JPH0589989A - Cold cathode tube lighting device - Google Patents

Cold cathode tube lighting device

Info

Publication number
JPH0589989A
JPH0589989A JP3250875A JP25087591A JPH0589989A JP H0589989 A JPH0589989 A JP H0589989A JP 3250875 A JP3250875 A JP 3250875A JP 25087591 A JP25087591 A JP 25087591A JP H0589989 A JPH0589989 A JP H0589989A
Authority
JP
Japan
Prior art keywords
voltage
cathode tube
cold cathode
current
cold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3250875A
Other languages
Japanese (ja)
Other versions
JP3256992B2 (en
Inventor
Makoto Imaguchi
真 今口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP25087591A priority Critical patent/JP3256992B2/en
Publication of JPH0589989A publication Critical patent/JPH0589989A/en
Application granted granted Critical
Publication of JP3256992B2 publication Critical patent/JP3256992B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Inverter Devices (AREA)
  • Circuit Arrangements For Discharge Lamps (AREA)
  • Illuminated Signs And Luminous Advertising (AREA)

Abstract

PURPOSE:To provide a cold cathode tube lighting device which does not require components for a ballast on the secondary side and which can hold the current of a cold cathode tube constant even if the voltage of the cold cathode tube is changed and which can restrain lowering of the brightness of the cold cathode tube at low temperatures while simply setting the current of the cold cathode tube and which can use an inverter transformer of low output voltage. CONSTITUTION:A cold cathode tube 8 is directly connected to the secondary side of a voltage resonance type Royer circuit to which power is fed from a low voltage constant current source 9. The output voltage of the voltage resonance type Royer circuit is proportional to input voltage and the input voltage is equal to the output voltage. Power consumed at the cold cathode tube is expressed as the product of tube voltage and tube current. Power output from the constant current source 9 is the product of the voltage and the current. Therefore, the tube current is proportional to the input current of the Royer circuit.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、情報機器等の表示装置
の液晶用バックライトのために使用される冷陰極管点灯
装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cold-cathode tube lighting device used for a liquid crystal backlight of a display device such as information equipment.

【0002】[0002]

【従来の技術】近年、情報機器分野では機器の小型化と
視認性の向上のため、表示装置にバックライト付き液晶
表示装置を用いたものが主流となっている。
2. Description of the Related Art In recent years, in the field of information equipment, a liquid crystal display device with a backlight has been mainly used as a display device in order to downsize the device and improve the visibility.

【0003】このバックライトの光源には、明るさや低
消費電力という利点から冷陰極管を使ったものがほとん
どである。ところが、この冷陰極管は点灯電圧が高く、
点灯させるためには高電圧を発生する冷陰極管点灯装置
が必要となる。また、冷陰極管は次のような特性を持っ
ている。放電開始電圧が点灯電圧よりも高いという負性
抵抗特性、冷陰極管電流を変化させても冷陰極管電圧が
変化しないという定電圧特性、冷陰極管電圧は温度が高
いと低くなり、温度が低いと高くなるという特性、温度
が高いと発光効率が高くなり、温度が低いと発光効率が
低くなるという特性を持っている。
Most of the light sources of this backlight use a cold cathode tube because of the advantages of brightness and low power consumption. However, this cold cathode tube has a high lighting voltage,
A cold-cathode tube lighting device that generates a high voltage is required for lighting. Further, the cold cathode tube has the following characteristics. Negative resistance characteristics that the discharge start voltage is higher than the lighting voltage, constant voltage characteristics that the cold cathode tube voltage does not change even when the cold cathode tube current is changed, and the cold cathode tube voltage becomes low when the temperature is high, It has characteristics that it becomes high when the temperature is low, that luminous efficiency becomes high when the temperature is high, and that it becomes low when the temperature is low.

【0004】以下に従来の冷陰極管点灯装置について図
面を参照しながら説明する。図3は従来の冷陰極管点灯
装置の回路構成を示すもので、電圧共振型としたロイヤ
ーの発振回路を利用したものである。図3において、1
はインバータトランス、2、3はスイッチ素子であるト
ランジスタ、4、5は抵抗、6は電圧共振をさせるため
のコンデンサ、7はチョークコイル、8は冷陰極管、1
0は低圧定電圧源、11は出力電流を制限するためのバ
ラストとなるコンデンサである。
A conventional CCFL driver circuit will be described below with reference to the drawings. FIG. 3 shows a circuit configuration of a conventional CCFL driver circuit, which utilizes a voltage resonance type Royer oscillator circuit. In FIG. 3, 1
Is an inverter transformer, 2 and 3 are transistors that are switching elements, 4 and 5 are resistors, 6 is a capacitor for causing voltage resonance, 7 is a choke coil, 8 is a cold cathode tube, and 1 is a cold cathode tube.
Reference numeral 0 is a low voltage constant voltage source, and 11 is a ballast capacitor for limiting the output current.

【0005】インバータトランス1、トランジスタ2、
3、抵抗4、5、コンデンサ6、チョークコイル7で構
成される回路は電圧共振型のロイヤーの発振回路と呼ば
れるもので、冷陰極管点灯装置に一般に使われている回
路である。
Inverter transformer 1, transistor 2,
A circuit composed of 3, resistors 4, 5, a capacitor 6, and a choke coil 7 is called a voltage resonance type Royer oscillation circuit, and is a circuit generally used in a cold cathode tube lighting device.

【0006】以上のように構成された冷陰極管点灯装置
について、以下その動作について説明する。まず、低圧
定電圧源10より出力された電圧が、抵抗4、5を通し
てトランジスタ2、3のベースと、チョークコイル7を
通してインバータトランス1のBピンに加わる。このと
きわずかなバランスの違いにより、どちらかのトランジ
スタが先にオンする。例えば、トランジスタ2が先にオ
ンしたとすると、インバータトランス1のAピンが低圧
定電圧源10のマイナス側に接続されることになり、E
ピンに対してDピンにプラスの電圧が誘起される。した
がって抵抗5を通った電流はインバータトランス1のE
ピンに引込まれ、トランジスタ2のベースへと供給さ
れ、トランジスタ2のオン状態が確実になると共に、ト
ランジスタ3がオフ状態となる。
The operation of the cold-cathode tube lighting device configured as described above will be described below. First, the voltage output from the low voltage constant voltage source 10 is applied to the bases of the transistors 2 and 3 through the resistors 4 and 5 and to the B pin of the inverter transformer 1 through the choke coil 7. At this time, either transistor is turned on first due to a slight difference in balance. For example, if the transistor 2 is turned on first, the A pin of the inverter transformer 1 is connected to the negative side of the low voltage constant voltage source 10, and E
A positive voltage is induced on the D pin with respect to the pin. Therefore, the current passing through the resistor 5 becomes E of the inverter transformer 1.
It is drawn into the pin and supplied to the base of the transistor 2, so that the transistor 2 is surely turned on and the transistor 3 is turned off.

【0007】次に、インバータトランス1のA−Cピン
間のインダクタとコンデンサ6で構成されるタンク回路
の共振周波数の半周期の時間が経過すると共振現象によ
りインバータトランス1のA−Cピン間の電圧が反転
し、同時にD−Eピン間の電圧も反転する。したがっ
て、トランジスタ2、3へのベース電流の供給が逆転
し、トランジスタ2、3のオン、オフ状態が反転する。
以降、この動作が持続し直流が交流に変換される。イン
バータトランス1はA−Cピン間を入力として、F−G
ピン間に巻線比に応じた電圧が出力される。つまり、直
流を入力し交流を出力する変圧器として動作する。
Next, when a half cycle of the resonance frequency of the tank circuit composed of the inductor and the capacitor 6 between the AC pin of the inverter transformer 1 elapses, a resonance phenomenon occurs between the AC pin of the inverter transformer 1. The voltage is inverted, and at the same time, the voltage between the D and E pins is also inverted. Therefore, the supply of the base current to the transistors 2 and 3 is reversed, and the on / off states of the transistors 2 and 3 are reversed.
After that, this operation is continued and the direct current is converted into the alternating current. Inverter transformer 1 uses FG between AC pins as input
A voltage corresponding to the winding ratio is output between the pins. That is, it operates as a transformer that inputs DC and outputs AC.

【0008】図4に図3のインバータトランスの出力特
性と、バラストとなるコンデンサを通したときの負荷曲
線と、冷陰極管の電圧電流特性を示す。
FIG. 4 shows the output characteristics of the inverter transformer shown in FIG. 3, the load curve when a capacitor serving as a ballast is passed, and the voltage-current characteristics of the cold cathode tube.

【0009】図4においてインバータトランス1の出力
電圧は、電圧共振型ロイヤー回路の入力電圧により決ま
り、出力電流には関係ないので電圧一定の直線となる。
一方、冷陰極管はグロー放電を利用して点灯するが、微
小電流域においてグロー放電への遷移領域があり冷陰極
管電圧が高くなる。そして、冷陰極管が正規に点灯する
グロー放電領域では冷陰極管電圧が少し低くなり、冷陰
極管電流が変化しても冷陰極管電圧は変化しなくなる。
また、温度によって冷陰極管電圧が変化し、低温時と高
温時でそれぞれ図のような特性曲線となる。また、冷陰
極管は電流を多く流し過ぎると寿命が短くなるので適切
な冷陰極管電流を設定する必要がある。
In FIG. 4, the output voltage of the inverter transformer 1 is determined by the input voltage of the voltage resonance type Royer circuit and has no relation to the output current, so that it is a straight line with a constant voltage.
On the other hand, the cold-cathode tube is lit by utilizing glow discharge, but there is a transition region to glow discharge in a minute current region, and the cold-cathode tube voltage becomes high. Then, in the glow discharge region where the cold-cathode tube is normally lighted, the cold-cathode tube voltage becomes a little lower, and the cold-cathode tube voltage does not change even if the cold-cathode tube current changes.
Further, the cold cathode fluorescent lamp voltage changes depending on the temperature, and the characteristic curves shown in the figure are obtained at low temperature and high temperature, respectively. Further, the life of the cold-cathode tube shortens if too much current is passed, so it is necessary to set an appropriate cold-cathode tube current.

【0010】ここで、インバータトランスの出力を直接
冷陰極管に接続すると過大な電流が流れ機器を破壊して
しまうので、なんらかの電流を制限するバラストとなる
部品が必要となる。この部品には、抵抗、コンデンサ、
コイルが考えられるが、このうち、抵抗は損失が大き
く、コイルは高圧に耐えるものは形状が大きくなるとい
う欠点があるため、高耐圧で形状を小さくできるコンデ
ンサが使用されている。コンデンサをバラストとして使
用したときの負荷曲線が図4における従来の構成の負荷
曲線であり、冷陰極管の特性曲線と交差する点が冷陰極
管の電圧と電流である。
If the output of the inverter transformer is directly connected to the cold cathode tube, an excessive current will flow and destroy the equipment. Therefore, a ballast component for limiting some current is required. This part includes resistors, capacitors,
A coil can be considered, but of these, the resistance has a large loss, and the one that can withstand a high voltage has a drawback that the shape becomes large. Therefore, a capacitor that has a high breakdown voltage and can be made small in size is used. The load curve when the capacitor is used as a ballast is the load curve of the conventional configuration in FIG. 4, and the points that intersect the characteristic curve of the cold cathode tube are the voltage and current of the cold cathode tube.

【0011】[0011]

【発明が解決しようとする課題】上記の従来の構成で
は、冷陰極管の電流の設定は、コンデンサの容量、発振
周波数、インバータトランスの出力電圧によって行わな
ければならない。しかし、発振周波数は高くすると浮遊
容量の影響を大きく受けるようになり、低くするとイン
バータトランスが磁気飽和を起こすので調節の範囲は狭
い。インバータトランスはその形状により出力電圧の限
界が決まり、低温時の冷陰極管の放電開始電圧により下
限の電圧も決まるので調節の範囲は限られる。そして、
コンデンサの容量は段階的に設定されているので微妙な
設定ができない。これらの問題があるため、冷陰極管電
流の設定は困難である。
In the above conventional structure, the current of the cold cathode tube must be set by the capacitance of the capacitor, the oscillation frequency and the output voltage of the inverter transformer. However, when the oscillation frequency is increased, the influence of the stray capacitance becomes large, and when the oscillation frequency is decreased, the inverter transformer causes magnetic saturation, so that the adjustment range is narrow. The output voltage of the inverter transformer is limited by its shape, and the lower limit voltage is also determined by the discharge start voltage of the cold cathode tube at low temperature, so the range of adjustment is limited. And
Since the capacity of the capacitor is set in stages, it is not possible to make delicate settings. Because of these problems, it is difficult to set the cold cathode tube current.

【0012】また、低温時に冷陰極管電圧が高くなる
と、動作点が移動し冷陰極管電流が減少する。冷陰極管
は低温時に高温時と同じ電流を流しても発光効率が低下
するため冷陰極管の輝度が低下するのに加えて、冷陰極
管電流が減少するため、冷陰極管の輝度が著しく低下す
ることになる。
When the cold-cathode tube voltage becomes high at low temperature, the operating point moves and the cold-cathode tube current decreases. The brightness of the cold-cathode tube is low because the luminous efficiency of the cold-cathode tube is low even when the same current as that at the time of high-temperature is passed at low temperature. Will be reduced.

【0013】また、バラストのコンデンサの電圧降下分
のためにインバータトランスの出力電圧を高くする必要
があり、インバータトランスの形状が大きくなり機器の
小型化を妨げていた。
Further, the output voltage of the inverter transformer must be increased due to the voltage drop of the ballast capacitor, and the size of the inverter transformer becomes large, which hinders downsizing of the equipment.

【0014】本発明は上記従来の問題点を解決するもの
で、電力源を低圧定電流源としバラストとなる部品を必
要とせず、冷陰極管の電圧が変化しても冷陰極管電流を
一定とすることができると共に、冷陰極管電流の設定が
簡単で、低温時に冷陰極管の輝度の低下を抑えることが
でき、インバータトランスの出力電力が低くて済む冷陰
極管点灯装置を提供することを目的とする。
The present invention solves the above-mentioned problems of the prior art by using a low-voltage constant current source as a power source and not requiring a ballast component, and keeping the cold-cathode tube current constant even if the cold-cathode tube voltage changes. A cold cathode fluorescent lamp lighting device that can easily set the cold cathode fluorescent lamp current, can suppress the decrease in the brightness of the cold cathode fluorescent lamp at a low temperature, and can reduce the output power of the inverter transformer. With the goal.

【0015】[0015]

【課題を解決するための手段】この目的を達成するため
に本発明の冷陰極管点灯装置は、低圧の定電流源と、前
記定電流源から電力の供給を受け変流器として機能する
電圧共振型ロイヤー回路と、二次側に冷陰極管を備え、
前記電圧共振型ロイヤー回路を変流器として機能させる
ため、二次側には冷陰極管と直列に容量性の部品を有さ
ないことを特徴とする。
In order to achieve this object, a cold-cathode tube lighting device of the present invention comprises a low-voltage constant current source and a voltage which receives power from the constant current source and functions as a current transformer. Resonance type Royer circuit and cold cathode tube on the secondary side,
In order to make the voltage resonance type Royer circuit function as a current transformer, the secondary side is characterized by not having a capacitive component in series with the cold cathode tube.

【0016】[0016]

【作用】バラストとなるコンデンサを無くしたため電圧
降下分がなく、冷陰極管電圧とインバータトランスの出
力電圧を等しくでき、インバータトランスの出力電圧が
低くて済む。そして、負荷の電圧と電圧共振型ロイヤー
回路の入力電圧とが、直流と交流という違いがあるが直
線的な比例関係となる。次に、電圧共振型ロイヤー回路
の損失電力に比べて出力電力が大きいことから、電圧共
振型ロイヤー回路の入力電力は出力電力に等しいとする
と、電流の関係は電力を電圧で除したものであるから、
冷陰極管電流は電圧共振型ロイヤー回路の入力電流に比
例する。したがって、低圧定電流源より電力を供給する
ようにしたことにより、冷陰極管には一定の電流が流れ
る。
Since there is no ballast capacitor, there is no voltage drop, the cold cathode tube voltage and the output voltage of the inverter transformer can be made equal, and the output voltage of the inverter transformer can be low. The load voltage and the input voltage of the voltage resonance type Royer circuit have a linear proportional relationship although there is a difference between direct current and alternating current. Next, since the output power is larger than the loss power of the voltage resonance type Royer circuit, assuming that the input power of the voltage resonance type Royer circuit is equal to the output power, the relation of the current is the power divided by the voltage. From
The cold cathode tube current is proportional to the input current of the voltage resonance type Royer circuit. Therefore, by supplying electric power from the low voltage constant current source, a constant current flows in the cold cathode tube.

【0017】[0017]

【実施例】以下本発明の一実施例について、図面を参照
しながら説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings.

【0018】図1において電圧共振型ロイヤー回路の部
分と冷陰極管8は従来例と同じである。異なるところは
低圧定電圧源から電力を供給していたものを低圧定電流
源9より電力を供給するようにして、出力電流を制限す
るためのコンデンサを廃止した点にある。
In FIG. 1, the portion of the voltage resonance type Royer circuit and the cold cathode tube 8 are the same as in the conventional example. The different point is that the low voltage constant voltage source is used to supply power, but the low voltage constant current source 9 supplies power, and the capacitor for limiting the output current is eliminated.

【0019】以上のように構成された冷陰極管点灯装置
について、以下その動作について説明する。電圧共振型
ロイヤー回路に直流電圧が入力され、交流電圧が出力さ
れる過程は従来の技術で述べた通りである。
The operation of the cold-cathode tube lighting device configured as described above will be described below. The process in which the DC voltage is input to the voltage resonance type Royer circuit and the AC voltage is output is as described in the related art.

【0020】ここで、冷陰極管8の点灯状態の各部の電
圧を考える。まず、負荷の冷陰極管8の電圧を考えると
その特性により、温度が決まれば一定となり、インバー
タトランス1の出力電圧、F−Gピン間電圧も同電圧と
なる。出力が一定の電圧であるのでインバータトランス
1の入力側、A−Cピン間に巻線比で決定される電圧が
加えられることになる。したがって、低圧定電流源9よ
り出力される電圧が決定される。そして、この電圧は冷
陰極管電圧に比例する。
Here, consider the voltage of each part of the cold cathode tube 8 in the lighting state. First, considering the voltage of the cold-cathode tube 8 of the load, it becomes constant when the temperature is determined, and the output voltage of the inverter transformer 1 and the FG pin voltage also become the same voltage. Since the output is a constant voltage, a voltage determined by the winding ratio is applied between the input side of the inverter transformer 1 and the A-C pin. Therefore, the voltage output from the low voltage constant current source 9 is determined. This voltage is proportional to the cold cathode tube voltage.

【0021】この関係を、冷陰極管電圧をVout 、低圧
定電流源9より出力される電圧をVin、巻線比で決定さ
れる比例定数をKv とすると(数式1)で表される。
This relationship is represented by the following equation (1), where Vout is the cold cathode tube voltage, Vin is the voltage output from the low-voltage constant current source 9, and Kv is the proportional constant determined by the winding ratio.

【0022】[0022]

【数式1】Vout =Kv ×Vin 次に、低圧定電流源9より出力される電力をPinとし、
冷陰極管8で消費される電力をPout とし、電圧共振型
ロイヤー回路の損失電力をPlossとすると、これらの関
係は(数式2)で表されるが、電圧共振型ロイヤー回路
の損失電力Plossは冷陰極管8で消費される電力Pout
に比べて小さいので(数式3)これを無視して考える
と、低圧定電流源9より出力される電力Pinが冷陰極管
8で消費される電力Pout に等しいことになる(数式
4)。
## EQU00001 ## Vout = Kv.times.Vin Next, the power output from the low voltage constant current source 9 is Pin,
When the power consumed by the cold cathode fluorescent lamp 8 is Pout and the loss power of the voltage resonance type Royer circuit is Ploss, the relationship between them is expressed by (Equation 2), and the loss power Ploss of the voltage resonance type Royer circuit is Power Pout consumed by the cold cathode tube 8
Since it is smaller than (Equation 3), the power Pin output from the low-voltage constant current source 9 is equal to the power Pout consumed by the cold cathode tube 8 (Equation 4).

【0023】[0023]

【数式2】Pin=Pout +Ploss[Formula 2] Pin = Pout + Ploss

【0024】[0024]

【数式3】Pout >>Ploss[Formula 3] Pout >> Ploss

【0025】[0025]

【数式4】Pin=Pout また、低圧定電流源9より出力される電力Pinは、低圧
定電流源9より出力される電圧Vinと低圧定電流源9よ
り出力される電流Iinの積で表される(数式5)。
[Equation 4] Pin = Pout The electric power Pin output from the low voltage constant current source 9 is represented by the product of the voltage Vin output from the low voltage constant current source 9 and the current Iin output from the low voltage constant current source 9. (Equation 5).

【0026】[0026]

【数式5】Pin=Vin×Iin そして、冷陰極管8で消費される電力Pout は、冷陰極
管電流をIout とし、冷陰極管電圧をVout とすると、
これらの電圧、電流の間には位相差がなく、歪みもない
ので電流Iout と、電圧Vout の積で表される(数式
6)。
## EQU00005 ## Pin = Vin.times.Iin Then, the power Pout consumed by the cold cathode fluorescent lamp 8 is expressed as follows: cold cathode fluorescent lamp current Iout and cold cathode fluorescent lamp voltage Vout.
Since there is no phase difference between these voltages and currents and there is no distortion, they are expressed by the product of the current Iout and the voltage Vout (Equation 6).

【0027】[0027]

【数式6】Pout =Iout ×Vout したがって、冷陰極管電流Iout は、低圧定電流源9よ
り出力される電力Pout を冷陰極管電圧Vout で除した
値となる(数式7)。
## EQU6 ## Therefore, the cold cathode fluorescent lamp current Iout becomes a value obtained by dividing the electric power Pout output from the low-voltage constant current source 9 by the cold cathode fluorescent lamp voltage Vout (Mathematical Expression 7).

【0028】[0028]

【数式7】Iout =Pout ÷Vout 更に、(数式7)は(数式4)より(数式8)と表せ
る。
## EQU00007 ## Iout = Pout.div.Vout Furthermore, (Equation 7) can be expressed as (Equation 8) from (Equation 4).

【0029】[0029]

【数式8】Iout =Pin÷Vout 更に、(数式8)は(数式5)より(数式9)と表せ
る。
[Expression 8] Iout = Pin ÷ Vout Further, (Expression 8) can be expressed as (Expression 9) from (Expression 5).

【0030】[0030]

【数式9】Iout =Vin×Iin÷Vout 更に、(数式9)は(数式1)より(数式10)と表せ
る。
[Formula 9] Iout = Vin × Iin ÷ Vout Furthermore, (Formula 9) can be expressed as (Formula 10) from (Formula 1).

【0031】[0031]

【数式10】Iout =kv ×Iin つまり、冷陰極管電流Iout は低圧定電流源9より出力
される電流Iinに比例することになる。
## EQU10 ## Iout = kv * Iin That is, the cold cathode tube current Iout is proportional to the current Iin output from the low-voltage constant current source 9.

【0032】ここで、必要な条件はインバータトランス
1の出力の電力が、電圧と電流の積で表されることなの
で、負荷に抵抗分以外の成分が冷陰極管8と直列に接続
されてはいけない。つまり、バラストとしてコンデンサ
を接続すると、電圧共振型ロイヤー回路の入力電流と出
力電流の比例関係が崩れ動作が安定しなくなるのであ
る。
Here, the necessary condition is that the power output from the inverter transformer 1 is represented by the product of voltage and current. Therefore, components other than the resistance component should not be connected to the load in series with the cold cathode tubes 8. should not. That is, when a capacitor is connected as a ballast, the proportional relationship between the input current and the output current of the voltage resonance type Royer circuit is broken and the operation becomes unstable.

【0033】図2に図1のインバータトランス1の出力
の負荷曲線と、冷陰極管8の電圧電流特性を示す。ここ
で、負荷曲線の電流値は低圧定電流源9の出力電流に比
例しているので、冷陰極管8の電流の設定を非常に簡単
に行うことができる。つまり、電圧共振型ロイヤー回路
は入力電流に比例した出力電流が流れる、一種の変流器
として機能する。したがって、本実施例による冷陰極管
点灯装置は、この図のように負荷曲線が電流一定の直線
となり、冷陰極管8の電圧変動に対して、冷陰極管電流
の一定性の点で優れた効果が得られる。
FIG. 2 shows the output load curve of the inverter transformer 1 of FIG. 1 and the voltage-current characteristics of the cold cathode fluorescent lamp 8. Here, since the current value of the load curve is proportional to the output current of the low voltage constant current source 9, the current of the cold cathode tube 8 can be set very easily. That is, the voltage resonance type Royer circuit functions as a kind of current transformer in which the output current proportional to the input current flows. Therefore, the cold-cathode tube lighting device according to the present embodiment has a load curve that is a straight line with a constant current as shown in the figure, and is excellent in the stability of the cold-cathode tube current with respect to the voltage fluctuation of the cold-cathode tube 8. The effect is obtained.

【0034】また、インバータトランス1の出力電圧
は、冷陰極管8の低温時の微小電流域での電圧以上が出
力できればよく、バラストのためのコンデンサの電圧降
下がなく冷陰極管電圧と等しくてよい。図中の負荷曲線
の点線で示されている部分はインバータトランスの絶縁
耐圧や、コア飽和の問題で実際には出力できなくともよ
いのである。したがって、出力電圧の低いインバータト
ランスを使用できるのでこれを小型化することができ
る。
Further, the output voltage of the inverter transformer 1 should be equal to or higher than the voltage of the cold cathode tube 8 in the minute current region when the temperature is low, and there is no voltage drop of the capacitor due to ballast and equal to the cold cathode tube voltage. Good. The part indicated by the dotted line of the load curve in the figure may not actually be output due to the dielectric strength of the inverter transformer or the problem of core saturation. Therefore, an inverter transformer having a low output voltage can be used, which can be downsized.

【0035】なお、本発明の実施例において電圧共振型
ロイヤー回路はこの回路構成に限らなくともよい。例え
ばトランジスタ2、3は、FETとしてもよい。また、
抵抗4、5は低圧定電流源9のプラス側に接続している
が、インバータトランス1のBピンに接続してもよく、
スイッチ素子にバイアスを与えられれば別電源でもよ
い。
In the embodiments of the present invention, the voltage resonance type Royer circuit is not limited to this circuit configuration. For example, the transistors 2 and 3 may be FETs. Also,
Although the resistors 4 and 5 are connected to the positive side of the low voltage constant current source 9, they may be connected to the B pin of the inverter transformer 1.
A separate power supply may be used as long as the switch element can be biased.

【0036】また、低圧定電流源9は単独で定電流源と
して動作しなくても、電圧共振型のロイヤー回路を接続
したときに定電流源として動作すればよい。また、低圧
定電流源9の出力電流は高周波的に見て定電流でなくて
も直流的に見て定電流であればよい。
The low-voltage constant current source 9 does not have to operate as a constant current source alone, but may operate as a constant current source when a voltage resonance type Royer circuit is connected. Further, the output current of the low-voltage constant current source 9 need not be a constant current in terms of high frequency, but may be a constant current in terms of direct current.

【0037】[0037]

【発明の効果】以上のように本発明は、低圧の定電流源
と、前記定電流源から電力の供給を受け変流器として機
能する電圧共振型ロイヤー回路と、二次側には冷陰極管
を有し、冷陰極管と直列に容量性の部品を有さないこと
により、冷陰極管の電圧が変化しても冷陰極管電流を一
定とすることができると共に、冷陰極管電流の設定が簡
単で低温時に冷陰極管の輝度の低下を抑えることがで
き、インバータトランスの出力電力が低くて済む優れた
冷陰極管点灯装置を実現できるものである。
As described above, according to the present invention, a low-voltage constant current source, a voltage resonance type Royer circuit which functions as a current transformer when supplied with electric power from the constant current source, and a cold cathode on the secondary side. By having a tube and not having a capacitive component in series with the cold cathode tube, the cold cathode tube current can be made constant even if the voltage of the cold cathode tube changes, and the cold cathode tube current It is possible to realize an excellent cold-cathode tube lighting device that can be easily set, can suppress the decrease in the brightness of the cold-cathode tube at low temperatures, and can reduce the output power of the inverter transformer.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例における冷陰極管点灯装置の構
成図
FIG. 1 is a configuration diagram of a cold cathode tube lighting device according to an embodiment of the present invention.

【図2】本発明の実施例における動作点の説明図FIG. 2 is an explanatory diagram of operating points in the embodiment of the present invention.

【図3】従来の冷陰極管点灯装置の構成図FIG. 3 is a configuration diagram of a conventional cold cathode tube lighting device.

【図4】従来の実施例における動作点の説明図FIG. 4 is an explanatory diagram of operating points in a conventional example.

【符号の説明】[Explanation of symbols]

1 インバータトランス 2 トランジスタ 3 トランジスタ 4 抵抗 5 抵抗 6 コンデンサ 7 チョークコイル 8 冷陰極管 9 低圧定電流源 1 Inverter transformer 2 Transistor 3 Transistor 4 Resistor 5 Resistor 6 Capacitor 7 Choke coil 8 Cold cathode tube 9 Low voltage constant current source

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 低圧の定電流源と、前記定電流源から電
力の供給を受け変流器として機能する電圧共振型ロイヤ
ー回路と、二次側に冷陰極管を備え、前記電圧共振型ロ
イヤー回路を変流器として機能させるため、二次側には
冷陰極管と直列に容量性の部品を有さないことを特徴と
する冷陰極管点灯装置。
1. A low-voltage constant current source, a voltage resonance type Royer circuit which receives power from the constant current source and functions as a current transformer, and a cold cathode tube on a secondary side, the voltage resonance type Royer. A cold-cathode tube lighting device characterized by having no capacitive parts in series with the cold-cathode tube on the secondary side so that the circuit functions as a current transformer.
JP25087591A 1991-09-30 1991-09-30 Cold cathode tube lighting device Expired - Fee Related JP3256992B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25087591A JP3256992B2 (en) 1991-09-30 1991-09-30 Cold cathode tube lighting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25087591A JP3256992B2 (en) 1991-09-30 1991-09-30 Cold cathode tube lighting device

Publications (2)

Publication Number Publication Date
JPH0589989A true JPH0589989A (en) 1993-04-09
JP3256992B2 JP3256992B2 (en) 2002-02-18

Family

ID=17214314

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25087591A Expired - Fee Related JP3256992B2 (en) 1991-09-30 1991-09-30 Cold cathode tube lighting device

Country Status (1)

Country Link
JP (1) JP3256992B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013026267A1 (en) * 2011-08-23 2013-02-28 广州金升阳科技有限公司 Self-excited push-pull converter
JP2017020618A (en) * 2015-07-14 2017-01-26 Kyb株式会社 Single cylinder type shock absorber

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4560679B2 (en) 2004-11-10 2010-10-13 ミネベア株式会社 Multi-lamp type discharge lamp lighting device
JP4560681B2 (en) 2004-12-24 2010-10-13 ミネベア株式会社 Multi-lamp type discharge lamp lighting device
JP4529132B2 (en) 2004-12-24 2010-08-25 ミネベア株式会社 Multi-lamp type discharge lamp lighting device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013026267A1 (en) * 2011-08-23 2013-02-28 广州金升阳科技有限公司 Self-excited push-pull converter
JP2017020618A (en) * 2015-07-14 2017-01-26 Kyb株式会社 Single cylinder type shock absorber

Also Published As

Publication number Publication date
JP3256992B2 (en) 2002-02-18

Similar Documents

Publication Publication Date Title
EP1814367B1 (en) Backlight inverter and its driving method
JP3533405B2 (en) Higher frequency cold cathode fluorescent lamp power supply
US6534934B1 (en) Multi-lamp driving system
US5019749A (en) Back-light device for a video display apparatus
KR20060053986A (en) Discharge lamp lighting apparatus for lighting multiple discharge lamps
JP2005235616A (en) Discharge lamp lighting device
US20090154202A1 (en) Backlight inverter and method of driving same
JPH06267674A (en) Cold cathode tube lighting device
JP3256992B2 (en) Cold cathode tube lighting device
JP4125120B2 (en) LCD device and inverter circuit for LCD backlight
JP4214276B2 (en) Discharge lamp lighting device
US6788005B2 (en) Inverter and lamp ignition system using the same
JP2002025786A (en) Discharge lamp lighting device
JP3369468B2 (en) Inverter circuit
JPH0614556A (en) Resonance inverter circuit and luminance regulating circuit for back-up lamp employing inverter circuit
KR900002177Y1 (en) Circuit arrangements for discharge lamps
JP2550174Y2 (en) Discharge lamp lighting device
JP3084310U (en) Transformer circuit of backlight for liquid crystal display
JPH0822894A (en) Discharge lamp lighting device
Lin et al. Three-phase electronic ballast with current-equalization function
JPH0594890A (en) Lighting device
KR20040058071A (en) Dielectric barrier discharge lamp lighting apparatus
JP2937628B2 (en) Lighting device for cold cathode tubes
JPH11265221A (en) Voltage stabilizing device
JPH0343992A (en) Discharge lamp lighting device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071207

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081207

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081207

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091207

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees