JPH059147U - Electric motor rotor - Google Patents

Electric motor rotor

Info

Publication number
JPH059147U
JPH059147U JP6135791U JP6135791U JPH059147U JP H059147 U JPH059147 U JP H059147U JP 6135791 U JP6135791 U JP 6135791U JP 6135791 U JP6135791 U JP 6135791U JP H059147 U JPH059147 U JP H059147U
Authority
JP
Japan
Prior art keywords
magnetic
pole member
rotor
electric motor
magnetic pole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6135791U
Other languages
Japanese (ja)
Inventor
政行 梨木
好雄 浜田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okuma Corp
Original Assignee
Okuma Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okuma Corp filed Critical Okuma Corp
Priority to JP6135791U priority Critical patent/JPH059147U/en
Publication of JPH059147U publication Critical patent/JPH059147U/en
Pending legal-status Critical Current

Links

Landscapes

  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

(57)【要約】 【目的】 本考案の目的は、電動機を大型化せずに電機
子反作用によるトルクリップルを低減する事ができる電
動機のロータを提供する。 【構成】 磁極部材21には、磁極部材21における磁
路を分割するように複数個の空隙C2が設けられてい
る。
(57) [Summary] [Object] An object of the present invention is to provide a rotor of an electric motor capable of reducing torque ripple due to armature reaction without increasing the size of the electric motor. [Structure] The magnetic pole member 21 is provided with a plurality of voids C2 so as to divide a magnetic path in the magnetic pole member 21.

Description

【考案の詳細な説明】[Detailed description of the device]

【0001】[0001]

【産業上の利用分野】[Industrial applications]

本考案は、ステータの内側にフランジ及びベアリングを介して回転自在に置か れたロータを有する永久磁石式の電動機のロータ構造に関する。   The present invention is rotatably placed inside the stator through a flange and a bearing. Rotor structure of a permanent magnet type electric motor having a fixed rotor.

【0002】[0002]

【従来の技術】[Prior art]

図3は従来の6ポールの電動機のロータ及びステータの一例を軸方向から見た 図であり、巻線及び磁路については一対のN極及びS極に関してのみ記載してあ り、その他の部分については同等の為省略してある。ロータ10は打抜き等によ り作られた磁性材から成る鋼板を複数枚積層した磁極部材11が軸1に圧入、焼 バメ或いは接着等により固定され、この磁極部材11の外周が順次異なる極とな る様にブロック状の磁石12が配設されている。ここで、磁極部材11の外周部 は隣接する相異なる極が実用上差し支えない程度の微少磁束にて飽和する断面積 にて継がっている。また、磁極部材11の内周部は同じ極(図ではS極)が軸1 に嵌着しても応力破壊を起さない様な面積をもって全周継がっており、他の極( 図ではN極)とは径方向に設けられた空隙C1により磁気的に絶縁されている。 なお、遠心力等に対する補強として、漏れ磁束が電動機として実用的に問題とな らない範囲で磁極部材11と磁極部材11の内周部とを必要最小限の断面積で継 げるようにしても良い。   FIG. 3 shows an example of a rotor and a stator of a conventional 6-pole electric motor viewed from the axial direction. It is a diagram, and windings and magnetic paths are described only for a pair of N pole and S pole. The other parts are omitted because they are equivalent. The rotor 10 is punched or the like. A magnetic pole member 11 made by laminating a plurality of steel plates made of a magnetic material is pressed into the shaft 1 and fired. The magnetic pole member 11 is fixed by baffle or adhesive so that the outer circumference of the magnetic pole member 11 becomes different poles. The block-shaped magnet 12 is disposed so as to move. Here, the outer peripheral portion of the magnetic pole member 11 Is a cross-sectional area where adjacent different poles are saturated with minute magnetic flux that is practically acceptable. It has been succeeded by. Further, the same pole (S pole in the figure) is provided on the inner circumference of the magnetic pole member 11 as the shaft 1 The entire circumference has an area that does not cause stress fracture even if it is fitted to the other pole ( (N pole in the figure) is magnetically insulated by a gap C1 provided in the radial direction. As a reinforcement against centrifugal force, leakage magnetic flux is not a practical problem for the motor. The magnetic pole member 11 and the inner peripheral portion of the magnetic pole member 11 are joined to each other with a minimum necessary cross-sectional area within a range that does not occur. It may be turned off.

【0003】 このように構成されたロータ10の外側にはステータ13が設けられ、ステー タ13は打抜き等により作られた磁性材から成る鋼板を複数枚積層したステータ コア14と、ステータコア14に設けられたスロット15に巻かれた3相の巻線 16とで構成されている。この電動機の磁路を考えると、ステータコア14と磁 極部材11の外周とのエアギャップに対し磁極部材11内の空隙C1の方が大幅 に磁気抵抗が大きいので、磁束はN極の磁極部材11の中を通り、その磁極部材 11の外周からステータコア14の歯部及びヨーク部を通って隣のS極に向かう (図示点線矢印)。ここで、この電動機のトルク発生原理について考えてみる。 ロータ10の回転角位置をθとすると、3相各相(U,V,W)の巻線16に直 交する有効磁束密度Bu,Bv,Bwが最大有効磁束密度をBoとしたときにそ れぞれ数1,数2,数3となるように電動機は設計されている。[0003]   A stator 13 is provided on the outside of the rotor 10 configured as described above, and The stator 13 is a stator formed by laminating a plurality of steel plates made of a magnetic material made by punching or the like. Three-phase winding wound around the core 14 and the slot 15 provided in the stator core 14. 16 and 16. Considering the magnetic path of this motor, the stator core 14 and the magnetic The air gap C1 in the magnetic pole member 11 is much larger than the air gap with the outer periphery of the pole member 11. Since the magnetic resistance is large, the magnetic flux passes through the N pole magnetic pole member 11 and From the outer periphery of 11 to the adjacent S pole through the teeth and yoke of the stator core 14. (Dotted line arrow). Now, let us consider the principle of torque generation of this electric motor. Assuming that the rotational angle position of the rotor 10 is θ, it is directly connected to the winding 16 of each of the three phases (U, V, W). When the effective magnetic flux densities Bu, Bv, and Bw that intersect are the maximum effective magnetic flux density Bo, The electric motors are designed so that the numbers are 1, 2, and 3, respectively.

【0004】[0004]

【数1】 Bu=Bo・cosθ[Equation 1]     Bu = Bo · cos θ

【数2】 Bv=Bo・cos(θ+(2/3)π)[Equation 2]     Bv = Bo · cos (θ + (2/3) π)

【数3】 Bw=Bo・cos(θ+(4/3)π) また、巻線16の各相に流す電流Iu,Iv,Iwは、最大値をIoとするとそ れぞれ数4,数5,数6となるように制御されている。[Equation 3]     Bw = Bo · cos (θ + (4/3) π) Further, the currents Iu, Iv, and Iw flowing through the respective phases of the winding 16 are set to the maximum value Io. It is controlled so as to be the number 4, the number 5, and the number 6, respectively.

【数4】 Iu=Io・cosθ[Equation 4]     Iu = Io · cos θ

【数5】 Iv=Io・cos(θ+(2/3)π)[Equation 5]     Iv = Io · cos (θ + (2/3) π)

【数6】 Iw=Io・cos(θ+(4/3)π) このとき電動機の発生トルクTは数7で示すようになり、ロータ10の回転角位 置θに関係なく一定で、電流Ioに比例するのが分る。[Equation 6]     Iw = Io · cos (θ + (4/3) π) At this time, the torque T generated by the electric motor is as shown in Equation 7, and the rotational angular position of the rotor 10 is It can be seen that it is constant regardless of the position θ and is proportional to the current Io.

【0005】[0005]

【数7】 T=Bu・Iu+Bv・Iv+Bw・Iw =Bo・cosθ・Io・cosθ +Bo・cos(θ+(2/3)π)・Io・cos(θ+(2/3) π) +Bo・cos(θ+(4/3)π)・Io・cos(θ+(4/3) π) =(3/2)Bo・Io そして、ロータ10の回転角位置θにおける各相に流す電流I及び各相の巻線 16に直交する磁束密度Bの関係は図4の(A)及び(B)のようになる。[Equation 7]     T = Bu · Iu + Bv · Iv + Bw · Iw       = Bo ・ cos θ ・ Io ・ cos θ         + Bo ・ cos (θ + (2/3) π) ・ Io ・ cos (θ + (2/3)         π)         + Bo ・ cos (θ + (4/3) π) ・ Io ・ cos (θ + (4/3)         π)       = (3/2) Bo · Io   The current I flowing in each phase and the winding of each phase at the rotation angle position θ of the rotor 10 The relationship of the magnetic flux density B orthogonal to 16 is as shown in FIGS. 4 (A) and 4 (B).

【0006】[0006]

【考案が解決しようとする課題】[Problems to be solved by the device]

上述した従来の電動機において、実際に巻線16に電流を流した時の状態を考 えると、電機子反作用と呼ばれる図3の実線矢印で示す様な磁気回路が形成され る。このとき磁極部材11内の磁束密度は磁極部材11の飽和磁束密度に対して 通常十分余裕があり、磁束は自由に動ける状態にある事から、電機子反作用によ る磁束により同図中点線矢印で示す磁極部材11内の磁束の流れは簡単にゆがめ られてしまう。従って、巻線16の各相を直交する磁束密度が余弦波状に成るべ きところが位相がずれてしまい、結果電動機の出力トルクにはトルクリップルと 呼ばれるロータの回転角位置によって大きくトルクが脈動する現象が発生する。   Consider the state when the current is actually applied to the winding 16 in the conventional electric motor described above. Then, a magnetic circuit as shown by a solid arrow in FIG. 3 called an armature reaction is formed. It At this time, the magnetic flux density in the magnetic pole member 11 is relative to the saturation magnetic flux density of the magnetic pole member 11. Usually, there is enough margin and the magnetic flux is free to move. The magnetic flux in the magnetic pole member 11 shown by the dotted arrow in the figure is easily distorted by the magnetic flux. I will be lost. Therefore, the magnetic flux density orthogonal to each phase of the winding 16 should have a cosine wave shape. However, the phase is out of phase, resulting in a torque ripple in the output torque of the motor. A phenomenon occurs in which the torque largely pulsates depending on the rotation angle position of the rotor.

【0007】 トルクリップルを少なくする方法としては、磁極部材11の外周とステータ1 3の内周のエアギャップを大きくする事により、電機子反作用による磁気回路に 対して磁気抵抗を大きくしてその影響を小さくする方法が考えられるが、電動機 としての有効磁束密度が低下してモータの効率が悪くなり、結果電動機が大きく なるという問題があった。 本考案は上述した事情から成されたものであり、本考案の目的は、電動機を大 型化せずに電機子反作用によるトルクリップルを低減する事ができる電動機のロ ータを提供する事にある。[0007]   As a method of reducing the torque ripple, the outer circumference of the magnetic pole member 11 and the stator 1 By increasing the air gap in the inner circumference of 3, the magnetic circuit by the armature reaction On the other hand, it is possible to increase the magnetic resistance to reduce the effect. As a result, the effective magnetic flux density decreases and the motor efficiency decreases, resulting in a large motor. There was a problem of becoming.   The present invention has been made in view of the above-mentioned circumstances, and an object of the present invention is to expand the electric motor. It is possible to reduce the torque ripple due to the armature reaction without shaping the motor. To provide data.

【0008】[0008]

【課題を解決するための手段】[Means for Solving the Problems]

本考案は、磁性材により構成された磁極部材と、この磁極部材が円周方向で順 次異なる極となる様に配置されたブロック状の永久磁石とを有する電動機のロー タに関するものであり、本考案の上記目的は、前記磁極部材における磁路を分割 するように前記磁極部材に複数個の空隙を設けることによって達成される。   According to the present invention, a magnetic pole member made of a magnetic material and the magnetic pole member are arranged in the circumferential direction in order. Next, a motor rotor having block-shaped permanent magnets arranged to have different poles The above object of the present invention is to divide the magnetic path in the magnetic pole member. This is accomplished by providing the magnetic pole member with a plurality of voids.

【0009】[0009]

【作用】 本考案にあっては、磁極部材に設けた複数の空隙により、電機子反作用による 磁気回路に対して磁気抵抗を大きくすると共に、電機子反作用による磁束のゆが みを少なくしているので、電動機のトルクリップルを低減させることができる。[Action]   In the present invention, due to the armature reaction due to the plurality of gaps provided in the magnetic pole member The magnetic resistance is increased relative to the magnetic circuit, and the magnetic flux is distorted by the armature reaction. Since the torque is reduced, the torque ripple of the electric motor can be reduced.

【0010】[0010]

【実施例】【Example】

図1は本考案の電動機のロータの一例を軸方向から見た図であり、一対の磁極 部分に関してのみ記載しており、その他の磁極部分は同一構成の為省略してある 。なお、図3と同一構成箇所は同符号を付して説明を省略する。ロータ20の磁 極部材21には、磁石12と図示しないロータ20の外側に配設されたステータ とを結ぶ磁路に沿って空隙C2が複数設けられており、空隙C2は磁極部材21 の長手方向に貫通している。これらの複数の空隙C2により磁極部材21内の磁 路は複数に分割される。空隙C2の幅寸法は、空隙C2により分割された磁路の 断面積の総和が磁石12からの総磁束量により磁気飽和する限界一杯程度となる ように決められている。 このように構成されたロータ20においては、巻線16に電機子電流を流した 時発生する電機子反作用による磁気回路に対して空隙C2が大きな磁気抵抗とし て働き、電機子反作用による磁極部材21内の磁束をゆがめようとする力は大幅 に低減される。また、このとき若干の電機子反作用による影響力が残るものの、 磁極部材21内の磁路は空隙C2により分割され、分割された各磁路の断面積は 僅かな磁束の増加により磁気飽和するようにしてある為、磁極部材21外周での 磁束分布は変化しにくい。従って、電機子反作用によるトルクリップルを大幅に 低減する事ができる。   FIG. 1 is an axial view of an example of a rotor of a motor according to the present invention. Only the portion is described, and other magnetic pole portions are omitted because they have the same configuration. . In addition, the same components as those in FIG. Magnet of the rotor 20 The pole member 21 includes a magnet 12 and a stator arranged outside the rotor 20 (not shown). A plurality of voids C2 are provided along the magnetic path that connects to the magnetic pole member 21. Penetrates in the longitudinal direction. Due to the plurality of voids C2, the magnetism in the magnetic pole member 21 is reduced. The road is divided into a plurality of parts. The width dimension of the air gap C2 depends on the magnetic path divided by the air gap C2. The total cross-sectional area reaches the limit of magnetic saturation due to the total magnetic flux from the magnet 12. Is decided.   In the rotor 20 configured in this way, an armature current was passed through the winding 16. The air gap C2 has a large magnetic resistance with respect to the magnetic circuit due to the armature reaction that sometimes occurs. And the force to distort the magnetic flux in the magnetic pole member 21 due to the armature reaction is large. Is reduced to. Also, at this time, although some influence due to armature reaction remains, The magnetic path in the magnetic pole member 21 is divided by the air gap C2, and the sectional area of each divided magnetic path is Since the magnetic flux is saturated by a slight increase in the magnetic flux, The magnetic flux distribution is hard to change. Therefore, the torque ripple due to the armature reaction is greatly reduced. It can be reduced.

【0011】 図2は本考案の電動機のロータの別の一例を図1に対応させて示す図であり、 磁極部材31の略外周部円周方向に空隙C3が複数設けられており、空隙C3は 磁極部材31の長手方向に貫通している。これらの複数の空隙C3により磁極部 材31内の磁路は分割される。空隙C3の幅寸法は、空隙C3により分割された 磁路の断面積の総和が磁石12からの総磁束量により磁気飽和する限界一杯程度 となるように決められている。 このように構成されたロータ30においても、空隙C3は図1にて説明したの と同様に電機子反作用による起磁力に対して大きな磁気抵抗を有する。また、空 隙C3により磁路が分割され、分割された各磁路の断面積は僅かな磁束の増加に より磁気飽和するようにしてある為、磁極部材31外周での磁束分布は変化しに くい。従って、電機子反作用によるトルクリップルを大幅に低減する事ができる 。ここで、空隙C2の形状は四角で記載してあるが、磁路を分割する目的が達成 できれば良く、例えば丸でも良い。[0011]   FIG. 2 is a view showing another example of the rotor of the electric motor of the present invention in correspondence with FIG. A plurality of voids C3 are provided in a substantially outer circumferential direction of the magnetic pole member 31, and the voids C3 are It penetrates in the longitudinal direction of the magnetic pole member 31. The magnetic pole portion is formed by the plurality of voids C3. The magnetic path in the material 31 is divided. The width dimension of the void C3 is divided by the void C3. The total cross-sectional area of the magnetic path is about the limit of magnetic saturation due to the total amount of magnetic flux from the magnet 12. Has been decided to be.   In the rotor 30 configured as described above, the gap C3 has been described with reference to FIG. Similarly to, it has a large magnetic resistance against the magnetomotive force due to the armature reaction. Also empty The magnetic path is divided by the gap C3, and the sectional area of each of the divided magnetic paths causes a slight increase in magnetic flux. Since it is made to be more magnetically saturated, the magnetic flux distribution on the outer circumference of the magnetic pole member 31 does not change. Peg. Therefore, torque ripple due to armature reaction can be significantly reduced. . Here, the shape of the void C2 is described as a square, but the purpose of dividing the magnetic path is achieved. It should be possible, for example, a circle.

【0012】 なお、空隙は磁極部材を打抜き等により作る際に同時に打抜いて作成する事が できる。また、上述した実施例は6ポールの電動機について説明したが、特にこ れに限定されるものではなく、物理的に許す範囲であれば何ポールでも良い。更 に、分割された磁極部材と磁石とが交互に配置される様な構造のロータにも適用 可能である。[0012]   It should be noted that the air gap may be created by punching at the same time when punching the magnetic pole member. it can. Further, although the above-described embodiment has been described with respect to a 6-pole electric motor, It is not limited to this, and any pole may be used as long as it is physically permissible. Change Applied to a rotor with a structure in which the divided magnetic pole members and magnets are alternately arranged. It is possible.

【0013】[0013]

【考案の効果】[Effect of device]

以上のように本考案の電動機のロータによれば、電動機を大型化せずにトルク リップルを減少させることができるので、高精度な電動機とすることができ、適 用される機械の振動や異音の発生を抑制することができる。   As described above, according to the electric motor rotor of the present invention, the torque can be increased without increasing the size of the electric motor. Since the ripple can be reduced, a high-precision motor can be It is possible to suppress the vibration and abnormal noise of the machine used.

【図面の簡単な説明】[Brief description of drawings]

【図1】本考案の電動機のロータの一例を軸方向から見
た図である。
FIG. 1 is an axial view of an example of a rotor of an electric motor according to the present invention.

【図2】本考案の電動機のロータの別の一例を軸方向か
ら見た図である。
FIG. 2 is a view of another example of the rotor of the electric motor of the present invention as seen from the axial direction.

【図3】従来の電動機のロータ及びステータの一例を軸
方向から見た図である。
FIG. 3 is a view of an example of a rotor and a stator of a conventional electric motor as viewed from the axial direction.

【図4】ロータ回転角位置に対する3相巻線に流す電流
及び3相巻線に直交する磁束密度の関係を示す図であ
る。
FIG. 4 is a diagram showing a relationship between a current flowing through a three-phase winding and a magnetic flux density orthogonal to the three-phase winding with respect to a rotor rotation angle position.

【符号の説明】[Explanation of symbols]

10,20,30 ロータ 11、21、31 磁極部材 C1、C2、C3 空隙 10, 20, 30 rotor 11, 21, 31 Magnetic pole members C1, C2, C3 void

Claims (3)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】 磁性材により構成された磁極部材と、こ
の磁極部材が円周方向で順次異なる極となる様に配置さ
れたブロック状の永久磁石とを有する電動機のロータに
おいて、前記磁極部材における磁路を分割するように前
記磁極部材に複数個の空隙を設けた事を特徴とする電動
機のロータ。
1. A rotor of an electric motor, comprising: a magnetic pole member made of a magnetic material; and a block-shaped permanent magnet arranged so that the magnetic pole member sequentially has different poles in a circumferential direction. A rotor for an electric motor, characterized in that a plurality of gaps are provided in the magnetic pole member so as to divide a magnetic path.
【請求項2】 前記空隙は、前記磁極部材内の磁路に沿
って設けられている請求項1に記載の電動機のロータ。
2. The rotor of an electric motor according to claim 1, wherein the gap is provided along a magnetic path in the magnetic pole member.
【請求項3】 前記空隙は、前記磁極部材の略外周の円
周方向に設けられている請求項1に記載の電動機のロー
タ。
3. The rotor for an electric motor according to claim 1, wherein the gap is provided in a circumferential direction of a substantially outer circumference of the magnetic pole member.
JP6135791U 1991-07-09 1991-07-09 Electric motor rotor Pending JPH059147U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6135791U JPH059147U (en) 1991-07-09 1991-07-09 Electric motor rotor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6135791U JPH059147U (en) 1991-07-09 1991-07-09 Electric motor rotor

Publications (1)

Publication Number Publication Date
JPH059147U true JPH059147U (en) 1993-02-05

Family

ID=13168830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6135791U Pending JPH059147U (en) 1991-07-09 1991-07-09 Electric motor rotor

Country Status (1)

Country Link
JP (1) JPH059147U (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006166688A (en) * 2004-12-08 2006-06-22 Samsung Electronics Co Ltd Permanent magnet motor
JP2008295138A (en) * 2007-05-22 2008-12-04 Nissan Motor Co Ltd Rotary electric machine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60195200A (en) * 1984-03-16 1985-10-03 川研ファインケミカル株式会社 Detergent composition
JPH01144337A (en) * 1987-11-30 1989-06-06 Okuma Mach Works Ltd Structure of rotor of permanent magnet type motor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60195200A (en) * 1984-03-16 1985-10-03 川研ファインケミカル株式会社 Detergent composition
JPH01144337A (en) * 1987-11-30 1989-06-06 Okuma Mach Works Ltd Structure of rotor of permanent magnet type motor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006166688A (en) * 2004-12-08 2006-06-22 Samsung Electronics Co Ltd Permanent magnet motor
JP2008295138A (en) * 2007-05-22 2008-12-04 Nissan Motor Co Ltd Rotary electric machine

Similar Documents

Publication Publication Date Title
CN112838693B (en) Rotary electric machine
JP2695332B2 (en) Permanent magnet field type rotor
JP3152405B2 (en) Electric motor
JP6595443B2 (en) Rotating electric machine
JP4016341B2 (en) Three-phase synchronous reluctance motor
JP6048191B2 (en) Multi-gap rotating electric machine
JP2016111842A (en) Double-stator rotary electric machine
JP2017229136A (en) Rotor for axial gap motor, and axial gap motor
JP6524818B2 (en) Variable flux type rotating electric machine
EP3261219A1 (en) Synchronous reluctance motor
JP3928297B2 (en) Electric motor and manufacturing method thereof
JP2823817B2 (en) Permanent magnet embedded motor
JP2018082600A (en) Double-rotor dynamoelectric machine
JP3703907B2 (en) Brushless DC motor
JP3117164B2 (en) Permanent magnet rotating electric machine, control method and control device thereof, and electric vehicle using the same
JPH0479741A (en) Permanent magnet rotor
WO2017212575A1 (en) Permanent magnet motor
JP4405000B2 (en) motor
JP4491211B2 (en) Permanent magnet rotating electric machine
JPH059147U (en) Electric motor rotor
JP6631763B1 (en) Rotating electric machine
JP2009038897A (en) Axial gap motor
JP6525206B2 (en) Rotor and rotating electric machine
WO2018135409A1 (en) Rotor and motor using same
JPH11196556A (en) Magnet motor