JPH0588253B2 - - Google Patents

Info

Publication number
JPH0588253B2
JPH0588253B2 JP59233747A JP23374784A JPH0588253B2 JP H0588253 B2 JPH0588253 B2 JP H0588253B2 JP 59233747 A JP59233747 A JP 59233747A JP 23374784 A JP23374784 A JP 23374784A JP H0588253 B2 JPH0588253 B2 JP H0588253B2
Authority
JP
Japan
Prior art keywords
polymerization
acrylonitrile
weight
polymer
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP59233747A
Other languages
Japanese (ja)
Other versions
JPS61111303A (en
Inventor
Teruhiko Sugimori
Yoshinobu Shiraishi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP23374784A priority Critical patent/JPS61111303A/en
Priority to EP19850114101 priority patent/EP0180975B2/en
Priority to DE8585114101T priority patent/DE3567886D1/en
Publication of JPS61111303A publication Critical patent/JPS61111303A/en
Publication of JPH0588253B2 publication Critical patent/JPH0588253B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は主要割合がアクリロニトリル構造単位
から成り、通常の湿式、乾湿式、乾式紡糸法で繊
維状に賦型して、衣料用繊維はいうまでもなく炭
素繊維製造用プレカーサーとして、或いは布状の
工業炉材料、テント用、帆布用原糸、若しくは縫
糸として、或いはセメント補強用アスベスト代替
強化剤として有用な繊維あるいは医療工業分野で
用いる膜状および中空糸状フイルター、ガスバリ
アー性フイルム等を作り得る高重合度アクリロニ
トリル系重合体の製造方法に関するものである。 〔従来の技術〕 従来、アクリロニトリル系重合体を工業的に製
造する方法としては、水性媒体中で、過硫酸塩/
酸性亜硫酸塩等よりなるレドツクス重合触媒を用
いた水系析出重合法、ジメチルスルホキシド
(DMSO)、ジメチルホルムアミド(DMF)、ジ
メチルアセトアミド(DMAc)、エチレンカーボ
ネート、γ−ブチロラクトン等のポリアクリロニ
トリルの溶媒を用いた均一溶液重合、あるいは乳
化重合などが挙げられる。しかしこれらの重合で
得られるアクリロニトリル系重合体は通常その還
元粘度は2.0以下であり、かつこの重合体を紡糸
して得られる繊維の強度は通常5.0g/d以下であ
るが、衣料用繊維としては十分な特性を有してい
る。アクリロニトリル系繊維がポリエステル、ポ
リアミド等の縮合系繊維に比べその耐加水分解
性、耐溶剤性、耐候性がすぐれているにもかかわ
らず、工業用分野としての利用がわずかに炭素繊
維用のプレカーサーとして用いられているにすぎ
ないのは、この強度の低さに依るところが大き
い。しかし、炭素繊維用プレカーサーに対する特
性の要求も高いものとなつてきており、さらに、
工業用材料としての利用を考えると、一歩改良さ
れた特性をもつアクリロニトリル系重合体の出現
が待たれている。この一つの方法として、高重合
度のアクリロニトリル系重合体が挙げられる。し
かし、溶液重合法では溶媒が連鎖移動剤として働
き、高重合度とはならず、懸濁重合法、あるいは
乳化重合法では、重合度はある程度上げられるも
のの枝別れ等の分枝ポリマーとなりやすく、溶解
性が著しく悪くなる。これらの問題解決のため従
来より各種の検討が行なわれている。たとえばジ
メチルスルホキサイドと水の混合媒体中で80重量
%以上のアクリロニトリルを含む重合性単量体混
合物を重合する方法(特公昭36−10996号)、ジメ
チルスルホキサイド/水比が重量で65/35〜85/
15に相当する混合溶媒中で、アクリロニトリル80
〜20重量%と少なくとも1つ以上のアクリロニト
リルよりも疎水性の強い重合性単量体20〜80重量
%、及び10重量%以上の少なくとも一つ以上のア
クリル酸、またはメタクリル酸のスルホアルキル
エステル、もしくはそれらの塩を含む単量体混合
物を、単量体濃度60重量%以下で重合する方法
(特公昭48−36430号)、あるいはジメチルアセト
アミド/水比が95/5〜75/25に相当する混合物
を重合媒体として用いる方法(特開昭52−47088
号)等がアクリロニトリル系重合体の度合度向上
のため製造方法として挙げられる。しかし、これ
らの方法はいずれも重合体の還元粘度は2.0以下
であり、かつ重合系の粘性が比較的低重合率で異
常に上昇し撹拌不能となり重合の制御や、生産性
の点で問題となる。また別の方法として、カルボ
ン酸類のアルカリ金属塩とトリアルキルアルミニ
ウムの反応生成物を用いて重合する方法(特公昭
47−26978号)で高重合度のアクリロニトリル系
重合体が得られている。しかるにこの系はアニオ
ン重合となり、重合媒体として水が使用できず、
重合操作、重合装置また、工業的生産という点か
ら問題となる。 〔発明が解決しようとする問題点〕 本発明は上記問題点を解決するために、水−有
機溶剤を重合媒体とした重合性単量体を含む混合
物の重合を開始し、重合体が析出し系が不均一と
なつた後に重合系にさらに、水を供給することに
より、安定に、かつ高い重合率まで、高重合度の
アクリロニトリル系重合体を連続的に製造する方
法を提供することを目的とする。 〔問題点を解決するための手段〕 本発明の要旨とするところは、少なくとも70モ
ル%のアクリロニトリルを含有する重合性不飽和
単量体10〜70重量%、有機溶剤15〜60重量%、水
15〜60重量%の組成から成る、混合組成物をラジ
カル開始剤を用いて重合を開始し重合体が析出し
系が不均一になつた後にさらに水を、仕込み重合
性単量体1重量部に対して、1〜10重量部供給し
て重合することにより、安定かつ高い重合率まで
高重合度のアクリロニトリル系重合体を連続的に
製造することにある。 従来のアクリロニトリル系重合体の重合度を向
上する方法が、溶液重合混合物中に、ポリアクリ
ロニトリルの貧溶媒である水、アルコール等を添
加し、溶媒への連鎖移動を抑えて重合度の向上を
計つており溶液重合の域を出ていないのに比し、
本発明の方法は、重合初期において重合系を重合
体を析出させた不均一状態とし、重合速度を著し
く速くし、高重合度重合体とし、この時起こりや
すい塊化の現象を、重合系にさらに水を追加供給
することにより抑えている点にある。また重合媒
体を、有機溶剤−水系としているため、この比を
変化させることにより、重合度の変更が容易にで
き、かつ通常の水系懸濁重合に使用できない有機
系のラジカル重合開始剤が使える点も、有利な点
といえる。すなわち、本発明のアクリロニトリル
系重合体の連続的製造方法は、現行の水系析出重
合と、溶液重合の両方の特色を生かした、全く新
しいアクリロニトリル系重合体の連続的製造方法
といえる。 本発明における高重合度アクリロニトリル系重
合体は、アクリロニトリルの量が70モル%以上で
あることがこの重合体を賦型して得られる繊維あ
るいはフイルム状物質に要求される化学的特性あ
るいは物理的特性の点より好ましいものである。
本発明のアクリロニトリルと共重合せしめる他の
重合性不飽和単量体としては、メチルアクリレー
ト又はメタクリレート、エチルアクリレート又は
メタクリレート、n−又はiso−又はt−ブチル
アクリレート又はメタクリレート、2−エチルヘ
キシルアクリレート又はメタクリレート、アクリ
ル酸、メタクリル酸、イタコン酸、α−クロロア
クリロニトリル、2−ヒドロキシエチルアクリロ
ニトリル、ヒドロキシアルキルアクリレート又は
メタクリレート、アクリルアミド、メタクリルア
ミド、塩化ビニル、塩化ビニリデン、臭化ビニ
ル、酢酸ビニル、プロピオン酸ビニル等のモノマ
ー類を挙げることができる。これらの重合性不飽
和単量体は、単独であるいは併用してアクリロニ
トリルと共重合せしめることができるが、その共
重合割合は、前述の通り、30モル%以下であるこ
とが好ましい。 本発明の重合媒体としては、有機溶媒と水を連
続的に供給して重合を進めるが、有機溶剤15〜60
重量%、水15〜60重量%の範囲で使用される。 ここで用いる有機溶剤としては、通常のアクリ
ロニトリルの溶剤ならばなんでも使用可能である
が、例えば、ジメチルホルムアミド(DMF)、ジ
メチルアセトアミド(DMAc)、ジメチルスルホ
キサイド(DMSO)、エチレンカーボネート
(EC)等が挙げられる。 このように重合媒体が有機溶剤−水の混合溶媒
であるため溶解性の点で重合開始剤の選択範囲が
広くなり、通常のラジカル開始剤なら何でも使用
可能である。例えば、アゾビスイソブチロニトリ
ル、2,2′−アゾビス(2,4−ジメチルバレロ
ニトリル)等のアゾ化合物、脂肪酸ジアシルパー
オキサイド類、もしくはパーオキシエステル類等
の有機過酸化物、あるいは過硫酸塩、およびそれ
らと還元剤を組み合わせたレドツクス開始剤等が
挙げられる。特に不純物のないことが要求される
場合、例えば、炭素繊維用プレカーサー用の重合
体の製造を行なう場合には、有機系のラジカル開
始剤を用いると、本発明の重合系には、重合性不
飽和単量体、水−有機溶剤、開始剤のみしか存在
しない、不純物の少ない系となる。このことは、
レドツクス開始剤を用いた系では、絶対必要な重
合体の洗浄工程を省略でき、経済性の点からまた
不純物のない重合体が得られる点からも、有利と
なり、本発明を実施する場合有機系の開始剤を使
用することが、より好ましい実施の態様といえ
る。 上記組成の重合性混合物の重合を開始し、その
まま重合を進めていくと、重合体が析出し、通常
は重合系全体が塊状となり、著しい場合は、撹拌
できなくなり、重合の継続が不可能となる。本発
明の大きな特徴は、重合におけるこの塊化を防ぐ
ために、2槽目以降の重合釜にさらに、水を追加
供給して、安定にかつ高い重合率まで、連続的に
重合を行なうところにある。 また、追加供給する水の量は、仕込み重合性不
飽和単量体1重量部に対して、1〜10重量部、好
ましくは2〜8重量部とすることが望ましい。重
合媒体の追加供給量が仕込み重合性単量体に対し
て、1重量部未満では重合系の塊化が防止でき
ず、10重量部を越えると得られる重合スラリー中
の重合体濃度が低くなり、生産性、経済性の点か
ら好ましくない。 以上述べた本発明のアクリロニトリル系重合体
の重合方法としては、2槽以上の重合槽を用い
て、1槽目で、重合性単量体を含む混合物を連続
的に供給して重合を開始させ、2槽目以降で重合
媒体を追加供給して重合を続ける多段式の連続重
合方式が採用できる。この場合、重合性不飽和単
量体の供給は、1槽目に限らず、2槽目以降で、
あるいは1槽目と2槽目または、それ以降で分割
供給という形態をとつてもいつこうにさしつかえ
ない。 これらの重合方法の中で、1槽目に、一定組成
の重合性不飽和単量体、重合媒体、開始剤を連続
的に供給して重合を開始し、2槽目でさらに水を
追加供給して、連続的に、安定かつ高い重合率ま
で重合を進める二槽式の連続重合法が、生産性、
経済性の点から、より好ましい本発明の実施態様
といえる。 なお本文中、あるいは以下に示す実施例中で
は、供給量は重合性不飽和単量体1重量部に対す
る重量基準を示し、還元粘度ηredは、0.5重量%
ジメチルホルムアミド溶液中、25℃で測定した値
である。また重合装置の代表例として、2槽式の
連続重合装置の概略を第3図に示す。 〔実施例〕 以下、実施例を用いてさらに詳細に本発明を説
明する。 実施例 1 第2図に示した二槽式の連続重合装置を用い
て、表1の要領で重合を行なつた。
[Industrial Field of Application] The main proportion of the present invention is an acrylonitrile structural unit, which is shaped into a fiber by conventional wet, wet-dry, and dry spinning methods, and is suitable for manufacturing not only clothing fibers but also carbon fibers. Fibers useful as precursors, cloth-like industrial furnace materials, fibers for tents and canvas, or sewing threads, or as an asbestos substitute reinforcing agent for reinforcing cement, membrane-like and hollow-fiber filters used in the medical industry, and gas barriers. The present invention relates to a method for producing a highly polymerized acrylonitrile-based polymer that can be used to make a transparent film and the like. [Prior Art] Conventionally, as a method for industrially producing acrylonitrile polymers, persulfate/
An aqueous precipitation polymerization method using a redox polymerization catalyst consisting of acidic sulfite, etc., and a polyacrylonitrile solvent such as dimethyl sulfoxide (DMSO), dimethylformamide (DMF), dimethylacetamide (DMAc), ethylene carbonate, or γ-butyrolactone. Examples include homogeneous solution polymerization and emulsion polymerization. However, the reduced viscosity of the acrylonitrile polymer obtained by these polymerizations is usually 2.0 or less, and the strength of the fiber obtained by spinning this polymer is usually 5.0 g/d or less, but it cannot be used as a clothing fiber. has sufficient characteristics. Although acrylonitrile fibers have superior hydrolysis resistance, solvent resistance, and weather resistance compared to condensed fibers such as polyester and polyamide, they are only rarely used in industrial applications as precursors for carbon fibers. The reason it is only used is largely due to its low strength. However, the requirements for the properties of precursors for carbon fibers have also become higher, and
Considering its use as an industrial material, the emergence of acrylonitrile polymers with improved properties is awaited. One method for this is to use an acrylonitrile polymer with a high degree of polymerization. However, in the solution polymerization method, the solvent acts as a chain transfer agent, and the degree of polymerization cannot be achieved.In the suspension polymerization method or the emulsion polymerization method, although the degree of polymerization can be increased to a certain extent, it tends to result in branched polymers such as branching. Solubility becomes significantly worse. Various studies have been carried out to solve these problems. For example, a method of polymerizing a polymerizable monomer mixture containing 80% by weight or more of acrylonitrile in a mixed medium of dimethyl sulfoxide and water (Japanese Patent Publication No. 36-10996), the dimethyl sulfoxide/water ratio is 65% by weight. /35~85/
Acrylonitrile in a mixed solvent equivalent to 15 80
~20% by weight of at least one polymerizable monomer more hydrophobic than acrylonitrile, and 10% by weight or more of at least one acrylic acid or sulfoalkyl ester of methacrylic acid, Or a method of polymerizing a monomer mixture containing those salts at a monomer concentration of 60% by weight or less (Japanese Patent Publication No. 48-36430), or a dimethylacetamide/water ratio of 95/5 to 75/25. Method using a mixture as a polymerization medium (Japanese Patent Application Laid-Open No. 52-47088
No.) etc. are mentioned as manufacturing methods for improving the degree of acrylonitrile polymer. However, in all of these methods, the reduced viscosity of the polymer is 2.0 or less, and the viscosity of the polymerization system increases abnormally at a relatively low polymerization rate, making stirring impossible and causing problems in terms of polymerization control and productivity. Become. Another method is to polymerize a reaction product of an alkali metal salt of a carboxylic acid and a trialkylaluminum (Tokuko Sho
47-26978), an acrylonitrile polymer with a high degree of polymerization was obtained. However, this system results in anionic polymerization, and water cannot be used as a polymerization medium.
Polymerization operations, polymerization equipment, and industrial production also pose problems. [Problems to be Solved by the Invention] In order to solve the above problems, the present invention starts the polymerization of a mixture containing a polymerizable monomer using a water-organic solvent as a polymerization medium, and the polymer precipitates out. The purpose of the present invention is to provide a method for continuously producing an acrylonitrile polymer with a high degree of polymerization stably and at a high polymerization rate by further supplying water to the polymerization system after the system becomes non-uniform. shall be. [Means for Solving the Problems] The gist of the present invention is that 10 to 70% by weight of a polymerizable unsaturated monomer containing at least 70 mol% of acrylonitrile, 15 to 60% by weight of an organic solvent, and water.
Polymerization of a mixed composition consisting of 15 to 60% by weight is started using a radical initiator, and after the polymer precipitates and the system becomes non-uniform, water is added to add 1 part by weight of polymerizable monomer. The objective is to continuously produce an acrylonitrile-based polymer having a stable and high degree of polymerization by supplying 1 to 10 parts by weight of the acrylonitrile-based polymer to a high degree of polymerization. The conventional method for improving the degree of polymerization of acrylonitrile-based polymers is to add water, alcohol, etc., which are poor solvents for polyacrylonitrile, to the solution polymerization mixture to suppress chain transfer to the solvent and improve the degree of polymerization. However, it has not gone beyond solution polymerization.
The method of the present invention brings the polymerization system to a non-uniform state in which the polymer is precipitated at the initial stage of polymerization, significantly increases the polymerization rate, produces a high degree of polymerization, and prevents the phenomenon of agglomeration that is likely to occur at this time into the polymerization system. Furthermore, this is suppressed by supplying additional water. In addition, since the polymerization medium is an organic solvent-water system, the degree of polymerization can be easily changed by changing this ratio, and organic radical polymerization initiators that cannot be used in normal aqueous suspension polymerization can be used. This can also be said to be an advantage. In other words, the continuous method for producing an acrylonitrile polymer of the present invention can be said to be a completely new method for continuously producing an acrylonitrile polymer that takes advantage of the characteristics of both the current aqueous precipitation polymerization and solution polymerization. The high degree of polymerization of the acrylonitrile-based polymer of the present invention requires that the amount of acrylonitrile be 70 mol% or more to meet the chemical or physical properties required for fibers or film materials obtained by shaping this polymer. This is more preferable from the point of view.
Other polymerizable unsaturated monomers copolymerized with the acrylonitrile of the present invention include methyl acrylate or methacrylate, ethyl acrylate or methacrylate, n- or iso- or t-butyl acrylate or methacrylate, 2-ethylhexyl acrylate or methacrylate, Monomers such as acrylic acid, methacrylic acid, itaconic acid, α-chloroacrylonitrile, 2-hydroxyethyl acrylonitrile, hydroxyalkyl acrylate or methacrylate, acrylamide, methacrylamide, vinyl chloride, vinylidene chloride, vinyl bromide, vinyl acetate, vinyl propionate, etc. I can list several types. These polymerizable unsaturated monomers can be copolymerized with acrylonitrile alone or in combination, but the copolymerization ratio is preferably 30 mol % or less, as described above. As the polymerization medium of the present invention, an organic solvent and water are continuously supplied to proceed with polymerization.
% by weight, water in the range of 15-60% by weight. As the organic solvent used here, any ordinary acrylonitrile solvent can be used, such as dimethylformamide (DMF), dimethylacetamide (DMAc), dimethylsulfoxide (DMSO), ethylene carbonate (EC), etc. can be mentioned. Since the polymerization medium is a mixed solvent of organic solvent and water, the selection range of polymerization initiators is wide in terms of solubility, and any conventional radical initiator can be used. For example, azo compounds such as azobisisobutyronitrile and 2,2'-azobis(2,4-dimethylvaleronitrile), organic peroxides such as fatty acid diacyl peroxides or peroxy esters, or persulfuric acid. Examples include salts and redox initiators in combination with these salts and reducing agents. In particular, when the absence of impurities is required, for example, when producing a polymer for a precursor for carbon fibers, when an organic radical initiator is used, the polymerization system of the present invention has no polymerizable impurities. A system containing only saturated monomers, water-organic solvent, and initiator is created with few impurities. This means that
The system using a redox initiator is advantageous in terms of economy and the ability to obtain a polymer free of impurities because the absolutely necessary washing step for the polymer can be omitted. It can be said that it is a more preferable embodiment to use an initiator of When polymerization of a polymerizable mixture with the above composition is started and the polymerization continues as it is, the polymer precipitates and the entire polymerization system usually becomes lumpy, and in severe cases, stirring becomes impossible and continuation of the polymerization becomes impossible. Become. A major feature of the present invention is that in order to prevent this clumping during polymerization, water is additionally supplied to the second and subsequent polymerization vessels, and the polymerization is carried out stably and continuously to a high polymerization rate. . Further, the amount of additional water to be supplied is desirably 1 to 10 parts by weight, preferably 2 to 8 parts by weight, per 1 part by weight of the charged polymerizable unsaturated monomer. If the additional supply amount of the polymerization medium is less than 1 part by weight based on the charged polymerizable monomer, agglomeration of the polymerization system cannot be prevented, and if it exceeds 10 parts by weight, the polymer concentration in the resulting polymerization slurry will be low. , unfavorable in terms of productivity and economy. The method for polymerizing the acrylonitrile polymer of the present invention described above uses two or more polymerization tanks, and in the first tank, a mixture containing a polymerizable monomer is continuously supplied to start polymerization. A multi-stage continuous polymerization method can be adopted in which polymerization is continued by additionally supplying a polymerization medium from the second tank onwards. In this case, the supply of the polymerizable unsaturated monomer is not limited to the first tank, but from the second tank onwards.
Alternatively, it is always possible to divide the supply into the first tank and the second tank or thereafter. Among these polymerization methods, polymerization is started by continuously supplying a polymerizable unsaturated monomer, a polymerization medium, and an initiator with a fixed composition in the first tank, and water is additionally supplied in the second tank. The two-vessel continuous polymerization method, which continuously advances polymerization to a stable and high polymerization rate, improves productivity and
From the point of view of economy, this embodiment can be said to be a more preferable embodiment of the present invention. In addition, in the text or in the examples shown below, the amount supplied is based on the weight based on 1 part by weight of the polymerizable unsaturated monomer, and the reduced viscosity ηred is 0.5% by weight.
This is a value measured at 25°C in a dimethylformamide solution. Further, as a representative example of a polymerization apparatus, a two-tank continuous polymerization apparatus is schematically shown in FIG. [Example] Hereinafter, the present invention will be explained in more detail using Examples. Example 1 Polymerization was carried out as shown in Table 1 using a two-tank continuous polymerization apparatus shown in FIG.

【表】【table】

【表】 表1の要領で行なつた重合の結果を表2に示
す。
[Table] Table 2 shows the results of polymerization carried out as shown in Table 1.

【表】 重合初期において若干重合度の高い重合体が得
られているが、平均2.3程度の還元粘度を持つ高
重合度の重合体を高重合率で得た。 実施例 2 有機溶剤と蒸留水の比を変えた以外は、表1と
全く同じ条件で重合を行ない、表3の結果を得
た。このように、有機溶剤/水比を変えるだけ
で、容易に重合度を変えることができる。還元粘
度は、重合初期を除き、系が安定してからの平均
値を示す。
[Table] A polymer with a slightly high degree of polymerization was obtained at the initial stage of polymerization, but a high degree of polymerization with an average reduced viscosity of about 2.3 was obtained at a high polymerization rate. Example 2 Polymerization was carried out under exactly the same conditions as in Table 1, except that the ratio of organic solvent to distilled water was changed, and the results shown in Table 3 were obtained. In this way, the degree of polymerization can be easily changed by simply changing the organic solvent/water ratio. The reduced viscosity indicates the average value after the system stabilizes, excluding the initial stage of polymerization.

【表】 供給量、その他条件は、すべて実施例1と全く
同様である。 比較例 1 レドツクス重合開始剤を用いた水系懸濁重合
を、1槽の重合槽を用いた連続重合法で行なつ
た。
[Table] The supply amount and other conditions were all the same as in Example 1. Comparative Example 1 Aqueous suspension polymerization using a redox polymerization initiator was carried out by a continuous polymerization method using one polymerization tank.

〔発明の効果〕〔Effect of the invention〕

本発明の製造方法を用いると、還元粘度が2以
上、特に2.5以上という高重合度のアクリロニト
リル系重合体が容易に得られ、かつ、有機系開始
剤、例えば、アゾビスイソブチロニトリル等を用
いると、重合系が、水−有機溶剤−単量体−開始
剤という単純な系で、洗浄工程が省略でき、経済
性の点で有利となる。また、重合度がかなり高い
にもかかわらず、従来の製造法で得られる重合体
に比べ、溶媒への溶解性が良好であり、特殊な紡
糸方法をとらなくても、高いヤング率をもつ繊維
に賦形可能である。このような高いヤング率を有
する繊維は従来の低ヤング率の繊維に比べて、そ
の強度も高くなり、例えば、炭素繊維製造用プレ
カーサーとして利用する際には、耐炎化および前
炭素化において、可成りの倍率で伸長することが
でき、高い強度を有し、しかも伸長が、1.7%以
上の炭素繊維とすることができる。また、帆布用
として利用する際にも極めて有用であり、セメン
ト補強材として使用する際は、その優れた耐アル
カリ性のため、曲げ強度の高い硬化品とすること
ができる。
By using the production method of the present invention, an acrylonitrile polymer having a high degree of polymerization with a reduced viscosity of 2 or more, particularly 2.5 or more can be easily obtained, and an organic initiator such as azobisisobutyronitrile can be used. When used, the polymerization system is a simple system of water-organic solvent-monomer-initiator, and the washing step can be omitted, which is advantageous in terms of economy. In addition, despite having a fairly high degree of polymerization, it has better solubility in solvents compared to polymers obtained by conventional manufacturing methods, and fibers with high Young's modulus can be produced without special spinning methods. It can be shaped into Fibers with such a high Young's modulus have higher strength than conventional fibers with a low Young's modulus. The carbon fiber can be elongated at a certain magnification, has high strength, and has an elongation of 1.7% or more. It is also extremely useful when used as a canvas material, and when used as a cement reinforcing material, it can be made into a hardened product with high bending strength due to its excellent alkali resistance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明方法に使用する重合性混合物
の仕込み時の組成を示す図である。第2図は、本
発明を実施するのに最も好ましい態様である2槽
式の連続重合装置の概略を示す。
FIG. 1 is a diagram showing the composition of the polymerizable mixture used in the method of the present invention at the time of preparation. FIG. 2 schematically shows a two-tank continuous polymerization apparatus, which is the most preferred embodiment for carrying out the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 2段あるいはそれ以上の多段式の連続重合装
置を用いて、少なくとも70モル%以上のアクリロ
ニトリルを含有する重合性不飽和単量体10〜70重
量%、有機溶剤15〜60重量%、水15〜60重量%の
組成から成る混合組成物を、ラジカル開始剤を用
いて重合を開始し、重合体が析出し系が不均一と
なつた後、水を、仕込み重合性不飽和単量体1重
量部に対して1〜10重量部供給して、連続的に重
合することを特徴とするアクリロニトリル系重合
体の連続的製造方法。
1 Using a two-stage or more multi-stage continuous polymerization apparatus, 10 to 70% by weight of a polymerizable unsaturated monomer containing at least 70 mol% of acrylonitrile, 15 to 60% by weight of an organic solvent, and 15% of water Polymerization of a mixed composition consisting of ~60% by weight is started using a radical initiator, and after the polymer precipitates and the system becomes non-uniform, water is added to the polymerizable unsaturated monomer 1. 1. A method for continuously producing an acrylonitrile polymer, which comprises supplying 1 to 10 parts by weight of an acrylonitrile polymer and carrying out continuous polymerization.
JP23374784A 1984-11-06 1984-11-06 Continuous production of acrylonitrile polymer Granted JPS61111303A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP23374784A JPS61111303A (en) 1984-11-06 1984-11-06 Continuous production of acrylonitrile polymer
EP19850114101 EP0180975B2 (en) 1984-11-06 1985-11-06 Process for producing acrylonitrile polymer
DE8585114101T DE3567886D1 (en) 1984-11-06 1985-11-06 Process for producing acrylonitrile polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23374784A JPS61111303A (en) 1984-11-06 1984-11-06 Continuous production of acrylonitrile polymer

Publications (2)

Publication Number Publication Date
JPS61111303A JPS61111303A (en) 1986-05-29
JPH0588253B2 true JPH0588253B2 (en) 1993-12-21

Family

ID=16959941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23374784A Granted JPS61111303A (en) 1984-11-06 1984-11-06 Continuous production of acrylonitrile polymer

Country Status (1)

Country Link
JP (1) JPS61111303A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994017854A1 (en) * 1993-02-04 1994-08-18 Eliane Benatouil Personal face-lift device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU764639B2 (en) 1998-04-23 2003-08-28 Builmatel Co., Ltd. Buckle and band with this buckle

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5271588A (en) * 1975-11-06 1977-06-15 Mitsubishi Rayon Co Ltd Production of acrylonitrile copolymer

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5271588A (en) * 1975-11-06 1977-06-15 Mitsubishi Rayon Co Ltd Production of acrylonitrile copolymer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994017854A1 (en) * 1993-02-04 1994-08-18 Eliane Benatouil Personal face-lift device

Also Published As

Publication number Publication date
JPS61111303A (en) 1986-05-29

Similar Documents

Publication Publication Date Title
US5356985A (en) Highly-concentrated aqueous polyacrylonitrile emulsions and a method for their preparation
US3781248A (en) Method of producing acrylic copolymer
JP2007197672A (en) Manufacturing method of polyacrylonitrile
US3299007A (en) Interpolymer of acrylonitrile, a masked isocyanate and a hydroxyl substituted monomer and a process for making same
JPH0588253B2 (en)
US3453223A (en) Process for the preparation of acrylonitrile graft copolymers
EP0180975B1 (en) Process for producing acrylonitrile polymer
US3669919A (en) Polyacrylonitrile process
JP4505980B2 (en) Method for producing acrylonitrile polymer
US2587465A (en) Solution polymerization of acrylonitrile polymers in aqueous alcohol mixtures
JPS6312610A (en) Continuous production of acrylonitrile polymer
US4004072A (en) Process for producing acrylonitrile polymers
JPS6312609A (en) Production of acrylonitrile polymer
US3174954A (en) Process for producing acrylonitrile polymers using catalyst systems of hydroxylamine-n-sulfonates and tetravalent sulfur containing compounds
JPS6112705A (en) Production of acrylonitrile polymer
JPS61111310A (en) Production of acrylonitrile polymer
JPS6112704A (en) Production of acrylonitrile polymer
EP0201908A2 (en) Acrylonitrile spinning solution and process for producing fibers therewith
JPS62256807A (en) Production of acrylonitrile polymer
US3736302A (en) Process for polymerizing vinyl compounds using premixed redox catalyst or nitrous compounds/sulfoxy compounds
JPS6114206A (en) Acrylonitrile polymer
JPH11200140A (en) Production of acrylic fiber precursor
JPS62276014A (en) Production of acrylonitrile yarn having high strength and high modulus of elasticity
US3355410A (en) Solution polymerization of acrylonitrile using a catalyst system comprising an oxidizing agent and silver, vanadium or rhodium and salts thereof
JPS61167013A (en) Acrylonitrile fiber

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees