JPH058974Y2 - - Google Patents

Info

Publication number
JPH058974Y2
JPH058974Y2 JP15004289U JP15004289U JPH058974Y2 JP H058974 Y2 JPH058974 Y2 JP H058974Y2 JP 15004289 U JP15004289 U JP 15004289U JP 15004289 U JP15004289 U JP 15004289U JP H058974 Y2 JPH058974 Y2 JP H058974Y2
Authority
JP
Japan
Prior art keywords
temperature
light emitting
emitting element
pulse oximeter
equilibrium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP15004289U
Other languages
Japanese (ja)
Other versions
JPH0388507U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP15004289U priority Critical patent/JPH058974Y2/ja
Publication of JPH0388507U publication Critical patent/JPH0388507U/ja
Application granted granted Critical
Publication of JPH058974Y2 publication Critical patent/JPH058974Y2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Description

【考案の詳細な説明】 〔産業上の利用分野〕 本考案は、指尖又は耳朶等の測定部位の一方側
に発光素子、他方側に受光素子を配置し、その測
定部位の透過光量から血中の酸素飽和度を測定す
るようになつたパルスオキシメータに関するもの
である。
[Detailed description of the invention] [Field of industrial application] This invention places a light-emitting element on one side of a measurement site such as a fingertip or an earlobe, and a light-receiving element on the other side. This relates to a pulse oximeter that measures the oxygen saturation level in the blood.

〔従来の技術〕[Conventional technology]

麻酔中や術後の患者管理において、パルスオキ
シメータの使用頻度は急増している反面、末梢循
環不全の被検者の場合、発光素子の発熱に対する
熱放散が不十分なことに起因して低温熱傷を生じ
る事例が、時折報告されている。
The frequency of use of pulse oximeters is rapidly increasing in patient management during anesthesia and postoperatively, but in the case of subjects with peripheral circulatory insufficiency, low temperature Occasional cases of burns have been reported.

〔考案が解決しようとする課題〕[The problem that the idea aims to solve]

本考案は、この点に鑑みて、発光素子の発熱に
起因する低温ヤケドを防止できるパルスオキシメ
ータを提供することを目的とする。
In view of this point, it is an object of the present invention to provide a pulse oximeter that can prevent low-temperature burns caused by heat generation of light emitting elements.

〔課題を解決するための手段〕[Means to solve the problem]

本考案は、この目的を達成するために、請求項
1より、測定部位に接触するように発光素子近辺
に配置された温度センサと、この温度センサが検
知した検知温度を低温ヤケドを惹起する可能性に
対応した基準温度と比較してこの基準温度に達し
たときに異常温度信号を出力する上昇温度判断手
段と、異常温度信号に応答して異常を報知する報
知手段とを備えている。
In order to achieve this object, the present invention includes a temperature sensor disposed near the light emitting element so as to be in contact with the measurement site, and a temperature detected by the temperature sensor that can cause low-temperature burns. The temperature rise determination means compares the temperature with a reference temperature corresponding to the temperature and outputs an abnormal temperature signal when the reference temperature is reached, and the notification means reports an abnormality in response to the abnormal temperature signal.

測定部位がセツトされたことを確認して測定を
開始させるためには、請求項2により、受光素子
への入射光量が、直射時に比べて測定部位のセツ
トにより低減したのを検知する光量低減検知手段
を設ける。
In order to start the measurement after confirming that the measurement site is set, according to claim 2, a light amount reduction detection that detects that the amount of light incident on the light receiving element is reduced due to the setting of the measurement site compared to when it is directly irradiated. Provide means.

センサ検知温度の非平衡状態での測定を回避す
るためには、請求項3により、装置スイツチのオ
ン又は光量低減検知手段の検知信号等に応答し
て、上昇温度判断手段の動作始動を遅延させるタ
イマ手段を設ける。請求項4により、このタイマ
手段に代えて、センサ検知温度が測定部位セツト
後の温度平衡状態に向う温度変化曲線を演算して
平衡温度に達した時点を検出する温度平衡検出手
段を設けても良い。
In order to avoid measuring the temperature detected by the sensor in a non-equilibrium state, according to claim 3, the start of operation of the rising temperature determining means is delayed in response to turning on the device switch or a detection signal from the light amount reduction detecting means. A timer means is provided. According to claim 4, instead of the timer means, temperature equilibrium detection means may be provided for calculating a temperature change curve in which the sensor detected temperature moves toward a temperature equilibrium state after the measurement site is set, and detecting the point in time when the sensor-detected temperature reaches the equilibrium temperature. good.

被検者の体温を基に高精度の判断を行うために
は、請求項5により、測定部位に接触するように
発光素子近辺に配置された温度センサの外に、発
光素子の発熱による温度上昇を生じない程度に発
光素子から離間した位置で測定部位に接触するよ
うに配置された別の温度センサを設けると共に、
上昇温度判断手段を、双方の温度センサ間の温度
差を検出してこの温度差が基準温度差を越えると
異常温度信号を出力するように構成する。
In order to make a highly accurate judgment based on the subject's body temperature, according to claim 5, a temperature rise due to heat generated by the light emitting element is measured in addition to the temperature sensor disposed near the light emitting element so as to be in contact with the measurement site. Providing another temperature sensor that is placed in contact with the measurement site at a position spaced apart from the light emitting element to an extent that does not cause
The temperature rise determining means is configured to detect a temperature difference between both temperature sensors and output an abnormal temperature signal when this temperature difference exceeds a reference temperature difference.

低温ヤケドを自動的に回避するには、請求項6
により、測定部位に接触するように発光素子近辺
に配置された温度センサと、この温度センサの検
知した検知温度と低温ヤケドを惹起する可能性の
ない基準温度とを比較して誤差信号を出力する誤
差信号発生手段と、誤差信号に応答して発光素子
の駆動電流を増減させる駆動電流制御手段とを備
えるようにする。
To automatically avoid low temperature burns, claim 6
A temperature sensor is placed near the light emitting element so as to make contact with the measurement area, and the detected temperature detected by this temperature sensor is compared with a reference temperature that is unlikely to cause low-temperature burns, and an error signal is output. The device includes an error signal generating means and a drive current control means for increasing or decreasing the drive current of the light emitting element in response to the error signal.

被検者の体温に適合して高精度に自動制御する
には、請求項7により、測定部位に接触するよう
に発光素子近辺に配置された温度センサの外に、
発光素子の発熱による温度上昇を生じない程度に
発光素子から離間した位置で測定部位に接触する
ように配置された別の温度センサを設けると共
に、誤差信号発生手段を、双方の温度センサ間の
温度差を基準温度差と比較して誤差信号を出力す
るように構成する。
According to claim 7, in order to perform automatic control with high precision in accordance with the body temperature of the subject, in addition to the temperature sensor disposed near the light emitting element so as to be in contact with the measurement site,
Another temperature sensor is provided that is placed in contact with the measurement site at a distance from the light emitting element to an extent that does not cause a temperature rise due to heat generated by the light emitting element, and the error signal generating means is configured to measure the temperature between both temperature sensors. It is configured to compare the difference with a reference temperature difference and output an error signal.

平衡温度を予測して素早く低温ヤケドの可能性
を検知するには、請求項8により、請求項1の考
案に、センサ検知温度が測定部位セツト後の温度
平衡状態に向う温度変化曲線を演算して平衡温度
を予測する平衡温度予測手段を設けて、上昇温度
判断手段に予測された平衡温度を基準温度と比較
させる。同様に、測定部位に接触するように発光
素子近辺に配置された温度センサの外に、発光素
子の発熱による温度上昇を生じない程度に発光素
子から離間した位置で測定部位に接触するように
配置された別の温度センサを設けた場合には、請
求項9により、双方の温度センサが検知した温度
差が測定部位セツト後の温度平衡状態に向う温度
差変化曲線を演算して平衡温度差を予測する平衡
温度差予測手段を設け、上昇温度判断手段を、予
測された平衡温度差を低温ヤケドを惹起する可能
性に対応した基準温度差と比較してこの基準温度
差に達したときに異常温度信号を出力するように
構成する。
In order to predict the equilibrium temperature and quickly detect the possibility of low-temperature burns, according to claim 8, the invention of claim 1 includes calculating a temperature change curve in which the sensor-detected temperature moves toward a temperature equilibrium state after the measurement site is set. Equilibrium temperature prediction means for predicting the equilibrium temperature is provided, and the temperature rise determination means is made to compare the predicted equilibrium temperature with a reference temperature. Similarly, in addition to the temperature sensor placed near the light-emitting element so as to make contact with the measurement site, there is also a temperature sensor placed in contact with the measurement site at a distance from the light-emitting element that does not cause a temperature rise due to the heat generated by the light-emission element. In the case where another temperature sensor is provided, according to claim 9, the temperature difference detected by both temperature sensors calculates a temperature difference change curve in which the temperature difference shifts toward a temperature equilibrium state after the measurement site is set, and the equilibrium temperature difference is calculated. A means for predicting an equilibrium temperature difference is provided, and a rise temperature determining means is used to compare the predicted equilibrium temperature difference with a reference temperature difference corresponding to the possibility of causing low-temperature burns, and detect an abnormality when this reference temperature difference is reached. Configure to output a temperature signal.

〔作用〕[Effect]

請求項1によれば、異常上昇温度判断手段が、
発光素子近辺の皮膚に接触した温度センサの検知
温度と基準温度とを比較して、これを上廻ると低
温ヤケドを惹起する可能性があると判断して、報
知手段に異常温度上昇を光又は音で報知させる。
この際、請求項2によれば、光量低減検知手段が
測定部位のパルスオキシメータへのセツトセンサ
として機能することにより、正規の測定状態にお
いて測定が行われ、さらに請求項3によれば、装
置電源の投入後、又は測定部位のセツト及び電源
投入後にタイマ時間を経過してから測定が行われ
る。請求項4によれば、正規の測定状態でセンサ
検知温度が平衡状態に達した後から測定が行われ
る。
According to claim 1, the abnormally increased temperature determining means:
Comparing the temperature detected by the temperature sensor that is in contact with the skin near the light-emitting element with the reference temperature, it is determined that if the temperature exceeds this temperature there is a possibility of causing low-temperature burns. Alert with sound.
In this case, according to claim 2, the light amount reduction detection means functions as a set sensor for the pulse oximeter of the measurement site, so that the measurement is performed in a normal measurement state, and according to claim 3, the device power supply Measurement is performed after the timer time has elapsed after turning on the device, or after setting the measurement site and turning on the power. According to claim 4, the measurement is performed after the sensor-detected temperature reaches an equilibrium state in a normal measurement state.

請求項5によれば、別の温度センサで検知した
被検者の体温を基準にした温度上昇が測定され
る。
According to claim 5, the temperature rise is measured based on the subject's body temperature detected by another temperature sensor.

請求項6によれば、測定部位の温度上昇に相応
して発光素子の駆動電流が低温ヤケドを惹起させ
ないように一定の発光量にフイードバツク制御さ
れる。請求項7によれば、別の温度センサで検知
した被検者の体温を基準にして一定の温度差にフ
イードバツク制御される。
According to the sixth aspect of the present invention, the drive current of the light emitting element is feedback-controlled to a constant light emission amount in accordance with the temperature rise of the measurement site so as not to cause low-temperature burns. According to claim 7, feedback control is performed to maintain a constant temperature difference based on the subject's body temperature detected by another temperature sensor.

請求項8によれば、温度センサの検知温度が測
定開始時又は再開時に過渡的な温度から測定部位
がセツトされた状態における平衡状態へ向う途中
で、平衡温度が予測されて基準温度との比較が行
われる。請求項9によれば、同様に過渡的な温度
差が平衡状態へ向う途中で測定が行われる。
According to claim 8, when the temperature detected by the temperature sensor is moving from a transient temperature to an equilibrium state in the state where the measurement site is set at the time of starting or restarting measurement, the equilibrium temperature is predicted and compared with the reference temperature. will be held. According to claim 9, the measurement is likewise carried out while the transient temperature difference is on its way to an equilibrium state.

〔実施例〕〔Example〕

第1図は、本考案の一実施例による指尖装着用
のパルスオキシメータの構成を示す図である。
FIG. 1 is a diagram showing the configuration of a fingertip-attached pulse oximeter according to an embodiment of the present invention.

同図において、1及び2は、指尖8にセツトさ
れるプローブ9(部分的に示す)に取付けられて
互に異る波長の発光を交互に行う発光素子であ
る。3は、これらの発光に対する指尖8の透過光
量を受光するように同様にプローブ9に対向的に
取付けられた受光素子である。これらの素子には
回路装置4が付属しており、双方の透過光量の比
から周知の方法により、血中酸素飽和度を求める
ようになつている。そして、指尖8にプローブ9
をセツトしない状態では、発光による測定部分の
温度上昇は約5℃であり、指尖8のセツト状態で
は正常な熱放散が行われると2.5℃程度に留まる。
In the figure, numerals 1 and 2 are light emitting elements attached to a probe 9 (partially shown) set on a fingertip 8, and alternately emit light of different wavelengths. Reference numeral 3 designates a light-receiving element that is similarly attached to the probe 9 so as to face the probe 9 so as to receive the amount of light transmitted through the fingertip 8 in response to these light emissions. A circuit device 4 is attached to these elements, and the blood oxygen saturation level is determined by a well-known method from the ratio of the amounts of transmitted light. Then, the probe 9 is placed on the fingertip 8.
When the finger tip 8 is not set, the temperature rise in the measurement area due to the light emission is about 5°C, and when the finger tip 8 is set, the temperature rise remains at about 2.5°C if normal heat dissipation occurs.

このプローブ9における双方の発光素子1,2
間には、本考案により、指尖8に接触するように
温度センサとしてのサーミスタ10が取付けられ
ている。受光素子3には、回路装置4の一部とし
て、プローブ9が指尖8にセツトされて透光状態
となることにより、受光量が直射状態から低減し
た状態を検知する光量低減検知手段としての比較
器11が付属し、さらにこの比較器の出力信号に
応答して計時を開始するタイマ12が後続してい
る。このタイマは、予め電源スイツチをオンにさ
れて、サーミスタ10が温度上昇している状態で
セツトされた場合にも温度平衡状態に達し得るよ
うに例えば5分経過のタイマ信号を出力する。
Both light emitting elements 1 and 2 in this probe 9
In between, according to the present invention, a thermistor 10 as a temperature sensor is attached so as to be in contact with the fingertip 8. The light-receiving element 3, as a part of the circuit device 4, has a probe 9 set on the fingertip 8 to be in a light-transmitting state, thereby functioning as a light amount reduction detection means for detecting a state in which the amount of received light has been reduced from the direct irradiation state. A comparator 11 is attached, followed by a timer 12 which starts timing in response to the output signal of this comparator. This timer outputs a timer signal when, for example, 5 minutes have elapsed so that even if the power switch is turned on in advance and the thermistor 10 is set in a state where the temperature is rising, the temperature equilibrium state can be reached.

サーミスタ10には、同様に回路装置4の一部
として、タイマ信号の発生後からサーミスタ10
の検知した温度が低温ヤケドを惹起する可能性の
ある温度40℃〜60℃程度の限界値例えば40℃の基
準温度に達したのを検出して異常温度信号を出力
する比較器13及び検出温度をモニタさせるため
の温度表示器14が付属し、さらに比較器13に
は異常温度信号に応答して光で異常を報知する表
示器15が後続している。上昇温度判断手段とし
ては、比較器13の代りに回路装置4の酸素飽和
値演算用のCPUを利用して構成することもでき
る。
Similarly, as part of the circuit device 4, the thermistor 10 is connected to the thermistor 10 after the timer signal is generated.
A comparator 13 that outputs an abnormal temperature signal when the detected temperature reaches a limit value of about 40°C to 60°C, which may cause low-temperature burns, for example, a reference temperature of 40°C, and the detected temperature. A temperature display 14 is attached to the comparator 13 for monitoring the temperature, and a display 15 is attached following the comparator 13 for notifying an abnormality with light in response to an abnormal temperature signal. The temperature rise determination means may be configured by using the CPU of the circuit device 4 for calculating the oxygen saturation value instead of the comparator 13.

測定時において、プローブ9が指尖8に装着さ
れると、第2図に示すように、サーミスタ10は
体温に向けて温度上昇し、さらに装置スイツチが
オンにされて発光が開始されると、比較器11は
直ちに指尖8の透光による低光量状態を検知して
タイマ12の計時を開始させると共に、前述の透
過光量を基に血中酸素飽和度の測定が開始され
る。数分後には、図中に実線で示すように、体温
から2〜3℃程度温度上昇した平衡状態になる。
この温度は、温度表示器14でモニタされると共
に、スイツチオン後5分経過するとタイマ信号が
出力されて比較器13は検知温度が基準温度40℃
を上廻るか否かの判断を開始する。
During measurement, when the probe 9 is attached to the fingertip 8, the temperature of the thermistor 10 rises toward the body temperature, as shown in FIG. 2, and when the device switch is turned on and starts emitting light, The comparator 11 immediately detects a low light amount state due to the light passing through the fingertip 8, starts the timer 12, and starts measuring the blood oxygen saturation based on the above-mentioned amount of transmitted light. After a few minutes, as shown by the solid line in the figure, the body reaches an equilibrium state where the temperature has risen by about 2 to 3 degrees Celsius above the body temperature.
This temperature is monitored by the temperature display 14, and 5 minutes after the switch is turned on, a timer signal is output, and the comparator 13 detects that the detected temperature is 40°C, which is the reference temperature.
Start judging whether or not to exceed.

もし末梢循環が悪いために、同図で点線で示す
ように、その程度に応じて体温に対して4℃程度
まで温度上昇したとすると、比較器13は検知温
度が基準温度40℃を上廻るのを検出し、異常温度
上昇信号を出力して表示器15を発光させる。こ
れにより、プローブ9のセツト位置を移動させる
か、或は駆動電流を低減させる等の対応策を講じ
ることができる。この際、温度表示器14で検出
温度をモニタして末梢循環状態を推定することも
できる。
If, due to poor peripheral circulation, the temperature rises by about 4°C relative to the body temperature, as shown by the dotted line in the figure, the comparator 13 will detect that the detected temperature exceeds the reference temperature of 40°C. is detected, an abnormal temperature rise signal is output, and the indicator 15 is made to emit light. This makes it possible to take countermeasures such as moving the set position of the probe 9 or reducing the drive current. At this time, the peripheral circulation state can also be estimated by monitoring the detected temperature with the temperature display 14.

また、第3図に示すように、プローブ9がセツ
トされる前にスイツチオンされた場合、指尖8の
セツト時にサーミスタ10は基準温度以上の温度
を検知する可能性があるが、比較器13は未だ動
作を行つておらず、指尖8のセツトで比較器11
がタイマ12で始動させることにより平衡状態に
達した後で測定が開始される。
Further, as shown in FIG. 3, if the switch is turned on before the probe 9 is set, the thermistor 10 may detect a temperature higher than the reference temperature when the fingertip 8 is set, but the comparator 13 may detect a temperature higher than the reference temperature. Comparator 11 is not operating yet and finger tip 8 is set.
The measurement is started after the equilibrium condition has been reached by starting the timer 12.

尚、この実施例において、比較器11及びタイ
マ12を廃止することも考えられる。この場合、
指尖8のセツト後にスイツチオンすることによ
り、正規の測定を確実に行うことができる。さら
に、比較器11を備えず、スイツチオンにより始
動されるタイマ12のみを備える場合、指尖8の
装着前にスイツチオンされても、タイマ時間に対
応する時間内に温度平衡すると正規の測定が可能
である。タイマ12を備えず、比較器11のみを
備える場合、少なくともプローブ9が指尖8へセ
ツトされる正規の測定状態以前の誤警報が回避さ
れる。
In this embodiment, it is also possible to eliminate the comparator 11 and timer 12. in this case,
By turning on the fingertip 8 after setting it, it is possible to ensure proper measurement. Furthermore, if the comparator 11 is not provided and only the timer 12 that is started by the switch is provided, even if the switch is turned on before the fingertip 8 is attached, normal measurement is possible if the temperature reaches equilibrium within the time corresponding to the timer time. be. When only the comparator 11 is provided without the timer 12, false alarms are avoided at least before the normal measurement state in which the probe 9 is set on the fingertip 8.

第4図は本考案の別の実施例を示すもので、第
1図と同一の符号は同一もしくは同等部分を示
す。
FIG. 4 shows another embodiment of the present invention, in which the same reference numerals as in FIG. 1 indicate the same or equivalent parts.

同図において、21は、サーミスタ10の検知
した温度電圧信号と低温ヤケドを惹起する可能性
のない基準温度例えば39℃に相当する基準電圧と
を比較して、誤差電圧を出力する誤差信号発生手
段である。22は、この±誤差電圧に応答して発
光素子1,2の駆動電流を低減又は増加させる駆
動電流制御手段である。23は、温度に対応して
制御される発光素子1,2の駆動電流が測定に有
効な下限値に達すると測定不能を報知する報知手
段である。これにより、指尖8の温度は予め設定
された安全な基準温度で測定が行われ、もし末梢
循環が悪く許容範囲内で電流を低減させても異常
温度上昇を回避できない場合には、報知手段23
からその旨報知される。
In the figure, reference numeral 21 denotes an error signal generating means for comparing the temperature voltage signal detected by the thermistor 10 with a reference voltage corresponding to a reference temperature, for example, 39° C., which is unlikely to cause low-temperature burns, and outputting an error voltage. It is. Reference numeral 22 denotes drive current control means for reducing or increasing the drive currents of the light emitting elements 1 and 2 in response to this ± error voltage. Reference numeral 23 denotes a notification means for notifying that measurement is impossible when the drive currents of the light emitting elements 1 and 2, which are controlled in accordance with the temperature, reach a lower limit value effective for measurement. As a result, the temperature of the fingertip 8 is measured at a safe reference temperature set in advance, and if the peripheral circulation is poor and an abnormal temperature rise cannot be avoided even if the current is reduced within the allowable range, the alarm means 23
will be notified to that effect.

第5図は本考案のさらに別の実施例を示すもの
で、第1図のサーミスタ10に加えて、発光素子
1,2の発熱の影響を受けずに指尖温度を検出す
る別のサーミスタ30がプローブ39に追加され
ると共に、上昇温度判断手段31は、サーミスタ
30で検知された指尖温度とサーミスタ10で検
出された温度との温度差を検出する温度差検出手
段31aと、その温度差が低温ヤケドを惹起する
可能性のない上限温度に対応する基準温度差例え
ば2.5℃を上廻るか否かを監視する温度差判断手
段31bとより構成されている。これにより、被
検者の体温に対応して末梢循環の程度が高精度に
監視されると共に、温度差表示器32に体温から
の上昇温度が表示される。
FIG. 5 shows yet another embodiment of the present invention, in which, in addition to the thermistor 10 shown in FIG. is added to the probe 39, and the temperature rise determination means 31 includes a temperature difference detection means 31a for detecting the temperature difference between the fingertip temperature detected by the thermistor 30 and the temperature detected by the thermistor 10, The temperature difference determining means 31b monitors whether or not the temperature difference exceeds a reference temperature difference, for example, 2.5° C., which corresponds to the upper limit temperature at which there is no possibility of causing low-temperature burns. As a result, the degree of peripheral circulation is monitored with high precision in accordance with the subject's body temperature, and the temperature difference display 32 displays the temperature rise from the body temperature.

また、この温度差信号は、第4図における誤差
信号発生手段21の基準信号を安全な基準温度差
に対応させて、その入力信号とすることにより、
駆動電流の自動制御用としても利用することがで
きる。
Moreover, this temperature difference signal can be generated by making the reference signal of the error signal generating means 21 in FIG. 4 correspond to a safe reference temperature difference and using it as an input signal.
It can also be used for automatic control of drive current.

第6図は本考案のさらに別の実施例を示すもの
で、タイマから遂次発生されるタイマ信号を基に
サーミスタ10の検知した検知温度が温度平衡状
態に向う温度変化勾配を演算するCPUを利用し
た平衡温度予測手段41と、予測された平衡温度
が低温ヤケドを惹起する可能性に対応した基準温
度を越えると異常温度信号を出力する上昇温度判
断手段42と、異常温度信号に応答して異常を報
知する報知手段43とが、サーミスタ10に後続
している。
FIG. 6 shows still another embodiment of the present invention, in which the CPU calculates the temperature change gradient at which the temperature detected by the thermistor 10 approaches the temperature equilibrium state based on the timer signals successively generated from the timer. The equilibrium temperature prediction means 41 used, the rising temperature determination means 42 which outputs an abnormal temperature signal when the predicted equilibrium temperature exceeds a reference temperature corresponding to the possibility of causing low-temperature burns, and the temperature rise determination means 42 which outputs an abnormal temperature signal in response to the abnormal temperature signal. A notifying means 43 for notifying an abnormality follows the thermistor 10.

平衡温度予測手段41は、第7図aに実線で示
すように、スイツチオン後にプローブ9が指尖8
にセツトされた場合の負の温度変化曲線A或は第
7図bに実線で示す指尖セツト後にスイツチオン
された場合の正の温度変化曲線Bについて遂次単
位時間ごとに温度を検知しつつ正規の測定状態で
あるか否かを判断すると共に平衡状態に達する温
度変化曲線を予測する。これにより、上昇温度判
断手段42は平衡に達する前に素早く安全性を判
断する。尚、前述のように、CPUにおいて実際
の測定状態での過渡領域であるか或は単なるスイ
ツチオンによる過渡領域であるか否かも判断させ
て良いが、前述の光量低減検知手段を付加して指
尖セツト後から予測させても良い。また、平衡温
度予測手段41は、温度変化曲線から温度変化が
ほぼ0になる平衡到達時点を検出させて、タイマ
に代えて判断動作を始動させるように構成するこ
とも考えられる。
As shown by the solid line in FIG.
For the negative temperature change curve A when the finger tip is set to 1 or the positive temperature change curve B when the switch is turned on after the finger tip is set as shown by the solid line in FIG. It is determined whether or not the measured state is reached, and a temperature change curve that reaches an equilibrium state is predicted. As a result, the increased temperature determining means 42 quickly determines safety before equilibrium is reached. As mentioned above, it is possible to have the CPU determine whether it is a transient region under an actual measurement state or a transient region simply caused by a switch, but it is also possible to have the CPU determine whether it is a transient region under actual measurement conditions or simply due to a switch. It is also possible to make predictions after setting. It is also conceivable that the equilibrium temperature prediction means 41 is configured to detect from the temperature change curve the time point at which equilibrium is reached when the temperature change becomes almost zero, and start a determination operation instead of the timer.

第5図に示すように、2個のサーミスタ10,
30を備える場合、平衡温度予測手段41に代え
て、双方の温度センサが検知した温度差が平衡状
態に向う温度差変化曲線を演算する平衡温度差予
測手段を設ける。そして、推定される平衡温度差
が低温ヤケドを惹起する可能性に対応した基準温
度差を越えると異常温度信号を出力する上昇温度
判断手段を後続させる。そして、第7図aに点線
と併せて示すように、スイツチオン後に指尖8が
セツトされた場合の互に温度上昇差が接近する領
域C、或は第7図bに点線と併せて示すように、
双方の温度が共に上昇する領域Dにおいて、平衡
状態の温度差を推定して、この予測値と基準温度
差を事前に比較する。この場合も、同様に双方の
温度センサが検知した温度差が指尖セツト後の温
度平衡状態に向う温度差変化曲線を演算して温度
差が平衡した時点を検出して温度差判断動作を開
始させることもできる。
As shown in FIG. 5, two thermistors 10,
30, in place of the equilibrium temperature prediction means 41, an equilibrium temperature difference prediction means is provided which calculates a temperature difference change curve in which the temperature difference detected by both temperature sensors approaches an equilibrium state. Then, if the estimated equilibrium temperature difference exceeds a reference temperature difference corresponding to the possibility of causing low-temperature burns, a rising temperature determining means is provided that outputs an abnormal temperature signal. Then, as shown in FIG. 7a together with the dotted line, there is a region C where the temperature rise difference approaches each other when the fingertip 8 is set after switching on, or as shown in FIG. 7b together with the dotted line. To,
In region D where both temperatures rise, the temperature difference in an equilibrium state is estimated, and this predicted value is compared in advance with the reference temperature difference. In this case, similarly, the temperature difference detected by both temperature sensors calculates the temperature difference change curve toward the temperature equilibrium state after the finger tip is set, detects the point when the temperature difference is balanced, and starts the temperature difference judgment operation. You can also do so.

〔考案の効果〕[Effect of idea]

以上、本考案によれば、請求項1により、末梢
循環の異常に起因する異常温度上昇を自動警報さ
せて、駆動電流を調整させたり或はセツト位置を
変更することにより、低温ヤケドを発生させる恐
れのないパルスオキシメータが実現可能となる。
この際、請求項2によれば光電プローブが測定部
位へセツトされた正規の測定状態でモニタされ
る。また、請求項3によれば装置電源投入後タイ
マ時間を経過して測定が行われ、したがつてタイ
マ時間内で充分早く光電プローブが測定部位へセ
ツトされた場合、平衡状態での測定が可能にな
る。或は装置電源投入及び測定部位セツトの双方
が行われるとタイマが始動される場合、より確実
に温度平衡状態での測定が可能になる。
As described above, according to the present invention, according to claim 1, low-temperature burns can be caused by automatically warning an abnormal temperature rise caused by an abnormality in peripheral circulation, and adjusting the drive current or changing the set position. A fearless pulse oximeter becomes possible.
At this time, according to claim 2, the photoelectric probe is monitored in a normal measurement state where it is set at the measurement site. Further, according to claim 3, the measurement is performed after the timer time has elapsed after the device is powered on, and therefore, if the photoelectric probe is set to the measurement site sufficiently early within the timer time, measurement in an equilibrium state is possible. become. Alternatively, if the timer is started when both the device is powered on and the measurement site is set, measurements can be made more reliably in a temperature-balanced state.

請求項4によれば、固定のタイマ時間でなく、
丁度温度センサ及び測定部位が温度平衡状態に達
する時点まで遅延させて測定が開始される。
According to claim 4, instead of a fixed timer time,
The measurement is started with a delay until just when the temperature sensor and the measurement site reach a temperature equilibrium state.

請求項5によれば、被検者の体温を基準にした
温度上昇が測定され、高精度の判断が可能にな
る。
According to claim 5, a temperature rise based on the subject's body temperature is measured, making it possible to make highly accurate judgments.

請求項6によれば、安全な基準温度になるよう
に発光素子の駆動電流がフイードバツク制御さ
れ、低温ヤケドが自動的に回避される。この際、
請求項7によれば、被検者の体温を基準にして上
昇温度を一定にした状態での安全な測定が自動的
に行われる。
According to claim 6, the driving current of the light emitting element is feedback-controlled so as to maintain a safe reference temperature, and low-temperature burns are automatically avoided. On this occasion,
According to claim 7, safe measurement is automatically performed in a state where the temperature rise is kept constant based on the subject's body temperature.

請求項8によれば、平衡状態に向う温度変化曲
線を演算することにより事前に平衡温度が予測さ
れ、低温ヤケドの可能性を予知できる。同様に、
請求項9によれば、平衡温度差が予測されて低温
ヤケドの可能性が予知される。
According to claim 8, by calculating the temperature change curve toward the equilibrium state, the equilibrium temperature is predicted in advance, and the possibility of low-temperature burns can be predicted. Similarly,
According to claim 9, the equilibrium temperature difference is predicted and the possibility of low-temperature burns is predicted.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の一実施例によるパルスオキシ
メータの構成を示す図、第2図及び第3図は同実
施例の動作を説明する図、第4図〜第6図は本考
案の別の実施例による回路構成をそれぞれ示す図
並びに第7図は第5図及び第6図による実施例の
動作を説明する図である。 1,2……発光素子、3……受光素子、9,3
9……プローブ、10,30……サーミスタ。
FIG. 1 is a diagram showing the configuration of a pulse oximeter according to an embodiment of the present invention, FIGS. 2 and 3 are diagrams explaining the operation of the same embodiment, and FIGS. 4 to 6 are diagrams showing other embodiments of the present invention. FIG. 7 is a diagram illustrating the operation of the embodiment according to FIGS. 5 and 6, respectively. 1, 2... Light emitting element, 3... Light receiving element, 9, 3
9...Probe, 10,30...Thermistor.

Claims (1)

【実用新案登録請求の範囲】 1 互に対向した発光素子及び受光素子間にセツ
トされる測定部位の透過光量から血中の酸素飽
和度を測定するようになつたパルスオキシメー
タにおいて、 測定部位に接触するように発光素子近辺に配
置された温度センサと、 この温度センサが検知した検知温度を低温ヤ
ケドを惹起する可能性に対応した基準温度と比
較してこの基準温度に達したときに異常温度信
号を出力する上昇温度判断手段と、 前記異常温度信号に応答して異常を報知する
報知手段と、を備えたことを特徴とするパルス
オキシメータ。 2 受光素子への入射光量が、直射時に比べて測
定部位のセツトにより低減したのを検知して、
上昇温度判断手段を始動させる光量低減検知手
段を備えた、ことを特徴とする請求項1に記載
のパルスオキシメータ。 3 上昇温度判断手段の動作始動を遅延させるタ
イマ手段を備えた、ことを特徴とする請求項1
又は2に記載のパルスオキシメータ。 4 上昇温度判断手段の動作始動を検知温度が平
衡状態に達した時点に遅延させるように、温度
センサの検知した検知温度が測定部位セツト後
の温度平衡状態に向う温度変化曲線を演算して
平衡温度に達した時点を検出する温度平衡検出
手段を備えた、ことを特徴とする請求項1又は
2に記載のパルスオキシメータ。 5 測定部位に接触するように発光素子近辺に配
置された温度センサの外に、前記発光素子の発
熱による温度上昇を生じない程度に前記発光素
子から離間した位置で前記測定部位に接触する
ように配置された別の温度センサを備えると共
に、上昇温度判断手段が、前記双方の温度セン
サ間の温度差を検出してこの温度差が基準温度
差を越えると異常温度信号を出力するように構
成されている、ことを特徴とする請求項1に記
載のパルスオキシメータ。 6 互に対向した発光素子及び受光素子間にセツ
トされる測定部位の透過光量から血中の酸素飽
和度を測定するようになつたパルスオキシメー
タにおいて、 測定部位に接触するように発光素子近辺に配
置された温度センサと、 この温度センサの検知した検知温度と低温ヤ
ケドを惹起する可能性のない基準温度とを比較
して誤差信号を出力する誤差信号発生手段と、 前記誤差信号に応答して前記発光素子の駆動
電流を増減させる駆動電流制御手段と、を備え
たことを特徴とするパルスオキシメータ。 7 測定部位に接触するように発光素子近辺に配
置された温度センサの外に、前記発光素子の発
熱による温度上昇を生じない程度に前記発光素
子から離間した位置で前記測定部位に接触する
ように配置された別の温度センサを設けると共
に、誤差信号発生手段が、前記双方の温度セン
サ間の温度差を基準温度差と比較して誤差信号
を出力するように構成されている、ことを特徴
とする請求項6に記載のパルスオキシメータ。 8 検知温度が測定部位セツト後の温度平衡状態
に向う温度変化曲線を演算して平衡温度を予測
する平衡温度予測手段を備えて、上昇温度判断
手段に前記予測された平衡温度を基準温度と比
較させる、ことを特徴とする請求項1に記載の
パルスオキシメータ。 9 測定部位に接触するように発光素子近辺に配
置された温度センサの外に、前記発光素子の発
熱による温度上昇を生じない程度に前記発光素
子から離間した位置で前記測定部位に接触する
ように配置された別の温度センサを設けると共
に、前記双方の温度センサが検知した温度差が
測定部位セツト後の温度平衡状態に向う温度差
変化曲線を演算して平衡温度差を予測する平衡
温度差予測手段を備えて、上昇温度判断手段
を、前記予測された平衡温度差を低温ヤケドを
惹起する可能性に対応した基準温度差と比較し
てこの基準温度差に達したときに異常温度信号
を出力するように構成する、ことを特徴とする
請求項1に記載のパルスオキシメータ。
[Scope of Claim for Utility Model Registration] 1. In a pulse oximeter that measures the oxygen saturation level in blood from the amount of light transmitted through a measurement site that is set between a light emitting element and a light receiving element that face each other, A temperature sensor is placed near the light emitting element so as to be in contact with it, and the detected temperature detected by this temperature sensor is compared with a reference temperature corresponding to the possibility of causing low-temperature burns.When this reference temperature is reached, an abnormal temperature is detected. A pulse oximeter comprising: temperature rise determining means for outputting a signal; and reporting means for notifying an abnormality in response to the abnormal temperature signal. 2 Detecting that the amount of light incident on the light receiving element has been reduced due to the setting of the measurement area compared to when it is directly illuminated,
2. The pulse oximeter according to claim 1, further comprising light amount reduction detection means for starting the temperature rise determination means. 3. Claim 1, further comprising timer means for delaying the start of operation of the temperature rise determining means.
Or the pulse oximeter according to 2. 4. Calculate a temperature change curve in which the detected temperature detected by the temperature sensor moves toward the temperature equilibrium state after setting the measurement area so as to delay the start of operation of the rising temperature determination means until the detected temperature reaches an equilibrium state. The pulse oximeter according to claim 1 or 2, further comprising temperature equilibrium detection means for detecting the point at which the temperature has been reached. 5 In addition to the temperature sensor placed near the light emitting element so as to contact the measurement site, there is also a temperature sensor placed in the vicinity of the light emitting element so as to contact the measurement site at a position spaced apart from the light emitting element to the extent that a temperature increase due to heat generation of the light emitting element does not occur. The temperature increase determining means is configured to detect a temperature difference between the two temperature sensors and output an abnormal temperature signal when this temperature difference exceeds a reference temperature difference. The pulse oximeter according to claim 1, characterized in that: 6. In a pulse oximeter that measures oxygen saturation in the blood from the amount of light transmitted through a measurement site set between a light emitting element and a light receiving element facing each other, a pulse oximeter is placed near the light emitting element so as to make contact with the measurement site. a disposed temperature sensor; an error signal generating means for comparing the detected temperature detected by the temperature sensor with a reference temperature that is not likely to cause low-temperature burns and outputting an error signal; and in response to the error signal. A pulse oximeter comprising: drive current control means for increasing/decreasing the drive current of the light emitting element. 7 In addition to the temperature sensor placed near the light emitting element so as to contact the measurement site, there is also a temperature sensor placed in the vicinity of the light emitting element so as to contact the measurement site at a position spaced apart from the light emitting element to the extent that a temperature increase due to heat generation of the light emitting element does not occur. Further, the error signal generating means is configured to compare the temperature difference between the two temperature sensors with a reference temperature difference and output an error signal. The pulse oximeter according to claim 6. 8 Equipped with an equilibrium temperature prediction means for predicting an equilibrium temperature by calculating a temperature change curve in which the detected temperature moves toward a temperature equilibrium state after the measurement part is set, and having the temperature increase judgment means compare the predicted equilibrium temperature with a reference temperature. The pulse oximeter according to claim 1, characterized in that: 9 In addition to the temperature sensor placed near the light emitting element so as to come into contact with the measurement site, there is also a temperature sensor placed in the vicinity of the light emitting element so as to contact the measurement site at a position spaced apart from the light emitting element to the extent that a temperature increase due to heat generation of the light emitting element does not occur. Equilibrium temperature difference prediction, in which an equilibrium temperature difference is predicted by providing another temperature sensor arranged at the same time and calculating a temperature difference change curve in which the temperature difference detected by both temperature sensors moves toward a temperature equilibrium state after the measurement site is set. the temperature rise determining means compares the predicted equilibrium temperature difference with a reference temperature difference corresponding to the possibility of causing low-temperature burns, and outputs an abnormal temperature signal when the reference temperature difference is reached. The pulse oximeter according to claim 1, wherein the pulse oximeter is configured to:
JP15004289U 1989-12-28 1989-12-28 Expired - Lifetime JPH058974Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15004289U JPH058974Y2 (en) 1989-12-28 1989-12-28

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15004289U JPH058974Y2 (en) 1989-12-28 1989-12-28

Publications (2)

Publication Number Publication Date
JPH0388507U JPH0388507U (en) 1991-09-10
JPH058974Y2 true JPH058974Y2 (en) 1993-03-05

Family

ID=31696411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15004289U Expired - Lifetime JPH058974Y2 (en) 1989-12-28 1989-12-28

Country Status (1)

Country Link
JP (1) JPH058974Y2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020054409A (en) * 2017-02-07 2020-04-09 アルプスアルパイン株式会社 Sensor module and control method thereof
WO2022091403A1 (en) * 2020-11-02 2022-05-05 日本たばこ産業株式会社 Measurement device for living tissue, suction device, measurement method for living tissue, and program

Also Published As

Publication number Publication date
JPH0388507U (en) 1991-09-10

Similar Documents

Publication Publication Date Title
US6839579B1 (en) Temperature indicating oximetry sensor
JP5414173B2 (en) Pulse wave measuring device
US8657758B2 (en) Devices and methods for temperature determination
US6821016B2 (en) Infrared clinical thermometer and temperature state estimation method, information notification method, and measurement operation method thereof
EP2449965B1 (en) Biological signal measuring apparatus and biological signal measuring method
JP2005102861A (en) Method and apparatus for blood sugar level display
JPH058974Y2 (en)
JPH02237544A (en) Oximeter
JP2009034366A (en) Pulsometer, electronic apparatus, pulse measurement method, pulse measurement program, and storage medium
EP1189055B1 (en) Gas detector-alarm employing hot-wire gas sensor and method of detection
US8755420B2 (en) Failure protection apparatus and system
JP3552090B2 (en) Biological signal detection device
JPH11108878A (en) Method for judging abnormality and life of sensor element
JP2006288835A (en) Simplified instrument for measuring arterial oxygen saturation
JP5847563B2 (en) Gas leak alarm
JPH11230900A (en) Urine detection device
JPS60113141A (en) Combustible gas and gaseous co detecting alarm
CN215219527U (en) Temperature control system
JPS62198435U (en)
JP3419820B2 (en) Hyperthermia device
JPS6183925A (en) Electronic thermometer
CN113568452A (en) Temperature control system and method
JP2020054409A (en) Sensor module and control method thereof
JP6370176B2 (en) Biological information measuring device and operating method thereof
JPS61271432A (en) Electronic clinical thermometer