JPH0590169A - Gas feeder, and microwave plasma film forming device equipped with same - Google Patents

Gas feeder, and microwave plasma film forming device equipped with same

Info

Publication number
JPH0590169A
JPH0590169A JP24549391A JP24549391A JPH0590169A JP H0590169 A JPH0590169 A JP H0590169A JP 24549391 A JP24549391 A JP 24549391A JP 24549391 A JP24549391 A JP 24549391A JP H0590169 A JPH0590169 A JP H0590169A
Authority
JP
Japan
Prior art keywords
gas
gas supply
supply device
substrate
quartz
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24549391A
Other languages
Japanese (ja)
Inventor
Kunihiko Watanabe
邦彦 渡邉
Masahiro Tanaka
政博 田中
Satoru Todoroki
悟 轟
Katsuaki Saito
克明 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP24549391A priority Critical patent/JPH0590169A/en
Publication of JPH0590169A publication Critical patent/JPH0590169A/en
Pending legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To provide the title gas feeder advantageous to the even film formation in large area even if highly reactive gasses are used by a method wherein multiple pores are made in the two joined quartz plates while the inner space of the pores is divided into multiple parts so as to feed respective gasses from independent gas controllers. CONSTITUTION:Trenches 3 are provided in a quartz plate 16 side while gas blowing-off ports 2a, 2b are arranged on the reacting position of the quartz plate 1a. Besides, these quartz plates 1a, 1b are fixed by a quartz fixing jig 4. Material gasses are fed from gas feeding sources respectively and independently through gas feed pipes 5a, 5b. At this time, the space given to the quartz plate fixing jig 4 to introduce the gasses is partitioned off not to make them mix with one another. Accordingly, the gasses will not mix with one another in the title planar gas feeder flowing independently to be mixed with one another for the first time only after they are blown out of the blowing ports 2a, 2b. Through these procedures, the films can be evenly formed in a large area even if highly reactive gas sources are used.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はマイクロ波プラズマを利
用して成膜を行なうマイクロ波プラズマ成膜装置に使用
するガス供給装置に係り、特に、大面積均一処理に好適
なガス供給装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas supply apparatus used in a microwave plasma film forming apparatus for forming a film by utilizing microwave plasma, and more particularly to a gas supply apparatus suitable for large area uniform processing.

【0002】[0002]

【従来の技術】マイクロ波プラズマ成膜装置のガス供給
装置に関しては、従来から特開昭63−213344号
公報等に記載されたものが知られている。この装置のガ
ス供給装置はリング状の金属製で複数の吹出口をもち、
マイクロ波導入部の周辺あるいは真空室壁近傍にマイク
ロ波の進行を妨げないように配置されている。反応ガス
は真空室導入前に予め混合され、ガス吹出口から供給さ
れる。
2. Description of the Related Art As a gas supply device for a microwave plasma film forming apparatus, one described in Japanese Patent Laid-Open No. 63-213344 has been known. The gas supply device of this device is made of ring-shaped metal and has multiple outlets,
It is arranged in the vicinity of the microwave introduction part or in the vicinity of the wall of the vacuum chamber so as not to hinder the progress of microwaves. The reaction gases are premixed before being introduced into the vacuum chamber and supplied from the gas outlet.

【0003】また、ガス供給装置としてはこの他にスリ
ット形状のものや、ノズル形状のものが知られている
が、多くの場合ステンレススチール等の導体金属で構成
されている。そのためにマイクロ波の伝播を妨げないよ
うに、いずれの場合もマイクロ波通過空間の外側に配置
されていることが特徴である。
Other known gas supply devices are slit-shaped devices and nozzle-shaped devices. In many cases, they are made of a conductive metal such as stainless steel. Therefore, in any case, it is characterized in that it is arranged outside the microwave passage space so as not to hinder the propagation of microwaves.

【0004】[0004]

【発明が解決しようとする課題】以上述べてきたガス供
給装置では、ガス吹出口から基板までの距離の不均一に
関しては考慮がされていなかった。すなわち、ガスが吹
き出してから基板まで到達する距離は、ガスの分解度や
成膜活性種等に影響し、膜質を決定する重要な要素であ
るにもかかわらず十分な考慮がされていなかった。その
理由は基板が小さいため各吹出口からの距離の差が小さ
く、許容範囲内であったためと考えられる。しかし、大
面積基板を採用すると、距離の差は二倍以上になる場合
も考えられこの点に関する考慮が必要である。
In the gas supply apparatus described above, no consideration has been given to the nonuniformity of the distance from the gas outlet to the substrate. That is, the distance that the gas reaches the substrate after being blown out has an important factor that determines the film quality because it affects the decomposition degree of the gas, the active species for film formation, and the like, but has not been sufficiently considered. It is considered that the reason is that the difference in the distance from each air outlet was small because the substrate was small, and it was within the allowable range. However, if a large-area substrate is adopted, the difference in distance may double or more, and this point needs to be considered.

【0005】また、例えば酸化シリコンを成膜する場
合、原料ガスとしてはモノシランと酸素が用いられる
が、これらのガスは反応性が強いため予め混合して導入
することが不可能である。そこで真空室内に二個以上の
ガス供給装置が必要となる等の問題点があった。
Further, for example, when forming a film of silicon oxide, monosilane and oxygen are used as raw material gases, but since these gases have strong reactivity, it is impossible to premix and introduce them. Therefore, there is a problem that two or more gas supply devices are required in the vacuum chamber.

【0006】さらに、大面積成膜に対するガス流の改善
に関しては全く考慮がされておらず、大面積均一成膜に
対して不利であった。
Further, no consideration has been given to the improvement of gas flow for large area film formation, which is disadvantageous for large area uniform film formation.

【0007】本発明の目的は、第一に反応性の強いガス
に対するガス導入装置を提供することであり、第二に大
面積均一成膜に対して有利なガス導入装置を提供するこ
とである。
An object of the present invention is to firstly provide a gas introduction device for a highly reactive gas, and secondly to provide a gas introduction device advantageous for large area uniform film formation. ..

【0008】[0008]

【課題を解決するための手段】前記第一の目的に対して
は、マイクロ波が透過する物質で構成され、かつ、被処
理物から等距離に設置され被処理物の法線方向にガスを
吹き出す複数の吹出口を有したガス供給装置を設置す
る。具体的には、二枚の石英板を重ねて、その内の一方
に孔を複数個あけた形状のガス供給装置などが考えられ
る。また、反応性の強い原料ガスを用いる場合は、以下
の二つの方法で解決することができる。すなわち第一の
方法は前記ガス供給装置の内部空間を複数に分割し、独
立のガス制御装置から各々のガスを供給する方法であ
り、反応ガスは真空室内でのみ混合される。第二の方法
は前記ガス供給手段を複層構造とし、各々のガス吹出口
を同一位置に配置し、各層に独立のガス制御装置から各
々のガスを供給する方法であり、反応ガスは真空室導入
直前で混合される。本方法により真空室導入以前に原料
ガスが反応することはなく、安定した成膜が可能とな
る。
[Means for Solving the Problems] For the above-mentioned first object, a gas is used which is made of a material through which microwaves are transmitted and which is installed at an equal distance from the object to be processed and which is provided with a gas in the normal direction of the object. A gas supply device having a plurality of blowout ports is installed. Specifically, a gas supply device in which two quartz plates are stacked and a plurality of holes are formed in one of them is conceivable. Also, when using a highly reactive source gas, the following two methods can be used to solve the problem. That is, the first method is a method of dividing the internal space of the gas supply device into a plurality of parts and supplying each gas from an independent gas control device, and the reaction gases are mixed only in the vacuum chamber. A second method is a method in which the gas supply means has a multi-layer structure, each gas outlet is arranged at the same position, and each gas is supplied to each layer from an independent gas control device, and the reaction gas is a vacuum chamber. It is mixed just before the introduction. According to this method, the raw material gas does not react before the introduction into the vacuum chamber, and stable film formation becomes possible.

【0009】また、第二の目的に対しては、前記第一の
構造のガス供給装置を採用し、膜厚の薄い部分に対応す
るガス吹出口に、多くのガスを供給する等、膜厚分布を
改善するようにガス流量を局所的に制御する方法を採用
することにより解決される。
For the second object, the gas supply device having the above-mentioned first structure is adopted, and a large amount of gas is supplied to the gas outlet corresponding to the thin film thickness portion. It is solved by adopting a method of locally controlling the gas flow rate so as to improve the distribution.

【0010】[0010]

【作用】マイクロ波プラズマ成膜装置での成膜は通常、
従来の高周波グロー放電を利用した成膜と比較して、数
桁低い0.1Pa程度の成膜圧力で行われる。この程度
の圧力領域は、ガスの直進性が顕著になる分子流領域で
ある。そこでガスの吹出口から基板までの距離が、特に
大面積均一成膜の場合に重要である。そこで、マイクロ
波は透過する物質で構成される平面吹出装置を採用し、
ガス供給は基板に正対して等距離に配置したガス吹出口
から行われる。よって必然的にマイクロ波は、前記ガス
供給装置を通過して伝播する。
[Operation] Film formation in a microwave plasma film forming apparatus is usually
The film formation pressure is about 0.1 Pa, which is several orders of magnitude lower than the film formation using conventional high-frequency glow discharge. The pressure region of this degree is a molecular flow region where the straightness of the gas becomes remarkable. Therefore, the distance from the gas outlet to the substrate is important particularly in the case of uniform film formation over a large area. Therefore, we adopted a flat air blower composed of a material that transmits microwaves,
The gas is supplied from gas outlets arranged equidistantly facing the substrate. Therefore, the microwave inevitably propagates through the gas supply device.

【0011】ところで、単に二枚の誘電体板を平行に配
置し、一方にガス吹出口を設け、その間の空間にガスを
供給する方式では、ガスの供給ルートは一系統となるた
め、例えばモノシランと酸素のように、混合しただけで
反応を起こすようなガスは供給することが不可能にな
る。そこでガス供給装置内の空間を複数に分割する方式
とした。分割方法としては、平面的に分割する方法と、
立体的に分割する方法があるが、いずれの場合もガスが
真空室内あるいはガス吹出口の近くでのみ混合されるよ
うな構造とすることが必要である。以上のようなガス供
給装置を採用することによって、ガス供給装置内での反
応が防止でき、安定した成膜が可能となる。
By the way, in a system in which two dielectric plates are simply arranged in parallel, a gas outlet is provided in one of them, and gas is supplied to the space between them, the gas supply route is a single system, and for example, monosilane is used. It becomes impossible to supply a gas such as oxygen and oxygen that causes a reaction just by mixing. Therefore, a method has been adopted in which the space inside the gas supply device is divided into a plurality of spaces. As a dividing method, a method of dividing in a plane,
Although there are three-dimensional division methods, in any case, it is necessary to have a structure in which the gas is mixed only in the vacuum chamber or near the gas outlet. By adopting the gas supply device as described above, the reaction in the gas supply device can be prevented and stable film formation becomes possible.

【0012】また、前述のように、マイクロ波はガス供
給装置を透過して伝播するため、空間の大きさについて
も考慮が必要である。すなわち、ガス供給装置内でマイ
クロ波放電が起きないようにする必要があり、具体的に
は最大厚さを0.5mm以下にする必要がある。
Further, as described above, since the microwave propagates through the gas supply device, it is necessary to consider the size of the space. That is, it is necessary to prevent microwave discharge from occurring in the gas supply device, and specifically, the maximum thickness needs to be 0.5 mm or less.

【0013】さらに、ガス供給装置のうち、空間を平面
的に分割したものについては、大面積成膜における均一
成膜に効果がある。すなわち、装置の構造的理由等で膜
厚が薄い部分に多く原料ガスを供給することによって、
膜厚分布を改善することが可能である。
Further, among the gas supply devices, the one in which the space is divided in a plane is effective for uniform film formation in large area film formation. That is, by supplying a large amount of raw material gas to a portion where the film thickness is thin due to the structural reason of the device,
It is possible to improve the film thickness distribution.

【0014】[0014]

【実施例】以下、本発明の実施例を図1ないし図7によ
り説明する。
Embodiments of the present invention will be described below with reference to FIGS.

【0015】(実施例1)図1(a)は、本発明の一実
施例を示す面状ガス供給装置20の縦断面図である。ま
た図1(b)は同一の面状ガス供給装置20の平面図で
ある。本実施例によれば、二枚の石英板1a、1bのう
ち、10mm厚の石英板1b側に溝3が設けられてお
り、3mm厚の石英板1aの、これに対応する位置に直
径0.35mmのガス吹出口2a、2bを配置してい
る。溝3の断面形状は、直径0.5mmの半円状であ
る。また、これらの石英板1a、1bは石英固定治具4
によって固定されている。さらに本図には記載していな
いが、ガスシールとしてはフッ素系ゴム製あるいは金属
製のシールを用いている。成膜に用いる原料ガスは、ガ
ス供給源21から各々独立にガス供給管5a、5bを通
して供給される。この場合、石英板固定治具4にはガス
を前記溝3に導くための空間があり、ここでも互いに混
合することがないよう空間は仕切られている。よってガ
スは前記面状ガス供給装置20内でも混合することなく
独立に流れ、ガス吹出口2a、2bから吹き出して初め
て混合する構造になっている。ここでガス吹出口2a、
2bや溝3の配置については、ガスが均一に混合できる
ように考慮することが必要である。
(Embodiment 1) FIG. 1A is a vertical sectional view of a planar gas supply apparatus 20 showing an embodiment of the present invention. Further, FIG. 1B is a plan view of the same planar gas supply device 20. According to this embodiment, of the two quartz plates 1a and 1b, the groove 3 is provided on the side of the quartz plate 1b having a thickness of 10 mm, and the quartz plate 1a having a thickness of 3 mm has a diameter 0. Gas outlets 2a and 2b of 0.35 mm are arranged. The cross-sectional shape of the groove 3 is a semicircle having a diameter of 0.5 mm. Further, these quartz plates 1a and 1b are the quartz fixing jig 4
Is fixed by. Although not shown in this figure, a fluorine rubber or metal seal is used as the gas seal. The raw material gas used for film formation is independently supplied from the gas supply source 21 through the gas supply pipes 5a and 5b. In this case, the quartz plate fixing jig 4 has a space for guiding the gas to the groove 3, and the space is also partitioned here so as not to mix with each other. Therefore, the gas flows independently in the planar gas supply device 20 without being mixed, and the gas is mixed only after being blown out from the gas outlets 2a and 2b. Here, the gas outlet 2a,
It is necessary to consider the arrangement of 2b and the groove 3 so that the gas can be uniformly mixed.

【0016】(実施例2)図2(a)は、本発明の一実
施例を示す面状ガス供給装置20の縦断面図である。ま
た図2(b)は同一の面状ガス供給装置20の平面図で
ある。本実施例によれば、二枚の3mm厚の石英板1
a、1bはスペーサ7をはさんで約0.3mmの間隔で
石英板固定治具4によって固定されている。さらに石英
板1aには直径0.35mmのガス吹出口2a、2bが
設けてある。その他の部分については、実施例1と同様
な構造である。なお、本実施例の場合、スペーサ6と石
英板1a、1bの間は特にガスシール等を行っていない
が、コンダクタンスが悪いためガスの混合による成膜は
行われていなかった。もちろんこの部分にガスシールを
設けて、ガスの混合を完全に防止する方法が望ましい。
さらに本実施例の場合も実施例1と同様の理由で、ガス
吹出口2やスペーサ6の配置については考慮が必要であ
る。
(Embodiment 2) FIG. 2A is a vertical sectional view of a planar gas supply apparatus 20 showing an embodiment of the present invention. Further, FIG. 2B is a plan view of the same planar gas supply device 20. According to this example, two 3 mm thick quartz plates 1
A and 1b sandwich a spacer 7 and are fixed by a quartz plate fixing jig 4 at an interval of about 0.3 mm. Further, the quartz plate 1a is provided with gas outlets 2a and 2b having a diameter of 0.35 mm. The other parts have the same structure as that of the first embodiment. In addition, in the case of the present embodiment, no gas sealing or the like is particularly performed between the spacer 6 and the quartz plates 1a and 1b, but since the conductance is poor, film formation by gas mixing was not performed. Of course, it is desirable to provide a gas seal at this portion to completely prevent gas mixture.
Further, in the case of the present embodiment as well, it is necessary to consider the arrangement of the gas outlets 2 and the spacers 6 for the same reason as in the first embodiment.

【0017】(実施例3)図3(a)は、本発明の一実
施例を示す面状ガス供給装置20の縦断面図である。ま
た図3(b)は同一の面状ガス供給装置20の平面図で
ある。本実施例によれば、約3mm厚さ石英板1a、1
b、1cのうち、1aには直径0.7mmのガス吹出口
2が、1bには直径0.35mmのガス吹出口2が同一
位置に設けてある。また、各々の石英板1a、1b、1
cは約0.3mm間隔で、石英板固定治具4によって固
定されている。さらにガス供給管5aは石英板1aと1
b間に、ガス供給管5bは石英板1bと1c間にガスを
供給できるようになっている。本実施例の場合は、ガス
はガス吹出口2の近くで混合され、成膜に使用される。
そこで、基板上でのガス流量比を比較的均一にすること
ができる。また、三種類以上のガスを使用する場合は、
順次、石英板1の枚数を増やしていけば良い。この場
合、ガス吹出口2の直径は同じでも機能的には十分であ
るが、ガスの石英板1間への侵入を防止する目的で、本
実施例の如く外側を小さくすることが望ましい。
(Embodiment 3) FIG. 3A is a vertical sectional view of a planar gas supply apparatus 20 showing an embodiment of the present invention. Further, FIG. 3B is a plan view of the same planar gas supply device 20. According to this embodiment, the quartz plates 1a, 1a having a thickness of about 3 mm are used.
Among b and 1c, 1a is provided with a gas outlet 2 having a diameter of 0.7 mm, and 1b is provided with a gas outlet 2 having a diameter of 0.35 mm at the same position. In addition, each quartz plate 1a, 1b, 1
c is fixed at about 0.3 mm intervals by the quartz plate fixing jig 4. Further, the gas supply pipe 5a is connected to the quartz plates 1a and 1a.
Between b, the gas supply pipe 5b can supply gas between the quartz plates 1b and 1c. In the case of the present embodiment, the gas is mixed near the gas outlet 2 and used for film formation.
Therefore, the gas flow rate ratio on the substrate can be made relatively uniform. Also, when using three or more types of gas,
The number of quartz plates 1 should be increased in order. In this case, even if the gas outlets 2 have the same diameter, they are functionally sufficient, but it is desirable to make the outside smaller as in this embodiment for the purpose of preventing gas from entering between the quartz plates 1.

【0018】(実施例4)図4は、本発明の面状ガス供
給装置20を備えたマイクロ波プラズマ成膜装置の縦断
面図である。面状ガス供給装置20としては、実施例2
に記載したものを用いた。
(Embodiment 4) FIG. 4 is a vertical sectional view of a microwave plasma film forming apparatus equipped with the planar gas supply device 20 of the present invention. The planar gas supply device 20 is the second embodiment.
The one described in 1. was used.

【0019】以下、本装置を用いて、試料としての板状
ガラス基板17に酸化シリコン膜を化学気相蒸着法で形
成する方法について述べる。
A method of forming a silicon oxide film on the plate-shaped glass substrate 17 as a sample by the chemical vapor deposition method using this apparatus will be described below.

【0020】第一に、ロータリーポンプ24及びターボ
分子ポンプ23を用いて真空室11内を0.0001P
a程度に高真空排気した。
First, the inside of the vacuum chamber 11 is adjusted to 0.0001 P by using the rotary pump 24 and the turbo molecular pump 23.
It was evacuated to a high vacuum.

【0021】第二に、図2に示すガス供給装置20のう
ち、ガス供給管5aよりモノシランを5cc/sec、
ガス供給管5bより酸素を20cc/secほど真空室
11内に導入した。つまり、モノシランと酸素は各々別
のガス吹出口2a、2bから真空室11内に供給され、
混合される。
Second, in the gas supply device 20 shown in FIG. 2, 5 cc / sec of monosilane is supplied from the gas supply pipe 5a,
Oxygen was introduced into the vacuum chamber 11 at a rate of 20 cc / sec from the gas supply pipe 5b. That is, monosilane and oxygen are supplied into the vacuum chamber 11 from the different gas outlets 2a and 2b,
Mixed.

【0022】第三に、メインバルブ22を調整して、真
空室11内圧力を約0.1Paに保った。
Thirdly, the main valve 22 was adjusted to maintain the internal pressure of the vacuum chamber 11 at about 0.1 Pa.

【0023】第四に、主コイル14及び補助コイル15
の電流を調整して、面状ガス供給装置20から約100
mmの位置に電子サイクロトロン共鳴を起こすための
0.0875テスラの磁場を形成した。
Fourth, the main coil 14 and the auxiliary coil 15
The current of the sheet gas supply device 20 is adjusted to about 100
A magnetic field of 0.0875 Tesla for causing electron cyclotron resonance was formed at a position of mm.

【0024】第五に、導波管12および石英製マイクロ
波導入窓28を通してマイクロ波供給手段13から2.
45GHz、100Wのマイクロ波を真空室11内に導
入し、放電を開始した。
Fifth, from the microwave supply means 13 through the waveguide 12 and the microwave introduction window 28 made of quartz.
A microwave of 45 GHz and 100 W was introduced into the vacuum chamber 11 to start discharge.

【0025】この結果、200mm×200mmの基板
17上に5分間で約650nmの酸化シリコン膜が形成
された。また、ガス供給装置20を分解したところ、内
部には酸化シリコンは殆ど形成されなかった。また、成
膜圧力モニタやガス流量モニタに変化はなく、酸化シリ
コン形成によるガス吹出口2の目詰まりもほとんどなか
った。
As a result, a silicon oxide film of about 650 nm was formed on the substrate 17 of 200 mm × 200 mm in 5 minutes. Further, when the gas supply device 20 was disassembled, almost no silicon oxide was formed inside. Further, there was no change in the film formation pressure monitor and the gas flow rate monitor, and the gas outlet 2 was hardly clogged due to the formation of silicon oxide.

【0026】なお、石英板1の間隔や、ガス吹出口2及
び溝3の大きさは、0.5mm以下にすることが必要で
ある。その理由は、それ以上では空間でマイクロ波放電
が起こり、例えばモノシランを導入した空間ではアモル
ファスシリコンが成膜されてしまうからである。実際
0.7mmの空間では成膜が起こった。そこで0.5m
m以下、好ましくは0.3mm以下にすることが望まし
い。
The distance between the quartz plates 1 and the sizes of the gas outlets 2 and the grooves 3 must be 0.5 mm or less. The reason is that microwave discharge occurs in the space above that, and amorphous silicon is deposited in the space where monosilane is introduced, for example. In fact, film formation occurred in a space of 0.7 mm. 0.5m there
m or less, preferably 0.3 mm or less.

【0027】(実施例5)図5は、ガス導入手段として
従来のリング状ガス供給装置29と、面状ガス供給装置
20とを備えたマイクロ波プラズマ成膜装置の縦断面図
である。例えば、モノシランと酸素の流量が各々5cc
/min.、50cc/min.のように流量比が大き
い場合は、成膜はモノシランで律速され酸素はキャリア
ガスのような働きをする。そこで膜厚分布に対してもモ
ノシランのみを考慮すればよく、酸素はリング状ガス供
給装置29から供給が可能である。そこで面状ガス供給
装置20の内部空間は分割する必要はない。本実施例の
場合も、実施例4と同様な安定した成膜が可能であっ
た。
(Embodiment 5) FIG. 5 is a longitudinal sectional view of a microwave plasma film forming apparatus provided with a conventional ring-shaped gas supply device 29 as a gas introduction means and a planar gas supply device 20. For example, the flow rates of monosilane and oxygen are each 5 cc
/ Min. , 50 cc / min. When the flow rate ratio is large, the film formation is controlled by monosilane and oxygen acts like a carrier gas. Therefore, it is sufficient to consider only monosilane for the film thickness distribution, and oxygen can be supplied from the ring-shaped gas supply device 29. Therefore, it is not necessary to divide the internal space of the planar gas supply device 20. Also in the case of this example, stable film formation similar to that of Example 4 was possible.

【0028】(実施例6)第六の実施例は、本発明のガ
ス供給装置20を備えたマイクロ波プラズマ成膜装置で
の成膜において、膜厚分布を改善した例である。図6
に、使用したガス供給装置20の断面図および平面図を
示す。基板17には、直径6インチのシリコンウエハを
用いた。また、原料ガスとしてモノシランと窒素を各々
5cc/min、20cc/min混合したものを用い
た。その他の成膜条件及び成膜手順は、実施例4の場合
と同一である。本成膜では、原料ガスであるモノシラン
と窒素の反応性は低く、予め混合して供給することが可
能である。
(Embodiment 6) The sixth embodiment is an example in which the film thickness distribution is improved in the film formation by the microwave plasma film forming apparatus provided with the gas supply device 20 of the present invention. Figure 6
2 shows a cross-sectional view and a plan view of the gas supply device 20 used. A silicon wafer having a diameter of 6 inches was used as the substrate 17. Further, as the source gas, a mixture of monosilane and nitrogen of 5 cc / min and 20 cc / min was used. Other film forming conditions and film forming procedures are the same as in the case of the fourth embodiment. In this film formation, the reactivity of monosilane, which is the source gas, with nitrogen is low, and it is possible to mix and supply them in advance.

【0029】まず第一に、ガス供給管5a、5bから同
一流量流した場合の膜厚分布を、図7(a)に示す。こ
の場合、基板周辺部では膜厚がやや薄くなっている。そ
こで、ガス供給管5aから供給される原料ガス流量を、
モノシラン7cc/min、窒素70cc/minに増
加した。すなわち、基板17周辺部に供給される原料ガ
スの総流量を増加した。この結果、図6(b)に示すよ
うに周辺部の膜厚が増加し、全体的に均一性が改善され
た。なお、本実施例の場合とは反対に、意図的に膜厚分
布を形成したり、積極的に膜組成や膜特性を局所的に変
化させる場合にも、本発明は有効である。
First, FIG. 7 (a) shows the film thickness distribution when the same flow rate is supplied from the gas supply pipes 5a and 5b. In this case, the film thickness is slightly thin around the substrate. Therefore, the flow rate of the raw material gas supplied from the gas supply pipe 5a is
Monosilane increased to 7 cc / min and nitrogen increased to 70 cc / min. That is, the total flow rate of the source gas supplied to the peripheral portion of the substrate 17 was increased. As a result, as shown in FIG. 6B, the film thickness in the peripheral portion was increased and the uniformity was improved as a whole. Note that, contrary to the case of the present embodiment, the present invention is also effective when intentionally forming the film thickness distribution or actively locally changing the film composition or film characteristics.

【0030】[0030]

【発明の効果】本発明によれば、反応性の強い原料ガス
を用いた成膜の場合でも、安定した成膜を大面積にわた
って均一に行うことができる。また、膜厚や膜特性の分
布改善にも効果がある。
According to the present invention, stable film formation can be performed uniformly over a large area even in the case of film formation using a highly reactive source gas. It is also effective in improving the distribution of film thickness and film characteristics.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のガス供給装置の一実施例の説明図、FIG. 1 is an explanatory view of an embodiment of a gas supply device of the present invention,

【図2】本発明のガス供給装置の第二実施例の説明図、FIG. 2 is an explanatory view of a second embodiment of the gas supply device of the present invention,

【図3】本発明のガス供給装置の第三実施例の説明図、FIG. 3 is an explanatory view of a third embodiment of the gas supply device of the present invention,

【図4】本発明のマイクロ波プラズマ成膜装置の系統
図、
FIG. 4 is a system diagram of a microwave plasma film forming apparatus of the present invention,

【図5】本発明のマイクロ波プラズマ成膜装置の系統
図、
FIG. 5 is a system diagram of a microwave plasma film forming apparatus of the present invention,

【図6】本発明のガス供給装置の説明図、FIG. 6 is an explanatory view of a gas supply device of the present invention,

【図7】酸化シリコンの膜厚分布を示す特性図。FIG. 7 is a characteristic diagram showing a film thickness distribution of silicon oxide.

【符号の説明】[Explanation of symbols]

1…石英板、2…ガス吹出口、3…溝、4…石英板固定
治具、5…ガス供給管。
1 ... Quartz plate, 2 ... Gas outlet, 3 ... Groove, 4 ... Quartz plate fixing jig, 5 ... Gas supply pipe.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 斎藤 克明 茨城県日立市久慈町4026番地株式会社日立 製作所日立研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Katsuaki Saito 4026 Kuji Town, Hitachi City, Ibaraki Prefecture Hitachi Ltd. Hitachi Research Laboratory

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】マイクロ波が透過する物質で構成され、か
つ基板から等距離に設置され基板の法線方向にガスを吹
き出す複数の吹出口をもつガス供給装置であって、複数
のガス供給系をもち、ガスを供給装置外部若しくは吹出
口部のみで混合する構造であることを特徴とするガス供
給装置。
1. A gas supply device, which is made of a material that allows microwaves to pass therethrough, is equidistant from a substrate, and has a plurality of outlets for ejecting gas in a direction normal to the substrate. And a structure for mixing the gas outside the supply device or only at the outlet part.
【請求項2】二枚の誘電体板を平行に配置し、そのうち
基板と対向する一枚に複数の孔を設け、前記誘電体板間
の空間を複数に分割したことを特徴とするガス供給装
置。
2. A gas supply characterized in that two dielectric plates are arranged in parallel, one of which faces the substrate is provided with a plurality of holes, and the space between the dielectric plates is divided into a plurality of spaces. apparatus.
【請求項3】請求項1において、少なくとも三枚の誘電
体板を平行に配置し、そのうち基板と反対側の一枚以外
に各々複数の孔を同一位置に設けるとともに、それらの
孔径が前記孔のない誘電体板から遠ざかるにつれて大き
くなっているガス供給装置。
3. The method according to claim 1, wherein at least three dielectric plates are arranged in parallel, and a plurality of holes are provided at the same position except one of the dielectric plates on the side opposite to the substrate, and the diameters of the holes are the same as those of the holes. A gas supply device that grows in size as it moves away from a dielectric plate that does not have a hole.
【請求項4】請求項2または3に記載の前記誘電体板と
して、石英板若しくはアルミナ板を用いるガス供給装
置。
4. A gas supply device using a quartz plate or an alumina plate as the dielectric plate according to claim 2.
【請求項5】請求項2または3に記載の誘電体板間の間
隔が、0.5mm以下であるガス供給装置。
5. A gas supply device according to claim 2, wherein the distance between the dielectric plates is 0.5 mm or less.
【請求項6】真空室に、真空排気手段と、試料保持手段
と、反応ガスおよび放電ガス導入手段と、電子サイクロ
トロン共鳴を起こすための磁場形成手段と、マイクロ波
電力供給手段とを備えたマイクロ波プラズマ成膜装置で
あって、前記ガス導入手段として請求項1に記載のガス
供給装置を基板と正対位置に配置したマイクロ波プラズ
マ成膜装置。
6. A micro-chamber comprising a vacuum exhaust means, a sample holding means, a reaction gas and discharge gas introducing means, a magnetic field forming means for causing electron cyclotron resonance, and a microwave power supply means in a vacuum chamber. A microwave plasma film forming apparatus, wherein the gas supply device according to claim 1 is arranged as a gas introduction means at a position facing the substrate.
【請求項7】真空室に、真空排気手段と、試料保持手段
と、反応ガスおよび放電ガス導入手段と、電子サイクロ
トロン共鳴を起こすための磁場形成手段と、マイクロ波
電力供給手段とを備えたマイクロ波プラズマ成膜装置で
あって、前記ガス供給手段を複数個設け、その一つがマ
イクロ波が透過する物質で構成され、かつ基板から等距
離に設置され基板の法線方向にガスを吹き出す複数の吹
出口をもったガス供給装置であることを特徴とするマイ
クロ波プラズマ成膜装置。
7. A micro-chamber comprising a vacuum exhaust means, a sample holding means, a reaction gas and discharge gas introducing means, a magnetic field forming means for causing electron cyclotron resonance, and a microwave power supply means in a vacuum chamber. A plurality of gas supply means are provided, one of which is composed of a substance through which microwaves are transmitted, and which is installed at an equal distance from the substrate and blows out gas in the normal direction of the substrate. A microwave plasma film forming apparatus, which is a gas supply device having an outlet.
JP24549391A 1991-09-25 1991-09-25 Gas feeder, and microwave plasma film forming device equipped with same Pending JPH0590169A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24549391A JPH0590169A (en) 1991-09-25 1991-09-25 Gas feeder, and microwave plasma film forming device equipped with same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24549391A JPH0590169A (en) 1991-09-25 1991-09-25 Gas feeder, and microwave plasma film forming device equipped with same

Publications (1)

Publication Number Publication Date
JPH0590169A true JPH0590169A (en) 1993-04-09

Family

ID=17134487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24549391A Pending JPH0590169A (en) 1991-09-25 1991-09-25 Gas feeder, and microwave plasma film forming device equipped with same

Country Status (1)

Country Link
JP (1) JPH0590169A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5441568A (en) * 1994-07-15 1995-08-15 Applied Materials, Inc. Exhaust baffle for uniform gas flow pattern
JPH0835067A (en) * 1994-07-20 1996-02-06 G T C:Kk Film forming device and film formation
EP0747503A1 (en) * 1995-06-09 1996-12-11 Ebara Corporation Reactant gas injector for chemical vapor deposition apparatus
US6767795B2 (en) 2002-01-17 2004-07-27 Micron Technology, Inc. Highly reliable amorphous high-k gate dielectric ZrOXNY
US6852167B2 (en) * 2001-03-01 2005-02-08 Micron Technology, Inc. Methods, systems, and apparatus for uniform chemical-vapor depositions
US6884739B2 (en) 2002-08-15 2005-04-26 Micron Technology Inc. Lanthanide doped TiOx dielectric films by plasma oxidation
US6921702B2 (en) 2002-07-30 2005-07-26 Micron Technology Inc. Atomic layer deposited nanolaminates of HfO2/ZrO2 films as gate dielectrics
US6930346B2 (en) 2002-03-13 2005-08-16 Micron Technology, Inc. Evaporation of Y-Si-O films for medium-K dielectrics
US6953730B2 (en) 2001-12-20 2005-10-11 Micron Technology, Inc. Low-temperature grown high quality ultra-thin CoTiO3 gate dielectrics
US6967154B2 (en) 2002-08-26 2005-11-22 Micron Technology, Inc. Enhanced atomic layer deposition
US7622355B2 (en) 2002-06-21 2009-11-24 Micron Technology, Inc. Write once read only memory employing charge trapping in insulators

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5441568A (en) * 1994-07-15 1995-08-15 Applied Materials, Inc. Exhaust baffle for uniform gas flow pattern
JPH0835067A (en) * 1994-07-20 1996-02-06 G T C:Kk Film forming device and film formation
EP0747503A1 (en) * 1995-06-09 1996-12-11 Ebara Corporation Reactant gas injector for chemical vapor deposition apparatus
US5728223A (en) * 1995-06-09 1998-03-17 Ebara Corporation Reactant gas ejector head and thin-film vapor deposition apparatus
US6852167B2 (en) * 2001-03-01 2005-02-08 Micron Technology, Inc. Methods, systems, and apparatus for uniform chemical-vapor depositions
US6953730B2 (en) 2001-12-20 2005-10-11 Micron Technology, Inc. Low-temperature grown high quality ultra-thin CoTiO3 gate dielectrics
US6767795B2 (en) 2002-01-17 2004-07-27 Micron Technology, Inc. Highly reliable amorphous high-k gate dielectric ZrOXNY
US6930346B2 (en) 2002-03-13 2005-08-16 Micron Technology, Inc. Evaporation of Y-Si-O films for medium-K dielectrics
US7622355B2 (en) 2002-06-21 2009-11-24 Micron Technology, Inc. Write once read only memory employing charge trapping in insulators
US6921702B2 (en) 2002-07-30 2005-07-26 Micron Technology Inc. Atomic layer deposited nanolaminates of HfO2/ZrO2 films as gate dielectrics
US6884739B2 (en) 2002-08-15 2005-04-26 Micron Technology Inc. Lanthanide doped TiOx dielectric films by plasma oxidation
US6967154B2 (en) 2002-08-26 2005-11-22 Micron Technology, Inc. Enhanced atomic layer deposition
US8362576B2 (en) 2002-08-26 2013-01-29 Round Rock Research, Llc Transistor with reduced depletion field width

Similar Documents

Publication Publication Date Title
CN101443474B (en) Method and apparatus for improving uniformity of large-area substrates
KR100610469B1 (en) Surface wave excitation plasma cvd system
US4590042A (en) Plasma reactor having slotted manifold
US6427623B2 (en) Chemical vapor deposition system
US20060096540A1 (en) Apparatus to manufacture semiconductor
US9224581B2 (en) Parallel plate reactor for uniform thin film deposition with reduced tool foot-print
EP0637058B1 (en) Method of supplying reactant gas to a substrate processing apparatus
US6344420B1 (en) Plasma processing method and plasma processing apparatus
US20130008607A1 (en) Antenna, dielectric window, plasma processing apparatus and plasma processing method
CN101389788A (en) Process tuning gas injection from the substrate edge
JPH02114530A (en) Thin film formation device
JPH0590169A (en) Gas feeder, and microwave plasma film forming device equipped with same
US11791136B2 (en) Deposition radial and edge profile tunability through independent control of TEOS flow
US20050092245A1 (en) Plasma chemical vapor deposition apparatus having an improved nozzle configuration
JP5119830B2 (en) Plasma device
JP3682178B2 (en) Plasma processing method and plasma processing apparatus
US20180258531A1 (en) Diffuser design for flowable cvd
KR20200021404A (en) Coating material for processing chambers
JP4890012B2 (en) Plasma CVD equipment
US11049699B2 (en) Gas box for CVD chamber
JPH04279022A (en) Semiconductor manufacturing device
JPH02184022A (en) Cvd electrode
JP2630089B2 (en) Microwave plasma processing equipment
JP2001085413A (en) Treating device
JP2006322050A (en) Shower plate and surface wave excited plasma processing apparatus