JPH059145A - Production of formaldehyde - Google Patents

Production of formaldehyde

Info

Publication number
JPH059145A
JPH059145A JP3161322A JP16132291A JPH059145A JP H059145 A JPH059145 A JP H059145A JP 3161322 A JP3161322 A JP 3161322A JP 16132291 A JP16132291 A JP 16132291A JP H059145 A JPH059145 A JP H059145A
Authority
JP
Japan
Prior art keywords
catalyst
selectivity
formaldehyde
methylal
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3161322A
Other languages
Japanese (ja)
Other versions
JP2956916B2 (en
Inventor
Hideo Midorikawa
英雄 緑川
Kunitoshi Aoki
圀壽 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP3161322A priority Critical patent/JP2956916B2/en
Publication of JPH059145A publication Critical patent/JPH059145A/en
Application granted granted Critical
Publication of JP2956916B2 publication Critical patent/JP2956916B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To stably produce formaldehyde by using a catalyst reduced in lowering of selectivity to formaldehyde when formaldehyde is produced by oxidation reaction of methylal. CONSTITUTION:Method for producing formaldehyde by oxidation of methylal by using a catalyst expressed by the general formula [(Mo(1-n)Wn)a Fe(1-n)(Al, Cr, In)bOc (wherein 0<=n<=0.5, 1.5<=a<=3, 0.5<b<0.95 and (c) is a value satisfying balance of valence].

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、メチラールの酸化反応
によりホルムアルデヒドを製造する方法に関する。更に
詳しくは、メチラールを気相において酸素を含有するガ
スによって触媒の存在下に酸化することによりホルムア
ルデヒドを製造する方法に関するものである。
FIELD OF THE INVENTION The present invention relates to a method for producing formaldehyde by the oxidation reaction of methylal. More specifically, it relates to a method for producing formaldehyde by oxidizing methylal in the gas phase with a gas containing oxygen in the presence of a catalyst.

【0002】[0002]

【従来の技術】工業原料として重要なホルムアルデヒド
を製造する方法として、銀又は鉄−モリブテン触媒の存
在下にメタノールを酸化する方法が知られている。しか
し、この方法により得られるホルマリンの濃度は量論的
に反応したとしても高々63wt%である。これに対し
て、メチラールの酸化反応によりホルムアルデヒドを製
造する方法が知られており、この方法では量論的に反応
すると83wt%のホルマリンが得られることになり、
高濃度のホルマリンが得られるという特徴を有してい
る。メチラールを酸化させてホルムアルデヒドを製造す
る触媒としては、モリブテン及び鉄を主成分としてアン
チモン、ビスマス、アルカリ金属等を含むことにより高
選択性を有する触媒が特公昭62−10495号公報
に、また、触媒層の差圧の増加を抑制するために、モリ
ブテン及び鉄に加えてタングステン、アルミニウム等を
添加した触媒が特開平1−186831号公報に開示さ
れている。
2. Description of the Related Art As a method for producing formaldehyde which is important as an industrial raw material, a method of oxidizing methanol in the presence of a silver or iron-molybdenum catalyst is known. However, the concentration of formalin obtained by this method is at most 63 wt% even if it reacts stoichiometrically. On the other hand, a method for producing formaldehyde by the oxidation reaction of methylal is known, and this method results in 83 wt% formalin when the reaction is stoichiometric.
It has a feature that a high concentration of formalin can be obtained. As a catalyst for producing formaldehyde by oxidizing methylal, a catalyst having high selectivity by containing antimony, bismuth, alkali metal, etc. containing molybdenum and iron as main components is disclosed in Japanese Examined Patent Publication No. 62-10495. Japanese Patent Application Laid-Open No. 1-186831 discloses a catalyst in which tungsten, aluminum or the like is added in addition to molybdenum and iron in order to suppress an increase in layer differential pressure.

【0003】[0003]

【発明が解決しようとする課題】メチラールの酸化反応
によりホルムアルデヒドを製造する場合、ホルムアルデ
ヒドを得る主要な反応としては次の3つの式が考えられ
る。 CH3 OCH2 OCH3 + O2 → 3CH2 O +H2 O CH3 OCH2 OCH3 + H2 O → CH2 O +2CH3 OH CH3 OH + 1/2O2 → CH2 O +H2 O これに対して、メチラールの酸化反応において副生成物
が生成する主な反応としては次の反応が考えられる。
When formaldehyde is produced by the oxidation reaction of methylal, the following three formulas are considered as the main reaction for obtaining formaldehyde. CH 3 OCH 2 OCH 3 + O 2 → 3CH 2 O + H 2 O CH 3 OCH 2 OCH 3 + H 2 O → CH 2 O + 2CH 3 OH CH 3 OH + 1 / 2O 2 → CH 2 O + H 2 O On the other hand, the following reaction is considered as the main reaction in which a by-product is formed in the oxidation reaction of methylal.

【0004】 2CH3 OH → CH3 OCH3 + H2 O CH2 O + 1/2O2 → CO + H2 O 2CH3 OH + O2 → HCOOCH3 + 2H2 O 従来の触媒を用いて1インチの反応管で一定の転化率を
保ってメチラールの酸化反応を連続して行ったところ、
ジメチルエーテル、蟻酸メチル及び一酸化炭素の副生成
物の増加によりホルムアルデヒドの選択率が低下すると
いう現象があることがわかった。触媒を抜き出して調べ
たところ、反応管の前部にある触媒ペレットの表面から
酸化モリブテンの逃散が起き、反応管の中央部ないし後
部の触媒ペレットに黒色の変色部が認められた。この部
分のX線回折スペクトル(対陰極:Cu−Kα)を調べ
たところ、使用前の触媒のX線回折スペクトルと比べて
2θ=26.1゜±0.2゜の位置に新しいピークが出
現していることがわかった。これらのことから、この触
媒の変化とホルムアルデヒドの選択率の低下、副生成物
の増加には何らかの相関があることが推察される。X線
回折における2θ=26.1±0.2゜の位置のピーク
がどのような組成の化合物によるものかは必ずしも明確
ではないが、MoO2 またはFeMoO4 で表される酸
化物に起因するものと考えられる。
2CH 3 OH → CH 3 OCH 3 + H 2 O CH 2 O + 1 / 2O 2 → CO + H 2 O 2CH 3 OH + O 2 → HCOOCH 3 + 2H 2 O 1 inch using a conventional catalyst When the oxidation reaction of methylal was carried out continuously while maintaining a constant conversion rate in the reaction tube of
It has been found that there is a phenomenon in which the selectivity of formaldehyde decreases due to an increase in by-products of dimethyl ether, methyl formate and carbon monoxide. When the catalyst was taken out and examined, molybdenum oxide was escaped from the surface of the catalyst pellets in the front part of the reaction tube, and a black discolored part was observed in the catalyst pellets in the central part and the rear part of the reaction tube. When the X-ray diffraction spectrum (anti-cathode: Cu-Kα) of this part was examined, a new peak appeared at the position of 2θ = 26.1 ° ± 0.2 ° compared to the X-ray diffraction spectrum of the catalyst before use. I found out that From these, it can be inferred that there is some correlation between the change in the catalyst, the decrease in formaldehyde selectivity, and the increase in by-products. It is not always clear what composition of the compound the peak at the position of 2θ = 26.1 ± 0.2 ° in X-ray diffraction is, but it is caused by the oxide represented by MoO 2 or FeMoO 4. it is conceivable that.

【0005】本発明は、メチラールの酸化反応によりホ
ルムアルデヒドを製造する方法において、ホルムアルデ
ヒドの選択率の低下を抑制する方法を提供するものであ
る。
The present invention provides a method for producing a formaldehyde by an oxidation reaction of methylal, which suppresses a decrease in formaldehyde selectivity.

【0006】[0006]

【課題を解決するための手段】本発明者らは、メチラー
ルの酸化反応によりホルムアルデヒドを製造する方法に
おいて、ホルムアルデヒドの選択率の低下がない触媒に
ついて種々検討した結果、本発明を完成した。即ち、本
発明は、 一般式(Mo(1-n) na Fe(1-b) bc (ここで、XはAl、CrおよびInから選ばれた1種
以上の元素、0≦n≦0.5、1.5≦a≦3、0.5
<b<0.95、cは原子価のバランスを満たす値であ
る。)で表される触媒を用いることを特徴とする、メチ
ラールの酸化反応によりホルムアルデヒドを製造する方
法であり、ホルムアルデヒドの選択率の低下が小さく、
従って、ホルムアルデヒドの製造を安定に行うことがで
きる方法を提供するものである。
Means for Solving the Problems In the method for producing formaldehyde by the oxidation reaction of methylal, the present inventors have conducted various studies on a catalyst that does not reduce the selectivity of formaldehyde, and have completed the present invention. That is, the present invention has the general formula (Mo (1-n) W n) a Fe (1-b) X b O c ( where, X is one or more elements selected from Al, Cr and In, 0 ≦ n ≦ 0.5, 1.5 ≦ a ≦ 3, 0.5
<B <0.95, c is a value that satisfies the valence balance. ) Is a method for producing formaldehyde by the oxidation reaction of methylal, characterized by using a catalyst represented by
Therefore, it is intended to provide a method capable of stably producing formaldehyde.

【0007】以下に本発について詳細に説明する。前記
の一般式(Mo(1-n) na Fe(1-b) bc (但
し、XはAl、Cr及びInからなる。)において、n
は0以上であって0.5以下であり、aは1.5以上で
あって3以下であり、bは0.5より大きく0.95よ
り小さい値であり、cは原子価のバランスを満たす値で
ある。更に、好ましくは、nは0以上であって0.3以
下であり、aは1.6以上であって、2.5以下であ
り、bは0.5より大きく0.9より小さい値である。
The present invention will be described in detail below. In the general formula (Mo (1-n) W n) a Fe (1-b) X b O c ( where, X is composed of Al, Cr and In.), N
Is 0 or more and 0.5 or less, a is 1.5 or more and 3 or less, b is a value greater than 0.5 and less than 0.95, and c is a valence balance. It is a value to be satisfied. More preferably, n is 0 or more and 0.3 or less, a is 1.6 or more and 2.5 or less, and b is a value larger than 0.5 and smaller than 0.9. is there.

【0008】本発明の触媒がメチラールの酸化反応にお
いてホルムアルデヒドの選択率の低下が小さい理由につ
いては必ずしも明確ではないが、触媒の組成においてF
eの替わりにAl、Cr及びInから選ばれた1種以上
の元素Xを0.5<X/(Fe+X)<0.95という
高い比率で導入したためと考えられる。これらの触媒
は、X線回折スペクトル(対陰極:Cu−Kα)から固
溶体を形成していることが推察され、また、このこと
が、メチラールの酸化反応を長期にわたって行っても、
2θ=26.1゜±0.2゜の位置に新しいピークが出
現しにくいことの理由と思われる。
The reason why the catalyst of the present invention causes a small decrease in formaldehyde selectivity in the methylal oxidation reaction is not always clear, but the composition of the catalyst is F.
It is considered that at least one element X selected from Al, Cr and In was introduced in place of e at a high ratio of 0.5 <X / (Fe + X) <0.95. It is inferred from the X-ray diffraction spectrum (anticathode: Cu-Kα) that these catalysts form a solid solution, and this also indicates that the oxidation reaction of methylal is carried out for a long period of time.
This is probably because a new peak is hard to appear at the position of 2θ = 26.1 ° ± 0.2 °.

【0009】触媒のX線回折スペクトルは、その触媒の
組成に応じてMoO3 、Fe2 (MoO4 3 、Al2
(MoO4 3 、Cr2 (MoO43 、In2 (Mo
4 3 、Fe2 (WO4 3 及びこれらの化合物の固
溶体等に起因するピークが得られる。しかし、これらの
ピークの強度は、触媒の焼成温度等による結晶化度や測
定時のサンプルの調整等により変化するために一義的に
は決定されないが、一例として、500℃で3時間焼成
したFe0.25Cr0.75Mo1.75なる組成の酸化物触媒を
メチラールの酸化反応に使用した後の触媒X線回折スペ
クトル(対陰極:Cu−Kα)は、図1に示す如くに、
2θ=12.8゜、15.3゜、20.5゜、21.8
゜、23.0゜、25.8゜、27.4゜、30.3゜
及び34.1゜(精度:±0.2゜)なる回折位置に主
なピークが得られる。
The X-ray diffraction spectrum of the catalyst is MoO 3 , Fe 2 (MoO 4 ) 3 , Al 2 depending on the composition of the catalyst.
(MoO 4 ) 3 , Cr 2 (MoO 4 ) 3 , In 2 (Mo
Peaks due to O 4 ) 3 , Fe 2 (WO 4 ) 3 and solid solutions of these compounds are obtained. However, the intensity of these peaks is not uniquely determined because it changes depending on the crystallinity depending on the calcination temperature of the catalyst and the adjustment of the sample at the time of measurement, but as an example, Fe calcined at 500 ° C. for 3 hours is used. The catalyst X-ray diffraction spectrum (anticathode: Cu-Kα) after using an oxide catalyst having a composition of 0.25 Cr 0.75 Mo 1.75 for the oxidation reaction of methylal is as shown in FIG.
2θ = 12.8 °, 15.3 °, 20.5 °, 21.8
Major peaks are obtained at diffraction positions of 2 °, 23.0 °, 25.8 °, 27.4 °, 30.3 ° and 34.1 ° (accuracy: ± 0.2 °).

【0010】X/(Fe+X)の値については、X/
(Fe+X)≦0.5ではホルムアルデヒドの選択率が
低下する傾向がみられ、X/(Fe+X)の値が小さい
程、その傾向は大きく、2θ=26.1゜±0.2゜の
位置の新しいピークも出現しやすい。また、0.95≦
X/(Fe+X)では触媒の反応活性が低下してしま
い、実用的な触媒で無くなる。
For the value of X / (Fe + X), X /
When (Fe + X) ≦ 0.5, the formaldehyde selectivity tends to decrease, and the smaller the value of X / (Fe + X), the greater the tendency, and the more the position at 2θ = 26.1 ° ± 0.2 °. New peaks are also likely to appear. Also, 0.95 ≦
When X / (Fe + X) is used, the reaction activity of the catalyst is reduced, and the catalyst is no longer a practical catalyst.

【0011】nについては、nが0.5より大きくなる
と反応活性が小さくなる。aについては、aが1.5よ
り小さいと一酸化炭素等の副生成物が多くなってホルム
アルデヒドの選択率を低下させ、3より大きいと酸化モ
リブテンの逃散や沈着等により反応器の触媒層の差圧の
経時的増加の原因となる。本発明の触媒を構成する各要
素の原料としては、金属、酸化物、塩化物、硝酸塩、水
酸化物、酢酸塩等の有機酸塩などが挙げられるが、目的
の金属元素を含有していれば特に制限はない。触媒の調
製はこの分野で常用されている沈澱法、共沈法、蒸発乾
固法、噴霧乾燥法等により行うことができるが、その他
の方法で行っても良い。但し、触媒組成は、各々の構成
酸化物であるMoO3 、Fe2 (MoO4 3 、Al2
(MoO4 3 、Cr2 (MoO4 3 等の物理的な混
合物では本発明の効果は得られ難く、触媒の調製段階で
目的の触媒組成を得るようにするのが好ましい。また、
触媒の原料として塩化物、硝酸塩、酢酸塩等の有機塩等
を用いた場合は、調製した触媒を打錠成型する前に、こ
れらの化合物を分解して酸化物とするために150℃〜
500℃の温度で焼成しても良い。また、触媒の反応活
性を制御するために200℃〜600℃の温度で焼成を
行うが、この操作は触媒の打錠成型の前後のどちらで行
っても良く、焼成時間は1〜10時間が好適であるが、
特に制限は無い。これらの方法によって得られた酸化物
触媒は、通常、打錠成型してメチラールの反応に供され
るが、打錠成型を容易にするために黒鉛、ステアリン酸
等の離型剤を添加しても良い。離型剤の添加濃度は0.
01〜10wt%、好ましくは0.1〜5wt%であ
る。
Regarding n, the reaction activity becomes smaller as n becomes larger than 0.5. Regarding a, when a is less than 1.5, by-products such as carbon monoxide are increased to lower the formaldehyde selectivity, and when a is greater than 3, the molybdenum oxide escapes and deposits, etc. It causes an increase in the differential pressure over time. Examples of the raw material of each element that constitutes the catalyst of the present invention include metals, oxides, chlorides, nitrates, hydroxides, organic acid salts such as acetates, etc. There is no particular limitation. The catalyst can be prepared by a precipitation method, a coprecipitation method, an evaporation-drying method, a spray-drying method and the like which are commonly used in this field, but other methods may be used. However, the catalyst composition is MoO 3 , Fe 2 (MoO 4 ) 3 and Al 2 which are the respective constituent oxides.
It is difficult to obtain the effects of the present invention with a physical mixture of (MoO 4 ) 3 , Cr 2 (MoO 4 ) 3, etc., and it is preferable to obtain a desired catalyst composition at the catalyst preparation stage. Also,
When an organic salt such as chloride, nitrate or acetate is used as the raw material of the catalyst, 150 ° C. to decompose these compounds into oxides before tableting the prepared catalyst.
You may bake at the temperature of 500 degreeC. Further, in order to control the reaction activity of the catalyst, calcination is carried out at a temperature of 200 ° C. to 600 ° C. This operation may be carried out either before or after tableting of the catalyst, and the calcination time is 1 to 10 hours. Suitable,
There is no particular limitation. Oxide catalysts obtained by these methods are usually subjected to tableting molding for the reaction of methylal, but in order to facilitate tableting molding, graphite, stearic acid and other release agents are added. Is also good. The addition concentration of the release agent is 0.
It is from 01 to 10 wt%, preferably from 0.1 to 5 wt%.

【0012】触媒は、通常、円柱状またはラシヒリング
状に打錠成型されるが、これ以外の形状でも良い。打錠
成型した触媒の見掛け密度は1.5〜2.8g/cm3
が好ましく、より好ましくは1.7〜2.5g/c
3 、更に好ましくは2.0〜2.3g/cm3 であ
る。見掛け密度が1.5g/cm3 未満では成型体の強
度が弱く、取扱いが困難である。また、2.8g/cm
3 を越えると、反応活性及びホルムアルデヒドの選択率
が低下する。
The catalyst is usually tablet-molded in a cylindrical shape or a Raschig ring shape, but other shapes may be used. The apparent density of the tablet-molded catalyst is 1.5 to 2.8 g / cm 3.
Is preferable, and more preferably 1.7 to 2.5 g / c.
m 3 , more preferably 2.0 to 2.3 g / cm 3 . If the apparent density is less than 1.5 g / cm 3 , the strength of the molded product is weak and handling is difficult. Also, 2.8 g / cm
If it exceeds 3 , the reaction activity and the formaldehyde selectivity decrease.

【0013】本発明の方法における反応温度は150〜
500℃、好ましくは200〜400℃の範囲である。
150℃以下ではホルムアルデヒドの収率が低く、ま
た、500℃以上では一酸化炭素等の副生物が多くな
り、ホルムアルデヒドの収率が低下するので好ましくな
い。本発明の方法において、実際の使用に際し反応ガス
の組成は爆発範囲外であれば特に制限はなく、任意の範
囲で行うことができる。また、窒素等の不活性ガスを共
存させてもよく、水の共存も特に制限はない。また、反
応ガス中にはメタノールが含まれていても特に問題は無
いが、メタノールの比率が高くなると得られるホルマリ
ンの濃度が低くなるために、メチラールに対してメタノ
ールのモル比は0.5以下、好ましくは0.3以下、よ
り好ましくは0.1以下が良い。
The reaction temperature in the method of the present invention is 150 to
It is in the range of 500 ° C, preferably 200 to 400 ° C.
When the temperature is 150 ° C. or lower, the yield of formaldehyde is low, and when the temperature is 500 ° C. or higher, the amount of by-products such as carbon monoxide increases and the formaldehyde yield decreases, which is not preferable. In the method of the present invention, the composition of the reaction gas at the time of actual use is not particularly limited as long as it is outside the explosion range, and it can be carried out in any range. Further, an inert gas such as nitrogen may be allowed to coexist, and coexistence of water is not particularly limited. Further, although there is no particular problem if the reaction gas contains methanol, the molar ratio of methanol to methylal is 0.5 or less because the concentration of formalin obtained becomes low when the ratio of methanol becomes high. , Preferably 0.3 or less, more preferably 0.1 or less.

【0014】供給ガスの空間速度(SV)は2,000
〜50,000Hr-1の範囲が好ましい。また、本発明
における反応は、常圧、加圧、減圧のいずれで行っても
良い。
The space velocity (SV) of the feed gas is 2,000.
The range of ˜50,000 Hr −1 is preferable. Further, the reaction in the present invention may be carried out under any of normal pressure, increased pressure and reduced pressure.

【0015】[0015]

【実施例】次に実施例を挙げて本発明を更に詳細に説明
する。尚、メチラールの転化率とホルムアルデヒドの選
択率はガスクロマトグラフの分析値(相対モル数)をベ
ースとして次のように定義する。 メチラールの転化率(%)=〔1−(3×d+e)/
T〕×100 ホルムアルデヒドの選択率(%)=(f/U)×100 ジメチルエーテルの選択率(%)=(2×g/U)×1
00 蟻酸メチルの選択率(%)=(2×h/U)×100 一酸化炭素の選択率(%)=(i×U)×100 d=メチラールの相対モル数 e=メタノールの相対モル数 f=ホルムアルデヒドの相対モル数 g=ジメチルエーテルの相対モル数 h=蟻酸メチルの相対モル数 i=一酸化炭素の相対モル数 T=3×d+e+f+2×g+2×h+i U=f+2×g+2×h+i
EXAMPLES Next, the present invention will be described in more detail with reference to examples. The conversion of methylal and the selectivity of formaldehyde are defined as follows based on the analysis value (relative mole number) of the gas chromatograph. Conversion of methylal (%) = [1- (3 × d + e) /
T] × 100 Formaldehyde selectivity (%) = (f / U) × 100 Dimethyl ether selectivity (%) = (2 × g / U) × 1
00 Selectivity of methyl formate (%) = (2 × h / U) × 100 Selectivity of carbon monoxide (%) = (i × U) × 100 d = Relative mole of methylal e = Relative mole of methanol f = relative mole number of formaldehyde g = relative mole number of dimethyl ether h = relative mole number of methyl formate i = relative mole number of carbon monoxide T = 3 × d + e + f + 2 × g + 2 × h + i U = f + 2 × g + 2 × h + i

【0016】[0016]

【参考例】Fe(NO3 3 ・9H2 O 505g及び
Cr(NO3 3 ・9H2 O 1500gを水4400
mlに溶解し、更に、62wt%硝酸を1780g加え
た液に、(NH4 6 Mo7 24・4H2 O 1545
gを水3900mlに溶解した液を攪拌しながら加え
た。この液を噴霧乾燥し、得られた粉体を電気炉を用い
て空気中で400℃で3時間焼成し、Fe0.25Cr0.75
Mo1.75の組成の酸化物粉体1200gを得た。この粉
体をメチラールの酸化反応に使用するために2.0〜
2.3g/cm3 の見掛け密度で径4mm、高さ4mm
の円柱状に打錠成型した。
[Reference Example] Fe (NO 3) 3 · 9H 2 O 505g and Cr (NO 3) 3 · 9H 2 O 1500g water 4400
was dissolved in ml, more, the liquid was added 1780g of 62 wt% nitric acid, (NH 4) 6 Mo 7 O 24 · 4H 2 O 1545
A solution prepared by dissolving g in 3900 ml of water was added with stirring. This liquid was spray-dried, and the obtained powder was calcined in air at 400 ° C. for 3 hours to obtain Fe 0.25 Cr 0.75
1200 g of oxide powder having a composition of Mo 1.75 was obtained. In order to use this powder for the oxidation reaction of methylal,
Diameter of 4 mm and height of 4 mm with an apparent density of 2.3 g / cm 3.
Tablet-molded into a cylindrical shape.

【0017】[0017]

【実施例1】参考例で得られた打錠成型体を空気中で5
00℃で3時間焼成後、粉砕して得た9〜16mesh
の触媒1gに同じ粒径範囲の石英砂4.5gを加えて混
合したものを、ガラス製反応管に詰め、メチラール:O
2 :H2 O:N2 =1:2:0.5:18の混合ガスを
SV=45,000Hr-1で供給し、300℃で反応さ
せた。反応初期(10Hr)はメチラールの転化率は7
7%で、ホルムアルデヒドの選択率は95%、ジメチル
エーテルの選択率及び蟻酸メチルの選択率はそれぞれ
3.5%、1.5%であった。この反応を100Hr継
続したところ、メチラールの転化率は72%、ホルムア
ルデヒドの選択率は94%、ジメチルエーテルの選択率
は4%、蟻酸メチルの選択率は2%であった。
Example 1 The tablet press-molded body obtained in Reference Example
9 to 16 mesh obtained by crushing after calcination at 00 ° C. for 3 hours
4.5 g of quartz sand having the same particle size range was added to 1 g of the catalyst of No. 1 and mixed, and the mixture was packed in a glass reaction tube, and methylal: O was added.
A mixed gas of 2 : H 2 O: N 2 = 1: 2: 0.5: 18 was supplied at SV = 45,000 Hr −1 and reacted at 300 ° C. At the initial stage of the reaction (10 hours), the conversion of methylal is 7
At 7%, the selectivity of formaldehyde was 95%, the selectivity of dimethyl ether and the selectivity of methyl formate were 3.5% and 1.5%, respectively. When this reaction was continued for 100 hours, the conversion of methylal was 72%, the selectivity of formaldehyde was 94%, the selectivity of dimethyl ether was 4%, and the selectivity of methyl formate was 2%.

【0018】反応終了後に触媒を取り出して観察した
が、特に変化は見られなかった。また、理学電気社製X
線回折装置RAD−III Bを用いて測定したX線回折ス
ペクトル(対陰極:Cu−Kα)においても図1に示す
様に2θ=26.1゜±0.2゜なる解析位置に新しい
ピークは見られず、反応の前後でX線回折スペクトルに
は大きな変化は見られなかった。
After completion of the reaction, the catalyst was taken out and observed, but no particular change was observed. Also, X manufactured by Rigaku Denki
Also in the X-ray diffraction spectrum (anti-cathode: Cu-Kα) measured using the line diffractometer RAD-III B, as shown in FIG. 1, a new peak is found at the analysis position of 2θ = 26.1 ° ± 0.2 °. No change was observed, and no significant change was observed in the X-ray diffraction spectrum before and after the reaction.

【0019】[0019]

【比較例1】参考例と同様な方法によってFe1 Mo
1.75の組成の酸化物を調製し、得られた打錠成型体を空
気中で450℃で3時間焼成した触媒を、実施例1と同
様にしてメチラールの反応を行った。反応初期(10H
r)はメチラールの転化率は76%で、ホルムアルデヒ
ドの選択率は96%、ジメチルエーテルの選択率は3
%、蟻酸メチルの選択率は1%であった。この反応を1
00Hr継続したところ、メチラールの転化率は44%
で、ホルムアルデヒドの選択率は84%まで低下し、ジ
メチルエーテルの選択率は12%、蟻酸メチルの選択率
は4%になった。
Comparative Example 1 Fe 1 Mo was prepared by the same method as the reference example.
An oxide having the composition of 1.75 was prepared, and the obtained tablet-molded body was calcined in air at 450 ° C. for 3 hours to carry out a methylal reaction in the same manner as in Example 1. Initial reaction (10H
In r), the conversion of methylal is 76%, the selectivity of formaldehyde is 96%, and the selectivity of dimethyl ether is 3%.
%, The selectivity of methyl formate was 1%. This reaction 1
After continuing for 00 hours, the conversion rate of methylal is 44%
Then, the selectivity of formaldehyde was lowered to 84%, the selectivity of dimethyl ether was 12%, and the selectivity of methyl formate was 4%.

【0020】反応終了後に触媒を取り出して観察したと
ころ、触媒が黒色に変色していた。また、X線回折スペ
クトル(対陰極:Cu−Kα)において、2θ=26.
1゜±0.2゜なる回折位置に新しいピークが出現し
た。この触媒のX線回折スペクトル(対陰極:Cu−K
α)を図2に示す。
After the reaction was completed, the catalyst was taken out and observed, and it was found that the catalyst turned black. In the X-ray diffraction spectrum (anticathode: Cu-Kα), 2θ = 26.
A new peak appeared at the diffraction position of 1 ° ± 0.2 °. X-ray diffraction spectrum of this catalyst (cathode: Cu-K
α) is shown in FIG.

【0021】[0021]

【実施例2〜7】参考例と同様にして酸化物触媒を調製
し、実施例1と同様にしてメチラールの反応を行った。
その結果を表1に示す。また、反応終了後に触媒を取り
出してX線回折スペクトル(対陰極:Cu−Kα)を測
定したが、2θ=26.1゜±0.2゜なる回折位置に
新しいピークの出現はほとんど認められなかった。
Examples 2 to 7 Oxide catalysts were prepared in the same manner as in Reference Example, and methylal reaction was carried out in the same manner as in Example 1.
The results are shown in Table 1. Further, after the reaction was completed, the catalyst was taken out and the X-ray diffraction spectrum (anticathode: Cu-Kα) was measured, but no new peak appeared at the diffraction position of 2θ = 26.1 ° ± 0.2 °. It was

【0022】[0022]

【比較例2】参考例と同様にしてCr1 Mo1.75の組成
の酸化物を調製し、空気中で450℃で3時間焼成した
触媒を、実施例1と同様にしてメチラールの反応を行っ
たところ、反応初期(10Hr)のメチラールの転化率
は40%、ホルムアルデヒドの選択率は90%であっ
た。100Hr後にはメチラールの転化率は33%、ホ
ルムアルデヒドの選択率は83%になった。この触媒を
取り出ししてX線回折スペクトル(対陰極:Cu−K
α)を測定したところ、2θ=26.1゜±0.2゜な
る回折位置に新しいピークの出現が認められた。
[Comparative Example 2] An oxide having a composition of Cr 1 Mo 1.75 was prepared in the same manner as in Reference Example, and a catalyst which was calcined in air at 450 ° C. for 3 hours was subjected to methylal reaction in the same manner as in Example 1. However, the conversion of methylal was 40% and the selectivity of formaldehyde was 90% at the initial stage of the reaction (10 hours). After 100 hours, the conversion of methylal was 33% and the selectivity of formaldehyde was 83%. This catalyst was taken out and the X-ray diffraction spectrum (anticathode: Cu-K
When α) was measured, a new peak appeared at the diffraction position of 2θ = 26.1 ° ± 0.2 °.

【0023】[0023]

【比較例3】比較例1及び2の触媒を1:3の比率で物
理的に混合して参考例とおなじFe0.25Cr0.75Mo
1.75の組成の酸化物を調製した。この触媒を空気中で4
50℃で3時間焼成した後、実施例1と同様にしてメチ
ラールの反応を行ったところ、反応初期(10Hr)の
メチラールの転化率は50%、ホルムアルデヒドの選択
率は91%であった。100Hr後にはメチラールの転
化率は38%、ホルムアルデヒドの選択率は84%に低
下した。この触媒を取り出してX線回折スペクトル(対
陰極:Cu−Kα)を測定したところ、2θ=26.1
゜±0.2゜なる回折位置に新しいピークの出現が認め
られた。
[Comparative Example 3] The catalysts of Comparative Examples 1 and 2 were physically mixed in a ratio of 1: 3, and Fe 0.25 Cr 0.75 Mo, which is the same as that of Reference Example.
An oxide having a composition of 1.75 was prepared. 4 this catalyst in air
After baking at 50 ° C. for 3 hours, methylal reaction was carried out in the same manner as in Example 1. As a result, the conversion of methylal at the initial stage of the reaction (10 Hr) was 50% and the selectivity of formaldehyde was 91%. After 100 hours, the conversion of methylal was reduced to 38% and the selectivity of formaldehyde was reduced to 84%. When this catalyst was taken out and the X-ray diffraction spectrum (anticathode: Cu—Kα) was measured, 2θ = 26.1
A new peak was observed at the diffraction position of ± 0.2 °.

【0024】この結果より、各々の構成酸化物の物理的
な混合物では本発明の効果は得られ難いことがわかっ
た。
From these results, it was found that the effects of the present invention were difficult to obtain with a physical mixture of the constituent oxides.

【0025】[0025]

【比較例4】参考例と同様な方法によってFe0.25Cr
0.75Mo0.681.02の組成の酸化物を調製し、空気中で
450℃で3時間焼成した触媒を、実施例1と同様にし
てメチラールの反応を行った。反応初期(10Hr)の
メチラールの転化率は45%、ホルムアルデヒドの選択
率は88%であった。100Hr後には、メチラールの
転化率は38%、ホルムアルデヒドの選択率は82%で
あった。この触媒を取り出してX線回折スペクトル(対
陰極:Cu−Kα)を測定したところ、2θ=26.1
゜±0.2゜なる回折位置に僅かに新しいピークの出現
が認められた。
[Comparative Example 4] Fe 0.25 Cr by similar to Reference Example METHOD
An oxide having a composition of 0.75 Mo 0.68 W 1.02 was prepared, and the catalyst calcined in air at 450 ° C. for 3 hours was subjected to methylal reaction in the same manner as in Example 1. The conversion of methylal was 45% and the selectivity of formaldehyde was 88% at the initial stage of the reaction (10 hours). After 100 hours, the conversion of methylal was 38% and the selectivity of formaldehyde was 82%. When this catalyst was taken out and the X-ray diffraction spectrum (cathode: Cu-Kα) was measured, 2θ = 26.1
A slight new peak was observed at the diffraction position of ± 0.2 °.

【0026】[0026]

【実施例8】参考例と同様にしてFe0.4 Cr0.6 Mo
1.9 の組成の酸化物粉体を調製し、これに黒鉛1wt%
を添加して外径5mm、内径2mm、高さ4mm、見掛
け密度2.0〜2.3g/cm3 のラシヒリング形に打
錠成型した。更に、この成型した触媒を空気中で500
℃で3時間焼成した。
Example 8 In the same manner as in Reference Example Fe 0.4 Cr 0.6 Mo
Prepare an oxide powder with a composition of 1.9 and add 1 wt% of graphite to it.
Was added to form a Raschig ring shape having an outer diameter of 5 mm, an inner diameter of 2 mm, a height of 4 mm and an apparent density of 2.0 to 2.3 g / cm 3 . Furthermore, this molded catalyst is used in air for 500
It was calcined at ℃ for 3 hours.

【0027】この触媒を内径1インチの反応管に充填
し、メチラール:メタノール:H2 O:O2 :N2
1:0.08:0.44:2:18.7の混合ガスを、
入口圧力1450mmHg、SV=10000Hr-1
通過させて、メチラールの転化率を94%に保つように
熱媒の温度を制御して反応を行った。反応をスタートし
てから100Hr後の熱媒の温度は250℃で、ホルム
アルデヒドの選択率は93%、ジメチルエーテルの選択
率は4%、蟻酸メチルの選択率は1%、一酸化炭素の選
択率は2%であった。1500Hr後には熱媒温度は2
57℃になったが、反応成績には変化がなかった。この
触媒を取り出して観察したが、特に変化は見られなかっ
た。また、X線回折スペクトル(対陰極:Cu−Kα)
においても2θ=26.1゜±0.2゜なる回折位置に
新しいピークは見られなかった。
This catalyst was filled in a reaction tube having an inner diameter of 1 inch, and methylal: methanol: H 2 O: O 2 : N 2 =
1: 0.08: 0.44: 2: 18.7 mixed gas,
An inlet pressure of 1450 mmHg and an SV of 10000 Hr -1 were passed to carry out the reaction by controlling the temperature of the heating medium so that the conversion of methylal was maintained at 94%. After 100 hours from the start of the reaction, the temperature of the heat medium is 250 ° C., the selectivity of formaldehyde is 93%, the selectivity of dimethyl ether is 4%, the selectivity of methyl formate is 1%, the selectivity of carbon monoxide is It was 2%. After 1500 hours, heat medium temperature is 2
Although it reached 57 ° C, the reaction results did not change. The catalyst was taken out and observed, but no particular change was observed. In addition, an X-ray diffraction spectrum (anticathode: Cu-Kα)
No new peak was observed at the diffraction position of 2θ = 26.1 ° ± 0.2 °.

【0028】[0028]

【比較例5】参考例と同様な方法によってFe0.75Cr
0.25MO2.5 の組成の酸化物粉体を調製し、実施例8と
同様にしてメチラールの反応を行った。反応をスタート
してから100Hr後の熱媒の温度は252℃で、ホル
ムアルデヒドの選択率は93%、ジメチルエーテルの選
択率は3.5%、蟻酸メチルの選択率は2.5%、一酸
化炭素の選択率は1%であった。700Hr後には熱媒
温度は255℃であったが、ホルムアルデヒドの選択率
は91%に低下し、ジメチルエーテルの選択率は4.5
%、蟻酸メチルの選択率は3%、一酸化炭素の選択率は
1.5%に増加した。
[Comparative Example 5] Fe 0.75 Cr was prepared by the same method as the reference example.
An oxide powder having a composition of 0.25 MO 2.5 was prepared, and a methylal reaction was carried out in the same manner as in Example 8. 100 hours after starting the reaction, the temperature of the heating medium is 252 ° C., the selectivity of formaldehyde is 93%, the selectivity of dimethyl ether is 3.5%, the selectivity of methyl formate is 2.5%, carbon monoxide. The selectivity was 1%. After 700 hours, the heating medium temperature was 255 ° C., but the formaldehyde selectivity decreased to 91%, and the dimethyl ether selectivity was 4.5.
%, The selectivity of methyl formate increased to 3%, and the selectivity of carbon monoxide increased to 1.5%.

【0029】この触媒を取り出して観察したところ、触
媒の一部に黒色の変色が見られ、この触媒のX線回折ス
ペクトル(対陰極:Cu−Kα)には、2θ=26.1
%±0.2゜なる解析位置に新しいピークが出現した。
When this catalyst was taken out and observed, a black discoloration was observed in a part of the catalyst, and in the X-ray diffraction spectrum (cathode: Cu-Kα) of this catalyst, 2θ = 26.1
A new peak appeared at the analysis position of ± 0.2 °.

【0030】[0030]

【比較例6】参考例と同様な方法によってFe1 Mo
1.8 の組成の酸化物粉体を調製し、実施例8と同様にし
て触媒を成型し、450℃で3時間焼成した。この触媒
を実施例8と同様にしてメチラールの反応を行った。反
応をスタートしてから100Hr後の熱媒の温度は25
4℃で、ホルムアルデヒドの選択率は93%、ジメチル
エーテルの選択率は5%、蟻酸メチルの選択率は1.5
%、一酸化炭素の選択率は0.5%であった。500H
r後には熱媒温度は256℃であったが、ホルムアルデ
ヒドの選択率は88%に低下し、ジメチルエーテルの選
択率は6.5%、蟻酸メチルの選択率は2.5%、一酸
化炭素の選択率は3%に増加した。
Comparative Example 6 Fe 1 Mo was prepared by the same method as in Reference Example.
An oxide powder having a composition of 1.8 was prepared, a catalyst was molded in the same manner as in Example 8, and calcined at 450 ° C. for 3 hours. This catalyst was reacted with methylal in the same manner as in Example 8. The temperature of the heating medium 100 hours after starting the reaction is 25
At 4 ° C, formaldehyde selectivity is 93%, dimethyl ether selectivity is 5%, and methyl formate selectivity is 1.5.
%, The selectivity of carbon monoxide was 0.5%. 500H
After r, the heat medium temperature was 256 ° C, but the formaldehyde selectivity decreased to 88%, the dimethyl ether selectivity was 6.5%, the methyl formate selectivity was 2.5%, and the carbon monoxide selectivity was 2.5%. Selectivity increased to 3%.

【0031】この触媒を取り出して観察したところ、触
媒の一部に黒色の変色が見られ、この触媒のX線回折ス
ペクトル(対陰極:Cu−Kα)には、2θ=26.1
゜±0.2゜なる回折位置に新しいピークが出現した。
When this catalyst was taken out and observed, a black discoloration was observed in a part of the catalyst, and in the X-ray diffraction spectrum (cathode: Cu-Kα) of this catalyst, 2θ = 26.1
A new peak appeared at the diffraction position of ± 0.2 °.

【0032】[0032]

【表1】 [Table 1]

【0033】[0033]

【発明の効果】メチラールの酸化反応によりホルムアル
デヒドを製造するに際し、本発明の組成の触媒を用いる
ことにより、ホルムアルデヒドの選択率の低下が小さ
く、従って、ホルムアルデヒドの製造を安定に行うこと
ができる。
INDUSTRIAL APPLICABILITY When formaldehyde is produced by the oxidation reaction of methylal, by using the catalyst of the composition of the present invention, the decrease in the formaldehyde selectivity is small, and therefore the formaldehyde can be produced stably.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明で規定した触媒の1つを反応に用いたと
きの、その触媒のX線回折スペクトル図である。
FIG. 1 is an X-ray diffraction spectrum of one of the catalysts specified in the present invention when used in a reaction.

【図2】本発明で規定した以外の触媒を反応に用いたと
きの、その触媒のX線回折スペクトル図である。
FIG. 2 is an X-ray diffraction spectrum of a catalyst other than those specified in the present invention when used in a reaction.

Claims (1)

【特許請求の範囲】 【請求項1】 一般式(Mo(1-n) na Fe(1-b)
bc (ここで、XはAl、CrおよびInから選ばれた1種
以上の元素、0≦n≦0.5、1.5≦a≦3、0.5
<b<0.95、cは原子価のバランスを満たす値であ
る。)で表される触媒を用いることを特徴とする、メチ
ラールの酸化反応によりホルムアルデヒドを製造する方
法。
Claims: 1. A general formula (Mo (1-n) W n ) a Fe (1-b)
X b O c (where X is one or more elements selected from Al, Cr and In, 0 ≦ n ≦ 0.5, 1.5 ≦ a ≦ 3, 0.5
<B <0.95, c is a value that satisfies the valence balance. ) A method for producing formaldehyde by the oxidation reaction of methylal, which comprises using a catalyst represented by
JP3161322A 1991-07-02 1991-07-02 Method for producing formaldehyde Expired - Fee Related JP2956916B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3161322A JP2956916B2 (en) 1991-07-02 1991-07-02 Method for producing formaldehyde

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3161322A JP2956916B2 (en) 1991-07-02 1991-07-02 Method for producing formaldehyde

Publications (2)

Publication Number Publication Date
JPH059145A true JPH059145A (en) 1993-01-19
JP2956916B2 JP2956916B2 (en) 1999-10-04

Family

ID=15732892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3161322A Expired - Fee Related JP2956916B2 (en) 1991-07-02 1991-07-02 Method for producing formaldehyde

Country Status (1)

Country Link
JP (1) JP2956916B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111072626A (en) * 2019-12-24 2020-04-28 湖南阿斯达新材料有限公司 Preparation method of cyclic methylene disulfonate compound

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111072626A (en) * 2019-12-24 2020-04-28 湖南阿斯达新材料有限公司 Preparation method of cyclic methylene disulfonate compound
CN111072626B (en) * 2019-12-24 2022-11-15 湖南阿斯达新材料有限公司 Preparation method of cyclic methylene disulfonate compound

Also Published As

Publication number Publication date
JP2956916B2 (en) 1999-10-04

Similar Documents

Publication Publication Date Title
KR890000517B1 (en) Catalyst for manufacturing methacrolein
US4537874A (en) Catalyst for production of unsaturated aldehydes
JP4185217B2 (en) Composite oxide catalyst and method for producing (meth) acrolein and (meth) acrylic acid
EP0427508B1 (en) method for production of acrylic acid
JP5031946B2 (en) Method for catalytic gas phase oxidation of propene to acrolein
JPS6236739B2 (en)
JP2003514788A (en) Catalytic gas phase oxidation of propene to acrylic acid.
US5728894A (en) Method for producing methacrolein
KR101331766B1 (en) Process for producing catalyst for use in producing unsaturated aldehyde and unsaturated carboxylic acid, and process for producing unsaturated aldehyde and unsaturated carboxylic acid
JP4242597B2 (en) Unsaturated aldehyde synthesis catalyst, production method thereof, and production method of unsaturated aldehyde using the catalyst
EP1503856B1 (en) Method for preparing a catalyst for partial oxidation of propylene
US20040192973A1 (en) Mixed metal oxide catalysts for the production of unsaturated aldehydes from olefins
JP2008284416A (en) Method for manufacturing metal oxide catalyst
JP3321300B2 (en) Process for producing oxide catalyst containing molybdenum, bismuth and iron
JP2956916B2 (en) Method for producing formaldehyde
JP3278246B2 (en) Method for producing catalyst for the synthesis of unsaturated aldehydes and unsaturated carboxylic acids
JP3268900B2 (en) Method for producing catalyst for the synthesis of unsaturated aldehydes and unsaturated carboxylic acids
JP3523455B2 (en) Fixed bed reactor and method for producing unsaturated carboxylic acid
JPH05293389A (en) Preparation of catalyst for production of acrolein and acrylic acid
JPS6035179B2 (en) Oxidation catalyst and its preparation method
JPH0710782A (en) Production of isobutylene and methacrolein
JPH0662463B2 (en) Method for producing methacrolein and methacrylic acid
JPH04208239A (en) Production of acrolein and acrylic acid
JP3260187B2 (en) Molded catalyst for synthesis of unsaturated aldehyde and unsaturated carboxylic acid and use thereof
JPH06170239A (en) Catalytic formed body for synthesis of unsaturated aldehyde and unsaturated carboxylic acid and its use

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990707

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090723

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090723

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090723

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100723

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees