JPH0589810A - Rotary cathode x-ray tube - Google Patents

Rotary cathode x-ray tube

Info

Publication number
JPH0589810A
JPH0589810A JP27653791A JP27653791A JPH0589810A JP H0589810 A JPH0589810 A JP H0589810A JP 27653791 A JP27653791 A JP 27653791A JP 27653791 A JP27653791 A JP 27653791A JP H0589810 A JPH0589810 A JP H0589810A
Authority
JP
Japan
Prior art keywords
focusing electrode
rotating cathode
center
cathode
attached
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27653791A
Other languages
Japanese (ja)
Inventor
Tetsuhiko Ikejima
徹彦 池島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP27653791A priority Critical patent/JPH0589810A/en
Publication of JPH0589810A publication Critical patent/JPH0589810A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent a rotary cathode from deforming in a place, where a convergence electrode is installed, and eliminate displacement of the X-ray focal point resulting from thermal expansion of the rotary cathode. CONSTITUTION:A convergence electrode 3 is installed with possibility of displacement in the radial direction of a rotary cathode 1, and a supporting plate 4 having a high coefficient of thermal expansion is interposed between the convergence electrode 3 and rotary cathode 1. In association with thermal expansion of the rotary cathode 1, the supporting plate 4 makes thermal expansion to push the convergence electrode 3 toward the center of rotation, which cancels the displacement of the convergence electrode 3 resulting from the thermal expansion of the rotary cathode 1. The product of the center-of-gravity distance and the weight of a cut-off piece of a notch 2 where the convergence electrode 3 is to be installed shall be on the design basis approx. identical with the product of the center of-gravity distance and the weight of the supporting plate 4 and convergence electrode 3, and thereby the centrifugal forces acting on them are made equal to eliminate deformation of the rotary cathode 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、被検体の断層撮影を
行うX線CT装置に利用されるもので、特には、X線発
生用の電子線放出部を取り付けた陰極を回転させて被検
体の全周方向からX線を曝射する回転陰極X線管に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is used in an X-ray CT apparatus for making a tomographic image of an object, and in particular, by rotating a cathode equipped with an electron beam emitting section for X-ray generation. The present invention relates to a rotating cathode X-ray tube that irradiates X-rays from the entire circumference of a specimen.

【0002】[0002]

【従来の技術】従来例に係る回転陰極X線管の一部断面
を図4に示して以下に説明する。リング状に形成された
真空容器40の内部に、リング状のターゲット41と回転陰
極42とが対向配置されている。ターゲット41は真空容器
40の内周壁面に設置固定され、回転陰極42は真空容器40
の外周壁面に取り付けられた電磁マグネット43により磁
気浮上した状態で支持されている。浮上した回転陰極42
と、真空容器40の内壁面とのギャップを感知するギャッ
プセンサ46があり、ギャップセンサ46の検出信号に基づ
いて、前記ギャップが一定となるように、電磁マグネッ
ト43への供給電力は図示しない制御器で制御されてい
る。
2. Description of the Related Art A partial cross section of a conventional rotary cathode X-ray tube is shown in FIG. 4 and will be described below. A ring-shaped target 41 and a rotating cathode 42 are arranged opposite to each other inside a vacuum container 40 formed in a ring shape. Target 41 is a vacuum vessel
Installed and fixed on the inner wall surface of 40, the rotating cathode 42 is
It is supported in a magnetically levitated state by an electromagnetic magnet 43 attached to the outer peripheral wall surface of the. Levitated rotating cathode 42
There is a gap sensor 46 that senses a gap with the inner wall surface of the vacuum container 40. Based on a detection signal of the gap sensor 46, the power supplied to the electromagnetic magnet 43 is controlled so that the gap becomes constant. It is controlled by a vessel.

【0003】ターゲット41と対向する回転陰極42の面上
には、ターゲット41に向けてX線発生用の熱電子を放出
するフィラメント44が設けられ、回転陰極42をステータ
45で回転駆動することで、熱電子をターゲット41の全周
にわたって照射し、真空容器40の空洞内に搬入された被
検体に全周方向からX線を曝射するようになっている。
On the surface of the rotating cathode 42 facing the target 41, a filament 44 for emitting thermoelectrons for generating X-rays is provided toward the target 41, and the rotating cathode 42 is fixed to the stator.
The thermoelectrons are radiated over the entire circumference of the target 41 by being rotationally driven by 45, and X-rays are radiated from the entire circumference direction to the subject carried into the cavity of the vacuum container 40.

【0004】ターゲット41上における熱電子の衝突点
(X線発生点でX線焦点という)が微小であるほど断層
像の画質がよく、そのため、フィラメント44は、熱電子
をターゲット41に向けて集束させる集束電極47に取り付
けられている。集束電極47は、例えばフランジ部を有す
る円筒形で、回転陰極42の所要箇所に形成された空孔を
貫いて、ターゲット41との対向面上に突出し、前記フラ
ンジ部で回転陰極42にネジ止め固定されている。
The finer the collision point of the thermoelectrons on the target 41 (the X-ray focal point at the X-ray generation point), the better the image quality of the tomographic image. Therefore, the filament 44 focuses the thermoelectrons toward the target 41. It is attached to the focusing electrode 47. The focusing electrode 47 has, for example, a cylindrical shape having a flange portion, penetrates a hole formed in a required portion of the rotating cathode 42, and projects onto a surface facing the target 41, and is screwed to the rotating cathode 42 at the flange portion. It is fixed.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、回転陰
極42は軽量化のため、上記の電磁マグネット43が作用す
る部分以外をアルミで形成されているのに対して、集束
電極47はニッケルやステンレス鋼などのアルミよりも比
重の大きい金属で形成されており、集束電極47が取り付
けられた箇所において回転陰極42の重量が一様でなくな
っている。このため、断層撮影中の高速回転時に回転陰
極42に作用する遠心力が、集束電極47が取り付けられた
箇所と、そうでない箇所で相違し、回転陰極42が変形す
ることがある。
However, in order to reduce the weight of the rotating cathode 42, the portion other than the portion where the electromagnetic magnet 43 acts is formed of aluminum, whereas the focusing electrode 47 is formed of nickel or stainless steel. It is made of a metal having a larger specific gravity than aluminum, and the weight of the rotating cathode 42 is not uniform at the location where the focusing electrode 47 is attached. Therefore, the centrifugal force acting on the rotating cathode 42 at the time of high-speed rotation during tomography may be different between the place where the focusing electrode 47 is attached and the place where the focusing electrode 47 is not attached, and the rotating cathode 42 may be deformed.

【0006】一般に質点Aにおける遠心力Fは、質点A
の質量をmとし、質点Aまでの回転半径をRa、質点A
での角速度をωとすると、次の(1) 式で表される。 F=m×Ra×ω2 ・・・・・・・・・・(1) したがって、質量が大きい箇所(集束電極47が取り付け
られている箇所)において遠心力は大きく作用し、これ
に比べて質量が小さい箇所(焦束電極47が取り付けられ
ていない箇所)に作用する遠心力は小さくなる。このこ
とから、回転陰極42は、図5の仮想線で示すような形状
に変形する。集束電極47の取り付け箇所において、回転
径の方向に沿って膨張するような恰好となる。
Generally, the centrifugal force F at the mass point A is
Is m, the radius of gyration to the mass A is Ra, and the mass A is
When the angular velocity at is ω, it is expressed by the following equation (1). F = m × Ra × ω 2 (1) Therefore, the centrifugal force acts largely at a place with a large mass (where the focusing electrode 47 is attached), and compared with this. The centrifugal force that acts on a place with a small mass (a place where the focusing electrode 47 is not attached) is small. From this, the rotating cathode 42 is deformed into the shape shown by the phantom line in FIG. At the position where the focusing electrode 47 is attached, it is suitable to expand along the direction of the rotation diameter.

【0007】回転陰極42が所々で膨張するように変形す
ると、回転陰極42と真空容器40の内壁面とのギャップを
感知するギャップセンサ46がこれを検出して、図外の制
御器に出力する。制御器は前記ギャップが一定となるよ
うに、電磁マグネット43への供給電力を制御するから、
変形箇所がギャップセンサ46を通過するたびに、電磁マ
グネット43への供給電力は可変し、回転陰極42の磁気浮
上状態が不安定になるという問題点がある。
When the rotating cathode 42 is deformed so as to expand in places, a gap sensor 46 for detecting the gap between the rotating cathode 42 and the inner wall surface of the vacuum container 40 detects this and outputs it to a controller (not shown). .. Since the controller controls the power supplied to the electromagnetic magnet 43 so that the gap becomes constant,
Each time the deformed portion passes through the gap sensor 46, the power supplied to the electromagnetic magnet 43 is changed, and the magnetically levitated state of the rotating cathode 42 becomes unstable.

【0008】また、回転中に回転陰極42が変形すると、
集束電極47に取り付けられたフィラメント44の位置が変
位して、ターゲット41に形成されるX線焦点の位置が変
位する。X線焦点の変位に伴い、被検体に向かうX線の
照射角度や、X線焦点から被検体までの距離が変化し
て、断層像の画質を著しく損なうという問題点がある。
When the rotating cathode 42 is deformed during rotation,
The position of the filament 44 attached to the focusing electrode 47 is displaced, and the position of the X-ray focus formed on the target 41 is displaced. Along with the displacement of the X-ray focal point, there is a problem that the irradiation angle of the X-ray toward the subject and the distance from the X-ray focal point to the subject change, which significantly impairs the image quality of the tomographic image.

【0009】以上は、集束電極47の取り付け箇所におけ
る回転陰極42の変形に伴う問題点であるが、回転陰極42
の熱膨張によっても同様な問題点が生じる。回転陰極42
の熱膨張は、(a) 加熱されるフィラメント44からの熱伝
導、(b) 熱電子の衝突によって温度上昇したターゲット
41からの輻射熱、(c) フィラメントへの給電を行うため
回転陰極42に接触している給電ブラシとの摩擦熱、(d)
ステータ45の誘導熱、などに起因しており、熱膨張によ
って、フィラメント44の位置(X線焦点の位置)が変位
し、上記と同様の問題点を招いている。
The above are the problems associated with the deformation of the rotary cathode 42 at the location where the focusing electrode 47 is attached.
The same problem occurs due to the thermal expansion of. Rotating cathode 42
The thermal expansion of the target is (a) the heat conduction from the heated filament 44, and (b) the target whose temperature is raised by the collision of thermoelectrons.
Radiant heat from 41, (c) Frictional heat with the power supply brush in contact with the rotating cathode 42 to supply power to the filament, (d)
This is caused by the induction heat of the stator 45, etc., and the position of the filament 44 (the position of the X-ray focus) is displaced by thermal expansion, causing the same problem as described above.

【0010】この発明は、このような事情に鑑みてなさ
れたものであって、集束電極の取り付け箇所における回
転陰極の変形を解消すること、および回転陰極の熱膨張
によるX線焦点の変位を解消することができる回転陰極
X線管を提供することを目的としている。
The present invention has been made in view of the above circumstances, and eliminates the deformation of the rotating cathode at the location where the focusing electrode is attached and the displacement of the X-ray focal point due to the thermal expansion of the rotating cathode. It is an object of the present invention to provide a rotating cathode X-ray tube which can be manufactured.

【0011】[0011]

【課題を解決するための手段】この発明は、上記目的を
達成するために次のような構成をとる。すなわち、請求
項1に記載の発明は、リング状の真空容器内の陽極側に
設置固定されたリング状のターゲットと、ターゲットに
向けてX線発生用の電子線を放出する電子放出部を取り
付けたリング状の回転陰極と、この回転陰極に取り付け
られて前記電子放出部からの電子線をターゲットに向け
て集束させる集束電極とを備えた回転陰極X線管におい
て、前記回転陰極の一部分を前記集束電極を取り付ける
ために切り取り、この切り取り片の重量と切り取り片の
重心から回転陰極の回転中心点までの距離との積と、前
記集束電極の重量と集束電極の重心から回転陰極の回転
中心点までの距離との積とが、ほぼ一致するように構成
してあることを特徴とする。
In order to achieve the above object, the present invention has the following constitution. That is, the invention according to claim 1 is provided with a ring-shaped target installed and fixed on the anode side in a ring-shaped vacuum container, and an electron emission unit for emitting an electron beam for X-ray generation toward the target. A rotating cathode X-ray tube having a ring-shaped rotating cathode and a focusing electrode attached to the rotating cathode to focus an electron beam from the electron emitting portion toward a target. Cut to attach the focusing electrode, the product of the weight of this cutting piece and the distance from the center of gravity of the cutting piece to the center of rotation of the rotating cathode, and the weight of the focusing electrode and the center of rotation of the rotating cathode from the center of gravity of the focusing electrode. It is characterized in that it is configured so that the product of the distance to and the distance to becomes almost the same.

【0012】また、請求項2に記載の発明は、リング状
の真空容器内の陽極側に設置固定されたリング状のター
ゲットと、ターゲットに向けてX線発生用の電子線を放
出する電子放出部を取り付けたリング状の回転陰極と、
この回転陰極に取り付けられて前記電子放出部からの電
子線をターゲットに向けて集束させる集束電極とを備え
た回転陰極X線管において、前記集束電極を回転陰極の
半径方向に変位自在に取り付け、この集束電極と回転陰
極との間に、熱膨張により回転陰極の中心に向かって変
位する部材を介在させてあることを特徴とする。
According to a second aspect of the present invention, a ring-shaped target fixed and set on the anode side in a ring-shaped vacuum container, and an electron emission for emitting an electron beam for X-ray generation toward the target. A ring-shaped rotating cathode with a part attached,
In a rotating cathode X-ray tube equipped with a focusing electrode that is attached to this rotating cathode and focuses an electron beam from the electron emitting portion toward a target, the focusing electrode is attached so as to be displaceable in the radial direction of the rotating cathode, A member that is displaced toward the center of the rotating cathode due to thermal expansion is interposed between the focusing electrode and the rotating cathode.

【0013】[0013]

【作用】請求項1に記載した発明の作用は次のとおりで
ある。切り取り片の重量をm、切り取り片の重心から回
転陰極の回転中心点までの距離をLとし、集束電極の重
量をm’、集束電極の重心から回転陰極の回転中心まで
の距離をL’とすれば、m・L≒m’・L’となるよう
に構成される。切り取り片の重心位置に作用する遠心力
をFとすると、F=m・L・ω2 (ωは切り取り片の重
心位置における角速度)となり、また、集束電極の重心
位置に作用する遠心力をF’とすると、F’=m’・
L’・ω'2(ω’は集束電極の重心位置における角速
度)となる。ここで、切り取り片の重心と、集束電極の
重心は共に回転陰極上の点であるから、ω2 =ω'2
ある。そして、上記のように、m・L≒m’・L’とな
るように構成されているから、切り取り片の重心位置に
作用する遠心力Fと、集束電極の重心位置に作用する遠
心力F’とは略等しくなる。すなわち、回転陰極におい
て、集束電極が取り付けられた箇所の遠心力と、集束電
極が取り付けられていない箇所(集束電極を取り付ける
ために切り取られた部分に前記の切り取り片を取り付け
てなる箇所)の遠心力とが略一致するため、遠心力の相
違による回転陰極の変形が抑えられる。
The operation of the invention described in claim 1 is as follows. The weight of the cut piece is m, the distance from the center of gravity of the cut piece to the center of rotation of the rotating cathode is L, the weight of the focusing electrode is m ′, and the distance from the center of gravity of the focusing electrode to the center of rotation of the rotating cathode is L ′. If so, m · L≈m ′ · L ′. Letting F be the centrifugal force acting on the position of the center of gravity of the cut piece, F = m · L · ω 2 (ω is the angular velocity at the position of the center of gravity of the cut piece), and F is the centrifugal force acting on the position of the center of gravity of the focusing electrode. Then, F '= m'
L ′ · ω ′ 2 (ω ′ is the angular velocity at the center of gravity of the focusing electrode). Here, since both the center of gravity of the cut piece and the center of gravity of the focusing electrode are points on the rotating cathode, ω 2 = ω '2 . Further, as described above, since the configuration is such that m · L≈m ′ · L ′, the centrifugal force F that acts on the position of the center of gravity of the cut piece and the centrifugal force F that acts on the position of the center of gravity of the focusing electrode. 'Is almost equal to. That is, in the rotating cathode, the centrifugal force at the place where the focusing electrode is attached and the centrifugal force at the place where the focusing electrode is not attached (the place where the above-mentioned cut-out piece is attached to the part cut off to attach the focusing electrode) Since the forces substantially match, the deformation of the rotating cathode due to the difference in centrifugal force can be suppressed.

【0014】請求項2に記載した発明の作用は次のとお
りである。前述したような原因で、回転陰極が昇温され
て熱膨張すると、この回転陰極と集束電極との間に介在
される部材の温度も上がって熱膨張する。部材の熱膨張
により、集束電極は回転陰極の回転中心に向かって変位
する。すなわち、回転陰極の熱膨張の方向とは逆の方向
に変位するので、回転陰極の熱膨張による集束電極の変
位分が相殺されて、集束電極の位置はほぼ不変となる。
The operation of the invention described in claim 2 is as follows. When the rotary cathode is heated and thermally expanded due to the reasons described above, the temperature of the member interposed between the rotary cathode and the focusing electrode also rises and thermally expands. Due to the thermal expansion of the member, the focusing electrode is displaced toward the center of rotation of the rotating cathode. That is, since the rotating cathode is displaced in the direction opposite to the thermal expansion direction, the displacement of the focusing electrode due to the thermal expansion of the rotating cathode is offset, and the position of the focusing electrode remains substantially unchanged.

【0015】[0015]

【実施例】以下、この発明の一実施例を図面に基づいて
説明する。図1に、集束電極が取り付けられている回転
陰極の一部正面図を示す。回転陰極1の内周側に開口部
をもつ切り欠き部2に、底面がフランジ状の集束電極3
が取り付けられている。集束電極3と、切り欠き部2の
外周側の壁面との間には、例えばチタンなどの回転陰極
1よりも高い熱膨張係数をもつ材質で形成された支持板
4が介入されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 shows a partial front view of a rotating cathode to which a focusing electrode is attached. A focusing electrode 3 having a flange-shaped bottom surface in a notch 2 having an opening on the inner peripheral side of the rotating cathode 1.
Is attached. A support plate 4 made of a material having a higher thermal expansion coefficient than that of the rotating cathode 1 such as titanium is interposed between the focusing electrode 3 and the outer peripheral wall surface of the cutout 2.

【0016】集束電極3の底面のフランジ状部の両端部
には、回転陰極1の径方向に沿った長穴6,7が形成さ
れている。これらの長穴6,7を貫通するピン8,9に
より、集束電極3は回転陰極1の回転中心に向かって変
位自在に取り付けられている。なお、符号10はバネ板
で、回転陰極1の回転が停止したときに集束電極3が下
降するのを防ぐ部材である。
Elongated holes 6 and 7 are formed along the radial direction of the rotary cathode 1 at both ends of the flange-like portion on the bottom surface of the focusing electrode 3. The focusing electrode 3 is movably attached toward the center of rotation of the rotating cathode 1 by pins 8 and 9 penetrating these elongated holes 6 and 7. Reference numeral 10 is a spring plate, which is a member that prevents the focusing electrode 3 from moving down when the rotation of the rotating cathode 1 is stopped.

【0017】集束電極3の位置決めは、回転陰極1の高
速回転中に集束電極3に作用する遠心力により行われ
る。すなわち、遠心力によって集束電極3は支持板4を
介して切り欠き部2の外周壁面に押しつけられ、そこで
位置固定される。高熱膨張金属としての支持板4を回転
陰極1と集束電極3との間に介在させているのは、回転
陰極1の熱膨張による集束電極3の変位(集束電極3に
取り付けられているフィラメント5の変位)を解消する
ためである。
The focusing electrode 3 is positioned by the centrifugal force acting on the focusing electrode 3 during the high speed rotation of the rotating cathode 1. That is, the focusing electrode 3 is pressed against the outer peripheral wall surface of the cutout portion 2 via the support plate 4 by the centrifugal force, and the position is fixed there. The support plate 4 as a high thermal expansion metal is interposed between the rotating cathode 1 and the focusing electrode 3 because the focusing electrode 3 is displaced by the thermal expansion of the rotating cathode 1 (the filament 5 attached to the focusing electrode 3). This is to eliminate the displacement).

【0018】前述したような原因で、回転陰極1の温度
が上昇すると、回転陰極1はその径方向の外側に向かっ
て熱膨張する。大体、摂氏50度ないし70度の温度上昇に
より、回転陰極1の径は約1mm程度膨張する。このとき
の回転陰極1の熱は支持板4に伝達され、同様に支持板
4も温度上昇するが、支持板4は熱源となるフィラメン
ト5を取り付けた集束電極3に直に接触しているので、
回転陰極1よりも高い温度(大体、摂氏 200度位) まで
上昇する。
When the temperature of the rotary cathode 1 rises due to the reasons described above, the rotary cathode 1 thermally expands outward in the radial direction. The diameter of the rotating cathode 1 expands by about 1 mm due to a temperature rise of about 50 to 70 degrees Celsius. The heat of the rotating cathode 1 at this time is transferred to the support plate 4, and the temperature of the support plate 4 also rises similarly. However, since the support plate 4 is in direct contact with the focusing electrode 3 having the filament 5 serving as a heat source attached thereto. ,
It rises to a temperature higher than that of the rotating cathode 1 (about 200 degrees Celsius).

【0019】支持板4の外周側(図面の上側)の面は回
転陰極1に接触し、同様に、支持板4の側面側(図面の
左右側)の面も回転陰極1に接触している。このため、
温度上昇した支持板4は回転陰極1の内周側(図面の下
側で集束電極3側)に向かって熱膨張する。集束電極3
は回転陰極1の径方向に沿って変位自在に取り付けられ
ているから、支持板4の熱膨張によって回転陰極1の内
周側に押し進められる。すなわち、回転陰極1の熱膨張
の方向とは逆の方向に変位する。この集束電極3の変位
量と、回転陰極1の熱膨張による変位量とが等しくなる
ように、支持板4の熱膨張係数を選択すれば、回転陰極
1が熱膨張しても、集束電極3の位置、すなわち、フィ
ラメント5の位置はほぼ不変となる。
The outer peripheral surface (upper side of the drawing) of the support plate 4 is in contact with the rotary cathode 1, and similarly, the side surface side (left and right side of the drawing) of the support plate 4 is also in contact with the rotary cathode 1. .. For this reason,
The support plate 4 whose temperature has risen thermally expands toward the inner peripheral side of the rotating cathode 1 (the focusing electrode 3 side in the lower side of the drawing). Focusing electrode 3
Is attached so as to be displaceable along the radial direction of the rotating cathode 1, so that it is pushed toward the inner peripheral side of the rotating cathode 1 by thermal expansion of the support plate 4. That is, the rotating cathode 1 is displaced in the direction opposite to the thermal expansion direction. If the thermal expansion coefficient of the support plate 4 is selected so that the displacement amount of the focusing electrode 3 and the displacement amount of the rotating cathode 1 due to the thermal expansion are equal, even if the rotating cathode 1 thermally expands, the focusing electrode 3 , That is, the position of the filament 5 is almost unchanged.

【0020】支持板4は回転陰極1よりも半径方向の長
さが小さいため、回転陰極1と同じ熱膨張係数の材料で
形成した場合、熱膨張による変位量は回転陰極1のそれ
よりも小さくなってしまう。そこで、支持板4を、回転
陰極1よりも高い熱膨張係数の材料で形成するのが好ま
しい。上記の例のように、回転陰極1が摂氏50度ないし
70度まで昇温したときに約1mm程度熱膨張するのであれ
ば、支持板4は摂氏 200度まで昇温したときに約1mm程
度変位するように、その熱膨張係数を選定すればよい。
Since the supporting plate 4 has a smaller radial length than the rotating cathode 1, when it is made of a material having the same coefficient of thermal expansion as the rotating cathode 1, the displacement amount due to thermal expansion is smaller than that of the rotating cathode 1. turn into. Therefore, it is preferable that the support plate 4 is formed of a material having a higher thermal expansion coefficient than that of the rotating cathode 1. As in the above example, the rotating cathode 1 is 50 degrees Celsius or
If the thermal expansion is about 1 mm when the temperature is raised to 70 degrees, the coefficient of thermal expansion may be selected so that the support plate 4 is displaced by about 1 mm when the temperature is raised to 200 degrees Celsius.

【0021】次に、集束電極3を取り付けた箇所と、そ
うでない箇所との遠心力の相違による回転陰極1の変形
を解消するための構成について説明する。回転陰極1の
熱膨張によるフィラメント5の変位を同時に解消するた
め、外観的には図1に示したのと同じ構成にするのがよ
いが、この構成に限らず、種々の形態で実施できる。す
なわち、上記の課題を解消するには、集束電極3を取り
付けた箇所に作用する遠心力と、集束電極3を取り付け
ていない箇所に作用する遠心力とが等しくなるように、
集束電極3を設計するしかないからである。図2を参照
しながら説明する。
Next, the structure for eliminating the deformation of the rotating cathode 1 due to the difference in centrifugal force between the place where the focusing electrode 3 is attached and the place where it is not attached will be described. In order to eliminate the displacement of the filament 5 due to the thermal expansion of the rotating cathode 1 at the same time, it is preferable to have the same external appearance as that shown in FIG. 1, but the present invention is not limited to this configuration, and various forms are possible. That is, in order to solve the above problem, the centrifugal force acting on the portion where the focusing electrode 3 is attached is equal to the centrifugal force acting on the portion where the focusing electrode 3 is not attached.
This is because there is no choice but to design the focusing electrode 3. This will be described with reference to FIG.

【0022】集束電極3が取り付けられる箇所に対して
符号D’で示す領域を設定する。同じ領域を、集束電極
3が取り付けられていない箇所に対しても設定する。そ
の領域を符号Dで示す。まず、集束電極3が取り付けら
れていない領域Dに作用する遠心力Fを前述の(1) 式を
用いて計算する。すなわち、領域Dの回転陰極1の重量
をmとし、領域Dの重心Gから回転中心Oまでの距離を
L、重心Gにおける角速度をωとすると、遠心力Fは次
の(2) 式で計算される。 F=m・L・ω2 ・・・・・・・・・・・・・・(2)
An area indicated by reference numeral D'is set for the location where the focusing electrode 3 is attached. The same region is set for a portion where the focusing electrode 3 is not attached. The area is indicated by reference numeral D. First, the centrifugal force F acting on the region D where the focusing electrode 3 is not attached is calculated by using the above equation (1). That is, assuming that the weight of the rotating cathode 1 in the region D is m, the distance from the center of gravity G in the region D to the center of rotation O is L, and the angular velocity at the center of gravity G is ω, the centrifugal force F is calculated by the following equation (2). To be done. F = m · L · ω 2 ·············· (2)

【0023】一方、集束電極3が取り付けられている領
域D’の重量をm’とし、領域D’の重心G’から回転
中心Oまでの距離をL’、重心G’における角速度を
ω’とすると、領域D’に作用する遠心力F’は同様
に、次の(3)式で計算される。 F’=m’・L’・ω'2 ・・・・・・・・・・(3)
On the other hand, the weight of the area D'where the focusing electrode 3 is attached is m ', the distance from the center of gravity G'of the area D'to the center of rotation O is L', and the angular velocity at the center of gravity G'is ω '. Then, the centrifugal force F ′ acting on the area D ′ is similarly calculated by the following equation (3). F '= m' ・ L '・ ω ' 2・ ・ ・ ・ ・ ・ ・ ・ ・ ・ (3)

【0024】ここで、集束電極3が取り付けられていな
い領域Dの重心Gも、集束電極3が取り付けられた領域
D’の重心G’も、同じ1つの回転陰極1の上にあるか
ら、重心Gおよび重心G’における角速度は等しくなる
(ω2 =ω'2)。したがって、領域Dに作用する遠心力
Fと、領域D’に作用する遠心力F’が等しくなる条件
は、次の(4) 式で表される。 m・L=m’・L’・・・・・・・・・・・・・(4)
Here, the center of gravity G of the area D where the focusing electrode 3 is not attached and the center of gravity G ′ of the area D ′ where the focusing electrode 3 is attached are on the same one rotating cathode 1, so the center of gravity is The angular velocities at G and the center of gravity G'are equal (ω 2 = ω '2 ). Therefore, the condition that the centrifugal force F acting on the area D and the centrifugal force F ′ acting on the area D ′ are equal is expressed by the following equation (4). m ・ L = m '・ L' ... (4)

【0025】この(4) 式をほぼ満足するように、例え
ば、図1に示した集束電極3および支持板4の重量と、
重心位置(形状)とを適宜に設計して構成すればよい。
すなわち、図3に示すように、集束電極3および支持板
4が取り付けられる回転陰極1の切り欠き部2を形成す
るために切り取られた片11の重量と重心距離とを求める
(重心距離は回転陰極1の回転中心Oから片11の重心ま
での距離) 。
In order to substantially satisfy the equation (4), for example, the weights of the focusing electrode 3 and the support plate 4 shown in FIG.
The center of gravity position (shape) may be appropriately designed and configured.
That is, as shown in FIG. 3, the weight and the center-of-gravity distance of the piece 11 cut to form the cutout portion 2 of the rotating cathode 1 to which the focusing electrode 3 and the support plate 4 are attached are obtained (the center-of-gravity distance is Distance from the rotation center O of the cathode 1 to the center of gravity of the piece 11).

【0026】次に、任意に設計した支持板4の重量と集
束電極3の重量とを加算し、これに、支持板4と集束電
極3との重心距離を求めて乗算する。この値を出発点と
し、前記で求めた片11の重量と重心距離との積の値との
比較を行う。そして、両者の値がほぼ一致するように、
集束電極3および支持板4の重量と重心距離とを可変し
ていく。一致する見込みがなければ、切り欠き部2、す
なわち、片11の大きさを変えて上記の比較検証を繰り返
して解を求める。
Next, the weight of the arbitrarily designed supporting plate 4 and the weight of the focusing electrode 3 are added, and this is calculated and the center of gravity distance between the supporting plate 4 and the focusing electrode 3 is obtained and multiplied. Using this value as a starting point, the product of the weight of the piece 11 and the center-of-gravity distance obtained above is compared. And, so that both values are almost the same,
The weight of the focusing electrode 3 and the support plate 4 and the distance of the center of gravity are changed. If there is no possibility of coincidence, the size of the notch 2, that is, the piece 11, is changed, and the above-mentioned comparative verification is repeated to obtain a solution.

【0027】[0027]

【発明の効果】以上の説明から明らかなように、請求項
1に記載した発明に係る回転陰極X線管によれば、集束
電極を取り付けるために切り取られる、切り取り片の重
量と切り取り片の重心から回転陰極の回転中心点までの
距離との積と、前記集束電極の重量と集束電極の重心か
ら回転陰極の回転中心点までの距離との積とが、ほぼ一
致するように構成してあるから、集束電極を取り付けた
箇所に作用する遠心力と、そうでない箇所に作用する遠
心力とがほぼ一致し、遠心力の相違による回転陰極の変
形を抑えることができる。このため、回転陰極の磁気浮
上制御が安定し、また、回転陰極の変形に伴うフィラメ
ントの変位が抑えられて断層像の画質も安定する。ま
た、請求項2に記載した発明に係る回転陰極X線管によ
れば、集束電極を回転陰極の半径方向に変位自在に取り
付け、この集束電極と回転陰極との間に、熱膨張により
回転陰極の中心に向かって変位する部材を介在させてあ
るので、回転陰極が昇温されて熱膨張すると、部材の温
度も上昇して熱膨張し、集束電極を回転陰極の回転中心
に向かって押し進め、回転陰極の熱膨張による集束電極
の変位分を相殺する。したがって、集束電極の位置はほ
ぼ不変であり、フィラメントの位置も変わらず断層像の
画質を安定させることができる。
As is apparent from the above description, according to the rotating cathode X-ray tube according to the invention described in claim 1, the weight of the cut piece and the center of gravity of the cut piece cut for attaching the focusing electrode. To the center of rotation of the rotating cathode, and the product of the weight of the focusing electrode and the distance from the center of gravity of the focusing electrode to the center of rotation of the rotating cathode are configured to substantially match. Therefore, the centrifugal force acting on the portion where the focusing electrode is attached and the centrifugal force acting on the other portion are substantially the same, and the deformation of the rotating cathode due to the difference in centrifugal force can be suppressed. Therefore, the magnetic levitation control of the rotating cathode is stabilized, and the displacement of the filament due to the deformation of the rotating cathode is suppressed, and the image quality of the tomographic image is also stabilized. According to the rotating cathode X-ray tube of the invention described in claim 2, the focusing electrode is attached so as to be displaceable in the radial direction of the rotating cathode, and the rotating cathode is thermally expanded between the focusing electrode and the rotating cathode. Since a member displacing toward the center of the rotating cathode is heated and thermally expanded, the temperature of the member also rises and thermally expands, pushing the focusing electrode toward the rotating center of the rotating cathode, The displacement of the focusing electrode due to the thermal expansion of the rotating cathode is offset. Therefore, the position of the focusing electrode is almost unchanged, and the position of the filament is not changed, so that the image quality of the tomographic image can be stabilized.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施例において、集束電極が取り
付けられる回転陰極の一部分を示した正面図である。
FIG. 1 is a front view showing a part of a rotating cathode to which a focusing electrode is attached in an embodiment of the present invention.

【図2】集束電極が取り付ける箇所の遠心力と、取り付
けられない箇所の遠心力とを説明する回転陰極の一部正
面図である。
FIG. 2 is a partial front view of a rotating cathode illustrating a centrifugal force at a place where a focusing electrode is attached and a centrifugal force at a place where a focusing electrode is not attached.

【図3】集束電極を取り付ける切り取り片を示した回転
陰極の一部正面図である。
FIG. 3 is a partial front view of a rotating cathode showing a cut piece to which a focusing electrode is attached.

【図4】従来例において、回転陰極X線管を説明する断
面図である。
FIG. 4 is a cross-sectional view illustrating a rotary cathode X-ray tube in a conventional example.

【図5】集束電極が取り付ける箇所の遠心力と、取り付
けられない箇所の遠心力との相違による回転陰極の変形
を示した回転陰極の正面図である。
FIG. 5 is a front view of a rotating cathode showing a deformation of the rotating cathode due to a difference between a centrifugal force at a place where the focusing electrode is attached and a centrifugal force at a place where the focusing electrode is not attached.

【符号の説明】 1・・・回転陰極 2・・・切り欠き部 3・・・集束電極 4・・・支持板(部材) 5・・・フィラメント 6,7・・・長穴 8,9・・・ピン 11・・・片(切り取り片)[Explanation of Codes] 1 ... Rotating cathode 2 ... Notch portion 3 ... Focusing electrode 4 ... Support plate (member) 5 ... Filament 6, 7 ... Slot 8, 9 ... ..Pin 11 ... Pieces (cut pieces)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 リング状の真空容器内の陽極側に設置固
定されたリング状のターゲットと、ターゲットに向けて
X線発生用の電子線を放出する電子放出部を取り付けた
リング状の回転陰極と、この回転陰極に取り付けられて
前記電子放出部からの電子線をターゲットに向けて集束
させる集束電極とを備えた回転陰極X線管において、前
記回転陰極の一部分を前記集束電極を取り付けるために
切り取り、この切り取り片の重量と切り取り片の重心か
ら回転陰極の回転中心点までの距離との積と、前記集束
電極の重量と集束電極の重心から回転陰極の回転中心点
までの距離との積とが、ほぼ一致するように構成してあ
ることを特徴とする回転陰極X線管。
1. A ring-shaped rotary cathode having a ring-shaped target fixed and installed on the anode side in a ring-shaped vacuum container, and an electron emission section for emitting an electron beam for X-ray generation toward the target. And a focusing electrode which is attached to the rotating cathode and focuses an electron beam from the electron emitting portion toward a target. In the rotating cathode X-ray tube, a part of the rotating cathode is attached to the focusing electrode. Cut, the product of the weight of the cut piece and the distance from the center of gravity of the cut piece to the center of rotation of the rotating cathode, and the weight of the focusing electrode and the distance from the center of gravity of the focusing electrode to the center of rotation of the rotating cathode. And X and X are configured so as to substantially coincide with each other.
【請求項2】 リング状の真空容器内の陽極側に設置固
定されたリング状のターゲットと、ターゲットに向けて
X線発生用の電子線を放出する電子放出部を取り付けた
リング状の回転陰極と、この回転陰極に取り付けられて
前記電子放出部からの電子線をターゲットに向けて集束
させる集束電極とを備えた回転陰極X線管において、前
記集束電極を回転陰極の半径方向に変位自在に取り付
け、この集束電極と回転陰極との間に、熱膨張により回
転陰極の中心に向かって変位する部材を介在させてある
ことを特徴とする回転陰極X線管。
2. A ring-shaped rotating cathode provided with a ring-shaped target fixedly installed on the anode side in a ring-shaped vacuum container, and an electron emission unit for emitting an electron beam for X-ray generation toward the target. And a focusing electrode attached to the rotating cathode for focusing an electron beam from the electron emitting portion toward a target, in a rotating cathode X-ray tube, the focusing electrode being displaceable in a radial direction of the rotating cathode. A rotary cathode X-ray tube, characterized in that a member which is mounted and displaced toward the center of the rotary cathode by thermal expansion is interposed between the focusing electrode and the rotary cathode.
JP27653791A 1991-09-28 1991-09-28 Rotary cathode x-ray tube Pending JPH0589810A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27653791A JPH0589810A (en) 1991-09-28 1991-09-28 Rotary cathode x-ray tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27653791A JPH0589810A (en) 1991-09-28 1991-09-28 Rotary cathode x-ray tube

Publications (1)

Publication Number Publication Date
JPH0589810A true JPH0589810A (en) 1993-04-09

Family

ID=17570861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27653791A Pending JPH0589810A (en) 1991-09-28 1991-09-28 Rotary cathode x-ray tube

Country Status (1)

Country Link
JP (1) JPH0589810A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008062519A1 (en) * 2006-11-21 2008-05-29 Shimadzu Corporation X-rays generator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008062519A1 (en) * 2006-11-21 2008-05-29 Shimadzu Corporation X-rays generator
JPWO2008062519A1 (en) * 2006-11-21 2010-03-04 株式会社島津製作所 X-ray generator
US8213575B2 (en) 2006-11-21 2012-07-03 Shimadzu Corporation X-ray generating apparatus

Similar Documents

Publication Publication Date Title
JP5236393B2 (en) Reduction of focal spot temperature using three-point deflection
Schardt et al. New x‐ray tube performance in computed tomography by introducing the rotating envelope tube technology
JP4303513B2 (en) X-ray source and method having a cathode with a curved emission surface
US8477908B2 (en) System and method for beam focusing and control in an indirectly heated cathode
US3836805A (en) Rotating anode x-ray tube
JP2011216481A (en) Pierce gun and method of controlling thereof
EP2313907A1 (en) Multi-segment anode target for an x-ray tube of the rotary anode type with each anode disk segment having its own anode inclination angle with respect to a plane normal to the rotational axis of the rotary anode and x-ray tube comprising a rotary anode with such a multi-segment anode target
JP4298826B2 (en) Straddle bearing assembly
JPH09293598A (en) X-ray apparatus
JPH0372174B2 (en)
JP2008166059A (en) Envelope rotating x-ray tube device
US10304652B2 (en) Fabrication methods and modal stiffining for non-flat single/multi-piece emitter
JPH0589810A (en) Rotary cathode x-ray tube
US5838762A (en) Rotating anode for x-ray tube using interference fit
EP2827135A1 (en) X-ray testing device for material testing and method for the generation of high-resolution projections of a test object by means of x-ray beams
JP2007141595A (en) X-ray tube and x-ray device using it
JP2001326095A (en) Detecting system for x-ray tube
JP2840616B2 (en) Indirectly heated X-ray tube with flat cathode
US6879662B2 (en) Radiation emission device and method
JP3616121B2 (en) X-ray tube
JP6302839B2 (en) Rotating anode balance
JPH05182618A (en) X-ray tube for very high speed x-ray ct
JPH04138645A (en) X-ray tube
JP5212162B2 (en) X-ray imaging device
JPH04231941A (en) Rotary cathode x-ray tube