解決する目的で、高分子材
料の中に半導体微粒子を析出させた複合材料が提案され
た(USP4,738,798)。この複合材料は、半
導体原料の一つである金属イオンで置換した高分子電解
質を含む高分子成形体を化学処理し、高分子成形体中に
半導体微粒子を析出させることにより製造される。この
場合、基質高分子のガラス転移温度以上の温度まで加熱
し、この熱処理の条件により半導体微粒子の粒径の制御
が行われる。この方法によれば、半導体微粒子の濃度を
高くすることが比較的容易であり、また、薄膜化も可能
である。
For the purpose of solving such a problem, a composite material in which semiconductor fine particles are deposited in a polymer material has been proposed (USP 4,738,798). This composite material is produced by chemically treating a polymer molded body containing a polymer electrolyte substituted with a metal ion, which is one of semiconductor raw materials, to deposit semiconductor fine particles in the polymer molded body. In this case, heating is performed to a temperature not lower than the glass transition temperature of the matrix polymer, and the particle size of the semiconductor fine particles is controlled by the condition of this heat treatment. According to this method, it is relatively easy to increase the concentration of the semiconductor fine particles, and thinning is possible.

【0005】[0005]

【発明が解決しようとする課題】USP4,738,7
98に開示された方法は、半導体微粒子の濃度を比較的
高くすることができ、また薄膜化も可能な優れた方法で
あるが、上述した粒径制御の熱処理温度が無機ガラスの
場合と比較して低いため、粒径の制御性が熱などの環境
に左右されやすく、安定性に欠ける。さらに、この方法
では、一旦半導体微粒子を析出してしまうとその後の成
形がほとんど不可能であるなど、実用的には多くの問題
を抱えている。
[Problems to be Solved by the Invention] USP 4,738,7
The method disclosed in No. 98 is an excellent method that can relatively increase the concentration of semiconductor fine particles and can also be made into a thin film. Therefore, the controllability of the particle size is easily affected by the environment such as heat and lacks stability. Furthermore, this method has many practical problems, such that once the semiconductor fine particles are deposited, the subsequent molding is almost impossible.

【0006】従って、本発明は微粒子粒径を安定に制御
することが可能で、しかも成形加工性に優れた化合物半
導体微粒子と高分子からなる複合体およびその複合体を
製造する技術を提供することを目的とする。
Therefore, the present invention provides a composite comprising fine particles of a compound semiconductor and a polymer, which can control the particle diameter of the particles in a stable manner and is excellent in molding processability, and a technique for producing the composite. With the goal.

【0007】[0007]

【課題を解決するための手段及び作用】本発明者らは化
合物半導体と極性高分子からなる複合微粒子コロイドが
粒径を制御する上で熱などの環境安定性に優れ、且つ、
他の高分子との複合化も容易で成形加工性にも優れてい
ることを見出し、本発明を完成するに到った。すなわ
ち、上記目的を達成するため、本発明によれば、極性高
分子が複合化された化合物半導体微粒子からなる複合微
粒子が提供される。さらに、本発明によれば、高分子溶
液中において、化学反応により化合物半導体コロイドを
生成させることによる前記複合微粒子の製造方法も提供
される。
Means and Actions for Solving the Problems The present inventors have found that the composite fine particle colloid comprising a compound semiconductor and a polar polymer is excellent in environmental stability such as heat in controlling the particle size, and
They have found that they can be easily compounded with other polymers and have excellent moldability, and have completed the present invention. That is, in order to achieve the above object, according to the present invention, there are provided composite fine particles composed of compound semiconductor fine particles in which polar polymers are composited. Furthermore, according to the present invention, there is also provided a method for producing the composite fine particles, which comprises producing a compound semiconductor colloid by a chemical reaction in a polymer solution.

【0008】本発明の複合微粒子は化合物半導体微粒子
に極性高分子が複合化されたものである。尚、極性高分
子はどのような状態で化合物半導体微粒子に複合化され
ているのかは明らかではないが、少なくともその一部は
微粒子表面を被覆しているものと推測される。ここで使
用される化合物半導体としては、溶液中で化学反応によ
りその微粒子が生成されるものであればよく、具体的に
は、I−VII族化合物として、塩化第一銅(CuC
l)、II−VI族化合物として硫化カドミウム(Cd
S)、硫化亜鉛(ZnS)、セレン化亜鉛(ZnS
e)、テルル化亜鉛(ZnTe)、硫化カドミウム(C
dS)、セレン化カドミウム(CdSe)、テルル化水
銀(HgTe)など、IV−VI族化合物として硫化鉛
(PbS)、テルル化鉛(PbTe)などをあげること
ができる。また、同族同士の化合物は混晶(固溶体)を
形成し、例えば、CdSXSe1-Xなどをあげることがで
きる。更に、本発明において、これらの化合物半導体微
粒子に複合化される極性高分子とは水溶性高分子に代表
されるような極性の強い原子団を有する高分子をいう。
さらに、この極性高分子の中でも特に高分子電解質が複
合微粒子の粒径を均一に制御する上で有効である。この
高分子電解質としては、例えば、ポリアクリル酸、ポリ
メタクリル酸、ポリビニル硫酸、ポリスチレンスルホン
酸などのポリアニオン系物質、およびポリビニルアミ
ン、ポリアリルアミン、ポリエチレンイミン、ハロゲン
化ポリ−4−ビニル−N−アルキルピリジニウム、ポリ
メタクリル酸ジメチルアミノエチルメチルクロリド酸な
どのポリカチオン系物質などをあげることができ、これ
らは使用する化合物半導体の種類に応じて1種または2
種以上が適宜選択される。このように高分子電解質が粒
径制御に対して有効である理由は、現在のところ明らか
ではないが、高分子電解質の極性基が化合物半導体微粒
子の表面と比較的強い相互作用を持ち、かつ、高分子電
解質同士の反発力により粒子の凝集が妨げられるためと
推定される。
The fine composite particles of the present invention are compound semiconductor fine particles in which a polar polymer is combined. It is not clear in what state the polar polymer is compounded with the compound semiconductor fine particles, but it is presumed that at least a part of the polar polymer covers the surface of the fine particles. The compound semiconductor used here may be one that can generate fine particles thereof by a chemical reaction in a solution, and specifically, as a group I-VII compound, cuprous chloride (CuC) can be used.
l), cadmium sulfide (Cd) as a II-VI compound
S), zinc sulfide (ZnS), zinc selenide (ZnS)
e), zinc telluride (ZnTe), cadmium sulfide (C
dS), cadmium selenide (CdSe), mercury telluride (HgTe) and the like, and IV-VI group compounds include lead sulfide (PbS), lead telluride (PbTe) and the like. Compounds of the same family form a mixed crystal (solid solution), and examples thereof include CdS X Se 1 -X . Further, in the present invention, the polar polymer compounded with these compound semiconductor fine particles refers to a polymer having an atomic group having a strong polarity as represented by a water-soluble polymer.
Further, among the polar polymers, a polyelectrolyte is particularly effective in uniformly controlling the particle size of the composite fine particles. Examples of the polymer electrolyte include polyanionic substances such as polyacrylic acid, polymethacrylic acid, polyvinyl sulfuric acid, polystyrene sulfonic acid, polyvinylamine, polyallylamine, polyethyleneimine, and halogenated poly-4-vinyl-N-alkyl. Examples thereof include polycationic substances such as pyridinium and poly (dimethylaminoethylmethylmethacrylic acid chloride), which may be used alone or in combination depending on the type of compound semiconductor used.
At least one species is selected. The reason why the polymer electrolyte is effective for particle size control in this way is not clear at present, but the polar group of the polymer electrolyte has a relatively strong interaction with the surface of the compound semiconductor fine particles, and It is presumed that the repulsive force between the polymer electrolytes hinders the aggregation of particles.

【0009】さらに、本発明においては、化合物半導体
微粒子表面を被覆する極性高分子として、上述の極性高
分子の他に少なくとも1種の導電性高分子を含む場合
に、化合物半導体微粒子の粒径制御の安定性向上効果を
更に高めることができる。ここで、導電性高分子とは高
分子自身の電子状態により導電性が発現する物質を意味
し、例えば、π電子共役系を有するポリピロール、ポリ
フラン、ポリチオフェン、ポリアニリンなど、およびこ
れらの誘導体をあげることができる。このような導電性
高分子が有効である理由も、現在のところ明らかではな
いが、導電性高分子の化合物半導体に体する密着性が他
の高分子よりも優れているため、導電性高分子が化合物
半導体微粒子を安定にいわばカプセル化しているためと
推定される。
Further, in the present invention, when the polar polymer for coating the surface of the compound semiconductor fine particles contains at least one kind of conductive polymer in addition to the above polar polymer, the particle size control of the compound semiconductor fine particles is performed. The effect of improving the stability of can be further enhanced. Here, the conductive polymer means a substance that exhibits conductivity due to the electronic state of the polymer itself, and examples thereof include polypyrrole, polyfuran, polythiophene, polyaniline, and the like having a π-electron conjugated system, and derivatives thereof. You can The reason why such a conductive polymer is effective is not clear at present, but since the adhesion of the conductive polymer to the compound semiconductor is superior to other polymers, the conductive polymer is Is presumably because the compound semiconductor fine particles are stably encapsulated.

【0010】ついで、本発明の化合物半導体−高分子複
合微粒子の製造方法は、原料溶液としての極性高分子溶
液中で化学反応により化合物半導体コロイドを生成する
ものである。とくに、高分子電解質溶液中で上記化学反
応を行うと、比較的粒径の小さな複合微粒子コロイドが
収率良く得られるという利点がある。この反応は、目的
とする化合物半導体微粒子を生成し得る2種の原料化合
物(少なくとも一方は金属化合物でなくてよい)のどち
らか一方の溶液と、高分子電解質(極性高分子)溶液と
を混合した後に、この混合溶液に他の一方の半導体微粒
子を生成し得る原料化合物の溶液を混合することにより
行われる。その結果、化合物半導体微粒子の生成と同時
に、高分子電解質との複合化が行われ、化合物半導体−
高分子複合微粒子が得られる。このとき、反応温度は、
特に限定されるものではないが、通常、−100〜20
0℃の範囲に設定される。
Next, the method for producing compound semiconductor-polymer composite fine particles of the present invention is to produce a compound semiconductor colloid by a chemical reaction in a polar polymer solution as a raw material solution. Particularly, when the above chemical reaction is carried out in a polymer electrolyte solution, there is an advantage that a composite fine particle colloid having a relatively small particle size can be obtained in good yield. In this reaction, a solution of either one of two raw material compounds (at least one of which does not have to be a metal compound) capable of producing the target compound semiconductor fine particles is mixed with a polymer electrolyte (polar polymer) solution. Then, the mixed solution is mixed with a solution of a raw material compound capable of forming another semiconductor fine particle. As a result, at the same time as the generation of the compound semiconductor fine particles, the compounding with the polymer electrolyte is performed, and the compound semiconductor-
Polymer composite fine particles are obtained. At this time, the reaction temperature is
Although not particularly limited, it is usually -100 to 20.
It is set in the range of 0 ° C.

【0011】また、本発明の製造方法において、原料の
高分子として導電性高分子を使用する場合は、溶液中に
導電性高分子モノマーを添加混合することにより、化合
物半導体微粒子の生成と、導電性高分子モノマーの重合
反応とを同時に行わせる。この方法によれば、化合物半
導体微粒子の生成と同時に前記モノマーが重合し、複合
微粒子の粒径をナノメータレベルから制御することが可
能となる。この理由としては、化合物半導体微粒子の析
出・肥大化の反応と、この微粒子を被覆する形で生成す
る導電性高分子モノマーの重合反応が競争して起こり、
化合物半導体微粒子が凝集し、肥大化する前にこの微粒
子を導電性高分子で被覆することができるためであると
考えられる。なお、この反応は、光の照射により加速さ
れる傾向がある。これは、光により化合物半導体表面に
ホールが発生し、これにより導電性高分子が重合する機
構によるものと推測される。
In the production method of the present invention, when a conductive polymer is used as the raw material polymer, the conductive polymer monomer is added and mixed in the solution to produce the compound semiconductor fine particles and the conductive polymer. The polymerization reaction of the polymerizable polymer monomer is simultaneously performed. According to this method, the monomer is polymerized at the same time when the compound semiconductor fine particles are produced, and the particle size of the composite fine particles can be controlled from the nanometer level. The reason for this is that the reaction of precipitation / enlargement of the compound semiconductor fine particles and the polymerization reaction of the conductive polymer monomer generated in the form of covering the fine particles compete with each other,
It is considered that this is because the fine particles of the compound semiconductor can be coated with the conductive polymer before they agglomerate and become large. Note that this reaction tends to be accelerated by irradiation with light. It is presumed that this is due to a mechanism in which holes are generated on the surface of the compound semiconductor by light and the conductive polymer is polymerized by the holes.

【0012】[実施例]以下に、本発明の具体的実施例
について説明する。
[Examples] Specific examples of the present invention will be described below.

【0013】実施例1(硫化カドミウム(CdS)微粒
子分散液の調製) 和光純薬工業(株)コロイド滴定用ポリビニル硫酸カリ
ウム4.87gを脱イオン水300mlに均一に溶解
し、これを原料Aとした。塩化カドミウム2.5水塩
(CdCl2・2.5H2O)2.28gを脱イオン水1
00mlに均一に溶解し、これを原料Bとした。硫化ナ
トリウム9水塩(Na2S・9H2O)2.40gを脱イ
オン水100mlに均一に溶解し、これを原料Cとし
た。原料Aに原料Bを攪拌混合し、均一な溶液とした。
この溶液に、原料Cを滴下しながら攪拌混合し、滴下終
了後さらに50℃で2時間攪拌したところ、オレンジ色
の均一で不透明な分散液が得られた。この分散液を、
日本メデカルサイエンス社製ヴィスキングチューブを用
いて脱イオン水にて約1週間透析した。、この分散液を
透過型電子顕微鏡観察用メッシュの上に滴下し十分乾燥
した後に、日本電子(株)製電子顕微鏡JEM−100
CXIIにて観察したところ、直径10nm前後の大き
さの微粒子の生成が認められた。
Example 1 (Preparation of Cadmium Sulfide (CdS) Fine Particle Dispersion) Wako Pure Chemical Industries Ltd. 4.87 g of potassium polyvinylsulfate for colloid titration was uniformly dissolved in 300 ml of deionized water and used as raw material A. did. Cadmium chloride 2.5 hydrate (CdCl 2 · 2.5H 2 O) 2.28 g was added to deionized water 1
It was uniformly dissolved in 00 ml and used as a raw material B. 2.40 g of sodium sulfide nonahydrate (Na 2 S.9H 2 O) was uniformly dissolved in 100 ml of deionized water, and this was used as a raw material C. The raw material B was stirred and mixed with the raw material A to form a uniform solution.
To this solution, the raw material C was added dropwise with stirring, and after the completion of the addition, the mixture was further stirred at 50 ° C. for 2 hours to obtain an orange uniform and opaque dispersion liquid. This dispersion is
Using a Visking tube manufactured by Nippon Medical Science Co., Ltd., it was dialyzed against deionized water for about 1 week. The dispersion was dropped onto a transmission electron microscope observation mesh and sufficiently dried, and then the electron microscope JEM-100 manufactured by JEOL Ltd.
When observed by CXII, generation of fine particles having a diameter of about 10 nm was recognized.

【0014】実施例2(硫化カドミウム(CdS)微粒
子分散液の調製) 原料Aに原料Bを攪拌混合し、さらにピロール1.38
mlを攪拌混合し、均一な溶液としたことを除いては、
実施例1と同様の操作を行った。最終的に得られた分散
液は均一で半透明のオレンジ色であった。この分散液を
透過型電子顕微鏡観察用メッシュの上に滴下し十分乾燥
した後に、日本電子(株)製電子顕微鏡JEM−100
CXIIにて観察したところ、直径数nm前後の大きさ
の微粒子の生成が認められた。
Example 2 (Preparation of Cadmium Sulfide (CdS) Fine Particle Dispersion) Raw material B was stirred and mixed with raw material A, and pyrrole 1.38 was further added.
ml was stirred and mixed to form a uniform solution,
The same operation as in Example 1 was performed. The finally obtained dispersion was a uniform, translucent orange color. This dispersion was dropped on a transmission electron microscope observation mesh and sufficiently dried, and then the electron microscope JEM-100 manufactured by JEOL Ltd.
When observed by CXII, generation of fine particles having a diameter of around several nm was recognized.

【0015】比較例1 原料Aを用いないこと以外は、実施例2と同様の操作を
行ったところ、均一な分散液は得られずにオレンジ色の
粉末状沈澱物が得られた。
Comparative Example 1 The same operation as in Example 2 was carried out except that the raw material A was not used. As a result, a uniform dispersion was not obtained, but an orange powdery precipitate was obtained.

【0016】実施例3(硫化カドミウム(CdS)微粒
子分散液の調製) 原料Aのポリビニル硫酸カリウム4.87gをポリビニ
ルピロリドンK−90(半井化学薬品(株))3.33g
に変更した以外は、実施例2と同様の操作を行った。。
最終的に得られた分散液は均一で不透明のオレンジ色で
あった。この分散液を透過型電子顕微鏡観察用メッシュ
の上に滴下し十分乾燥した後に、日本電子(株)製電子
顕微鏡JEM−100CXIIにて観察したところ、直
径10nm前後の大きさの微粒子の生成が認められた。
Example 3 (Preparation of Cadmium Sulfide (CdS) Fine Particle Dispersion Liquid) 4.87 g of polyvinyl potassium sulfate as raw material A was added to polyvinyl pyrrolidone K-90 (Hanai Chemical Co., Ltd.) 3.33 g
The same operation as in Example 2 was performed, except that the procedure was changed to. ..
The final dispersion was a uniform, opaque orange color. After this dispersion was dropped on a transmission electron microscope observing mesh and sufficiently dried, it was observed with an electron microscope JEM-100CXII manufactured by JEOL Ltd., and formation of fine particles having a diameter of about 10 nm was observed. Was given.

【0017】実施例4(塩化第一銅(CuCl)微粒子
分散液の調製) 和光純薬工業 コロイド滴定用ポリビニル硫酸カリウム
2.42gを脱イオン水100mlに均一に溶解し、こ
れに硫酸銅(CuSO4)0.80gを加え均一に溶解
し、さらに塩化ナトリウム(NaCl)0.30gを加
え均一に溶解し、これを原料Dとした。ピロール0.6
9mlを脱イオン水50mlに均一に溶解し、原料Eと
した。原料Dに原料Eを滴下しながら攪拌混合した後
に、0.6%亜硫酸(H2SO3)水溶液を滴下しながら
攪拌混合し、滴下終了後に70℃に昇温した状態で4時
間攪拌したところ、黒色不透明の均一な分散液が得られ
た。この分散液を、実施例1と同様の方法で透析した後
に電子顕微鏡にて観察したところ、直径数nm前後の大
きさの微粒子の生成が認められた。
Example 4 (Preparation of cuprous chloride (CuCl) fine particle dispersion liquid) Wako Pure Chemical Industries, Ltd. 2.42 g of polyvinyl potassium sulfate for colloid titration was uniformly dissolved in 100 ml of deionized water, and copper sulfate (CuSO 4) was added thereto. 4 ) 0.80 g was added and uniformly dissolved, and 0.30 g of sodium chloride (NaCl) was further added and uniformly dissolved, and this was used as a raw material D. Pyrrole 0.6
9 ml was uniformly dissolved in 50 ml of deionized water to obtain a raw material E. After the raw material E was stirred and mixed with the raw material D, a 0.6% aqueous solution of sulfurous acid (H 2 SO 3 ) was stirred and mixed with the raw material E, and after the dropping, the mixture was stirred for 4 hours at a temperature of 70 ° C. A black opaque uniform dispersion was obtained. When this dispersion was dialyzed by the same method as in Example 1 and then observed with an electron microscope, formation of fine particles having a diameter of around several nm was observed.

【0018】比較例2 原料Dにおいて、ポリビニル硫酸カリウムを用いないこ
と以外は、実施例4と同様の操作を行ったところ、均一
な分散液は得られずに青白色の粉末状沈澱物が得られ
た。
Comparative Example 2 The same operation as in Example 4 was carried out except that, in the raw material D, potassium polyvinyl sulfate was not used, a uniform dispersion was not obtained, and a bluish white powdery precipitate was obtained. Was given.

【0019】[0019]

【発明の効果】以上詳細に説明したところから明らかな
ように、本発明の化合物半導体−高分子複合微粒子は微
粒子粒径を環境によらず安定に制御することができると
共に、成形加工性にも優れているという利点を有する。
また、本発明の複合微粒子の製造方法によれば、経済的
な液相法を使用して、生成する微粒子の凝集を防止する
ことにより、数ナノメータレベルの微細な粒子を得るこ
とが可能となった。従って、本発明は光技術、電子技術
など化合物半導体微粒子を使用する分野において極めて
有用である。
As is clear from the above description, the compound semiconductor-polymer composite fine particles of the present invention can stably control the particle diameter of the fine particles irrespective of the environment and also have a good moldability. It has the advantage of being excellent.
Further, according to the method for producing composite fine particles of the present invention, it is possible to obtain fine particles at a level of several nanometers by using an economical liquid phase method and preventing agglomeration of fine particles generated. It was Therefore, the present invention is extremely useful in the field of using compound semiconductor fine particles such as optical technology and electronic technology.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 極性高分子が複合化された化合物半導体
微粒子からなる複合微粒子。
1. Composite fine particles comprising compound semiconductor fine particles in which a polar polymer is complexed.
【請求項2】 極性高分子が電解質である特許請求の範
囲第1項記載の複合微粒子。
2. The composite fine particles according to claim 1, wherein the polar polymer is an electrolyte.
【請求項3】 極性高分子に加えて、少なくとも1種の
導電性高分子を含む特許請求の範囲第1項記載の複合微
粒子。
3. The composite fine particles according to claim 1, containing at least one kind of conductive polymer in addition to the polar polymer.
【請求項4】 高分子溶液中において、化学反応により
化合物半導体コロイドを生成させることによる化合物半
導体−高分子複合微粒子の製造方法。
4. A method for producing compound semiconductor-polymer composite fine particles, which comprises producing a compound semiconductor colloid by a chemical reaction in a polymer solution.
JP06891591A 1991-03-08 1991-03-08 Compound semiconductor-polymer composite fine particles and method for producing the same Expired - Lifetime JP3182693B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06891591A JP3182693B2 (en) 1991-03-08 1991-03-08 Compound semiconductor-polymer composite fine particles and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06891591A JP3182693B2 (en) 1991-03-08 1991-03-08 Compound semiconductor-polymer composite fine particles and method for producing the same

Publications (2)

Publication Number Publication Date
JPH0593076A true JPH0593076A (en) 1993-04-16
JP3182693B2 JP3182693B2 (en) 2001-07-03

Family

ID=13387428

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06891591A Expired - Lifetime JP3182693B2 (en) 1991-03-08 1991-03-08 Compound semiconductor-polymer composite fine particles and method for producing the same

Country Status (1)

Country Link
JP (1) JP3182693B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005008889A (en) * 2003-06-20 2005-01-13 Crf Soc Consortile Per Azioni Method for manufacturing polymeric composite of metal or semiconductor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005008889A (en) * 2003-06-20 2005-01-13 Crf Soc Consortile Per Azioni Method for manufacturing polymeric composite of metal or semiconductor
JP4663260B2 (en) * 2003-06-20 2011-04-06 チ・エレ・エッフェ・ソシエタ・コンソルティーレ・ペル・アチオニ Method for producing polymer composite of metal or metal sulfide

Also Published As

Publication number Publication date
JP3182693B2 (en) 2001-07-03

Similar Documents

Publication Publication Date Title
JP3056522B2 (en) Metal-conductive polymer composite fine particles and method for producing the same
Zoromba et al. Conductive thin films based on poly (aniline-co-o-anthranilic acid)/magnetite nanocomposite for photovoltaic applications
CN109935735A (en) A kind of ZnO film and preparation method thereof and QLED device
KR102172116B1 (en) Process for making silver nanostructures and copolymer useful in such process
TW200417592A (en) Electrically conducting organic polymer/nanoparticle composites and methods for use thereof
US9595363B2 (en) Surface chemical modification of nanocrystals
JP2004035386A (en) New carbon nanoparticle, method for manufacturing the same, and transparent conductive polymer composite material containing the same
JPS6116931A (en) Preparation of processable polymer blend, apparatus and product
JP6487945B2 (en) Thermoelectric composite having thermoelectric properties and method for producing the same
Zhang et al. Suppressed blinking behavior of CdSe/CdS QDs by polymer coating
JPS63193926A (en) Production of aqueous dispersion of polypyrroles
JP3182693B2 (en) Compound semiconductor-polymer composite fine particles and method for producing the same
CA2665505A1 (en) Producing composite nanoparticles using nanoscale polymer templates
CN113087925A (en) Stimulus-responsive hydrogel and method for quickly and efficiently preparing stimulus-responsive hydrogel
Sun et al. In situ preparation of nanoparticles/polymer composites
JP3408568B2 (en) Composite particles comprising semiconductor particles and conductive polymer, method for producing the composite particles, molded article of a composition containing the composite particles, and method for producing the molded article
KR100963648B1 (en) Preparation of high dielectric inorganic-polymer hybrid matrix
JP2916155B2 (en) Method for producing ultrafine particle / polymer composite composition
Heness Metal–polymer nanocomposites
KR20190045035A (en) Method for fabricating two-dimensional transition metal oxide flakes and electrochromic device using the transition metal oxide flakes
JP2636001B2 (en) Method for producing ultrafine particles of metal sulfide, metal selenide or a mixed crystal thereof
Wang et al. Preparing non-volatile resistive switching memories by tuning the content of Au@ air@ TiO 2-h yolk–shell microspheres in a poly (3-hexylthiophene) layer
Gogoi et al. Tuning of bipolar resistive switching and memory characteristics of cadmium sulphide nanorods embedded in PMMA matrix
Bhattacharya et al. Preparation of polypyrrole composite with acrylic acid-grafted tetrafluorothylene-hexafluoropropylene (Teflon-FEP) copolymer
KR100860506B1 (en) Polymer composites comprising metal nanoparticles and synthesis method thereof

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010313

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080427

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090427

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090427

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100427

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110427

Year of fee payment: 10

EXPY Cancellation because of completion of term