JPH0587839A - Measurement of voltage distribution - Google Patents
Measurement of voltage distributionInfo
- Publication number
- JPH0587839A JPH0587839A JP24883591A JP24883591A JPH0587839A JP H0587839 A JPH0587839 A JP H0587839A JP 24883591 A JP24883591 A JP 24883591A JP 24883591 A JP24883591 A JP 24883591A JP H0587839 A JPH0587839 A JP H0587839A
- Authority
- JP
- Japan
- Prior art keywords
- liquid crystal
- film
- electric field
- voltage distribution
- film body
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Liquid Crystal (AREA)
- Measurement Of Current Or Voltage (AREA)
- Thin Film Transistor (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は表面上に分布する電圧情
報を検出する測定方法に関するものであり、特に液晶表
示装置におけるTFTアレー基板の検査や電子写真装置
における感光ドラムの検査などに有用なものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a measuring method for detecting voltage information distributed on a surface, and is particularly useful for inspecting a TFT array substrate in a liquid crystal display device or a photosensitive drum in an electrophotographic device. It is a thing.
【0002】[0002]
【従来の技術】最近、二次元情報の表示、印刷技術がエ
レクトロニクスの進歩により急速に変化しつつあり、そ
の中でも液晶表示装置と電子写真装置は特に伸びが著し
い。2. Description of the Related Art Recently, two-dimensional information display and printing technologies have been rapidly changing due to advances in electronics, and among them, liquid crystal display devices and electrophotographic devices have been particularly remarkable.
【0003】これらの装置に共通していることは、平面
上に約10ないし100ミクロンメートルのピッチ間隔
で電圧分布を与えるという一次元信号を二次元信号に変
換するプロセスを有することである。Common to these devices is the process of converting a one-dimensional signal into a two-dimensional signal, which provides a voltage distribution on the plane with a pitch spacing of about 10 to 100 microns.
【0004】こうした信号変換プロセスはその忠実度が
要求されるが、液晶表示装置におけるTFTアレー基板
や電子写真装置における感光ドラムでは面内に数十万な
いし、千数百万個所のポイントにおける忠実度を要求さ
れることになる。こうしたポイントでの欠陥は最終的な
装置にした場合には人間の目による二次元情報識別能力
により直感的に判定されることになるが、製造工程でT
FTアレー基板や感光ドラムの状態で判定するために
は、各ポイントごとにプロービングを行なうという方法
を用いざるを得なかった。The signal conversion process requires high fidelity, but in the case of a TFT array substrate in a liquid crystal display device or a photosensitive drum in an electrophotographic device, the fidelity at hundreds of thousands or millions of points in a plane. Will be required. Defects at these points can be intuitively determined by the two-dimensional information identification ability of the human eye when the final device is used.
In order to determine the state of the FT array substrate or the photosensitive drum, a method of performing probing at each point had to be used.
【0005】図6は、液晶表示装置用のTFTアレー基
板の一部分を示し、プロービングによる測定を示したも
のである。ガラス基板27上に形成された電極膜28は
それぞれが一画素を形成すべきエリアであり、この電極
膜28にはESなる電圧を印加したソース電極ライン2
9からアモルファスシリコントランジスター部30を経
て、ドレイン電極31を介して電圧が印加される。アモ
ルファスシリコントランジスタ部30はゲート電極32
に印加される電圧EGの大きさにより抵抗値が変化する
のでスイッチの働を行なう、電極膜28に印加された電
圧は、プローグ33を電極膜28に接触させることによ
り電気的接触が得られ容易に電圧Vを通常の電圧測定機
にて測定できる。FIG. 6 shows a part of a TFT array substrate for a liquid crystal display device and shows measurement by probing. Each of the electrode films 28 formed on the glass substrate 27 is an area where one pixel is to be formed, and the source electrode line 2 to which a voltage ES is applied is applied to the electrode film 28.
A voltage is applied from 9 through the amorphous silicon transistor portion 30 and the drain electrode 31. The amorphous silicon transistor section 30 has a gate electrode 32.
Since the resistance value changes depending on the magnitude of the voltage EG applied to the electrode, the voltage applied to the electrode film 28 acts as a switch, and an electrical contact can be easily obtained by bringing the plug 33 into contact with the electrode film 28. In addition, the voltage V can be measured with an ordinary voltage measuring device.
【0006】[0006]
【発明が解決しようとする課題】前記のように、電極ご
とにプローブを当てる方法は確実ではあるものの次のよ
うな欠点を有している。As described above, although the method of applying a probe to each electrode is certain, it has the following drawbacks.
【0007】 表示密度が高まるにつれて、プロービ
ングの位置合わせが難かしくなる。 表示密度が高まり、大面積化になるにつれて測定個
所が増し測定時間がかかる。As the display density increases, it becomes difficult to align the probing. As the display density increases and the area increases, the number of measurement points increases and the measurement time is increased.
【0008】 プロービングにより被測定物の表示機
能を担う部分を傷つける恐れがある。またプローブの汚
染により接触不良となる恐れもある。Probing may damage a portion having a display function of the object to be measured. Moreover, there is a possibility that the probe may become contaminated due to contamination.
【0009】[0009]
【課題を解決するための手段】本発明は、液晶を含むフ
ィルム体とこのフィルム体の表面に設けられた電極体よ
りなる測定用フィルムを、被測定物の表面と電極体との
間に液晶を含むフィルム体が位置するように接触させ、
電極体と被測定物の少なくともどちらか一方を実質的に
透明となし、被測定物と電極体とを電気的に接続した状
態で、液晶を含むフィルム体に光ビームを入射し、出射
した光ビームを検知するものである。According to the present invention, a measuring film comprising a film body containing a liquid crystal and an electrode body provided on the surface of the film body is provided between the surface of the object to be measured and the electrode body. Contact so that the film body including
At least one of the electrode body and the object to be measured is substantially transparent, the object to be measured and the electrode body are electrically connected to each other, and a light beam is incident on the film body containing the liquid crystal and emitted light. It detects a beam.
【0010】[0010]
【作用】被測定物と電極体とを電気的に接続することに
より、被測定物表面の電位と電極体の電位との電位差、
被測定物と電極体との距離に応じた電場を生ずる。被測
定物と電極体との間には液晶を含むフィルム体があるの
で、液晶は電場の方向と強さに応じてその姿勢が変化す
る。被測定物と電極体の少なくともどちらか一方は実質
的に透明体であるから、このフィルム体に対して光ビー
ムを入射することが可能であり、少なくとも反射光が、
両方が透明であれば透過光がフィルム体を通って出射さ
れる。この時出射される光ビームは液晶の姿勢状態に応
じて、光散乱量の変化や、偏光光の透過量の差、複屈折
量の変化などとなって表われるのでこれ等の物理量を検
知することにより、被測定物の表面の電圧分布を検知す
ることができる。By electrically connecting the DUT and the electrode body, the potential difference between the surface potential of the DUT and the electrode body,
An electric field is generated according to the distance between the object to be measured and the electrode body. Since there is a film body containing liquid crystal between the object to be measured and the electrode body, the posture of the liquid crystal changes depending on the direction and strength of the electric field. Since at least one of the DUT and the electrode body is a substantially transparent body, it is possible to make a light beam enter the film body, and at least the reflected light,
If both are transparent, the transmitted light is emitted through the film body. The light beam emitted at this time appears as a change in the amount of scattered light, a difference in the amount of transmitted polarized light, a change in the amount of birefringence, etc., depending on the attitude of the liquid crystal, so these physical quantities are detected. As a result, the voltage distribution on the surface of the measured object can be detected.
【0011】[0011]
【実施例】以下実施例に基づいて本発明の説明を行な
う。EXAMPLES The present invention will be described below based on examples.
【0012】図1は、被測定物と測定用フィルムの部分
断面図をしめす。被測定物は従来例と同様に液晶表示装
置用のTFTアレーであり、都合によりガラス基板1と
電極膜2、3のみを示している。電極膜2には電圧VO
が印加された状態、電極膜3は電圧が印加されていない
状態とする。一方測定用フィルムは、高分子液晶フィル
ム4にITO電極体5を形成し、高分子液晶フィルム4
を電極膜2、3に接するように重ね、被測定物のTFT
アレー駆動回路(図示せず)のアース電位とITO電極
体5の電位を同じにするようにアース7接続することに
より、高分子液晶フィルム4に電場が作用する。電場が
作用していない状態の高分子液晶6は通常フィルム面に
ランダムな方向に姿勢をとっている。ここに光線8′を
入射すると散乱が起こり出射光は散乱光となる。電場が
作用することにより、高分子液晶の誘電分極×電場によ
る力と、高分子液晶を規制する力とのバランスにより、
フィルム内の高分子液晶6′は電場の方向に姿勢を変え
る。ここに光線8を透過させると比較的散乱の少ない出
射光が得られ光量が増大して観測される。FIG. 1 shows a partial cross-sectional view of an object to be measured and a measuring film. The object to be measured is a TFT array for a liquid crystal display device as in the conventional example, and only the glass substrate 1 and the electrode films 2 and 3 are shown for convenience. The voltage VO is applied to the electrode film 2.
Is applied, and no voltage is applied to the electrode film 3. On the other hand, the measuring film is the polymer liquid crystal film 4 in which the ITO electrode body 5 is formed on the polymer liquid crystal film 4.
Are placed in contact with the electrode films 2 and 3, and the TFT of the DUT is measured.
An electric field acts on the polymer liquid crystal film 4 by connecting the ground 7 so that the ground potential of the array drive circuit (not shown) and the potential of the ITO electrode body 5 are the same. The polymer liquid crystal 6 in a state where no electric field is applied usually takes a posture in a random direction on the film surface. When the light ray 8'is incident on this, scattering occurs and the emitted light becomes scattered light. By the action of the electric field, the balance between the dielectric polarization of the polymer liquid crystal × the electric field force and the force that regulates the polymer liquid crystal,
The polymer liquid crystal 6'in the film changes its posture in the direction of the electric field. When the light ray 8 is transmitted therethrough, emitted light with relatively little scattering is obtained, and the amount of light is increased and observed.
【0013】図2は、図1における電極膜2、3に印加
した電圧と透過光8、8′の関係を概念的に示すグラフ
であり、ある電圧値から光量の変化が現われ(A点)、
更に高い電圧値を超えると変化しなくなる(B点)。電
極膜2、3に印加する基準電圧をVOに設定すると、T
FTアレー基板上における断線、ショート、アモルファ
スシリコン特性劣化等による電極膜2、3への印加電圧
不良を光量の変化として捉えることができる。FIG. 2 is a graph conceptually showing the relationship between the voltage applied to the electrode films 2 and 3 in FIG. 1 and the transmitted light 8 and 8 '. The change in the light amount appears from a certain voltage value (point A). ,
When it exceeds a higher voltage value, it does not change (point B). When the reference voltage applied to the electrode films 2 and 3 is set to VO, T
A defective voltage applied to the electrode films 2 and 3 due to disconnection, short circuit, deterioration of amorphous silicon characteristics, etc. on the FT array substrate can be grasped as a change in light amount.
【0014】図3は別の実施例における測定用フィルム
の部分断面図であり、高分子フィルム9内に分散された
液晶滴10、10′を含むフィルム体にITO膜11を
形成して成る測定用フィルムは、電場がかからない液晶
滴10内の液晶分子の姿勢が液晶滴ごとに方向が異なり
入射光12は散乱光となって出射される。一方電場がか
かっている液晶滴10′側では、電場の方向に液晶の方
向が揃っており、予めこの方向の液晶分子の屈折率と高
分子フィルム9の屈折率を合わせておくことにより入射
光13はそのまま透過するので人間の目で見て電圧のO
N/OFFを検知することができる。FIG. 3 is a partial cross-sectional view of a measuring film in another embodiment, in which an ITO film 11 is formed on a film body containing liquid crystal droplets 10 and 10 'dispersed in a polymer film 9. In the film for use, the orientation of the liquid crystal molecules in the liquid crystal droplet 10 in which no electric field is applied has a different direction for each liquid crystal droplet, and the incident light 12 is emitted as scattered light. On the other hand, on the side of the liquid crystal droplet 10 'where an electric field is applied, the direction of the liquid crystal is aligned with the direction of the electric field, and by adjusting the refractive index of the liquid crystal molecules in this direction and the refractive index of the polymer film 9 in advance, incident light Since 13 is transparent as it is, the voltage O
N / OFF can be detected.
【0015】図4は更に別の実施例を示す測定用フィル
ムの部分断面図である。延伸したポリイミドフィルム1
4、15の間にスペーサ球16と液晶17、17′をは
さみ一方のポリイミドフィルム14にはITOの電極体
18、更にその上に支持ガラス基板19を設け、2枚の
ポリイミドフィルム14、15の延伸方向を直交方向と
して、液晶17を配向させ、液晶17′に電場が作用し
た時に液晶が面と垂直方向に向くように精成したもので
あり、液晶の複屈折の量を観測できるので電場の変化を
感度良く測定でき、基板支持に平坦さの効果を得るもの
である。FIG. 4 is a partial sectional view of a measuring film showing still another embodiment. Stretched polyimide film 1
A spacer sphere 16 and liquid crystals 17 and 17 'are sandwiched between 4 and 15, and one of the polyimide films 14 is provided with an ITO electrode body 18, and a supporting glass substrate 19 is provided on the ITO electrode body 18, and two polyimide films 14 and 15 are provided. The liquid crystal 17 is oriented so that the stretching direction is orthogonal, and the liquid crystal is refined so that when the electric field acts on the liquid crystal 17 ', the liquid crystal is oriented in the direction perpendicular to the plane, and the amount of birefringence of the liquid crystal can be observed. Can be measured with high sensitivity, and the effect of flatness can be obtained for supporting the substrate.
【0016】図5は更に別の実施例におけるアレー基板
と測定用フィルムぼ部分断面図を示したものであり、ア
レー基板20の裏面に偏光板フィルム21を設け、測定
用フィルムとして、液晶ポリマーフィルム22、電極体
23、ガラス基板24、偏光板フィルム25を順次重ね
たものを用い、アレー基板20に対し、僅かな空間26
を介して液晶ポリマーフィルム22を対向させて測定用
フィルムを重ねたものである。このように精成すること
により、アレー基板20に電気信号を与えた時に、正規
の電圧になっていない部分を、偏光板を透過した光の強
さの差として、人間の目で容易に捉えられるようにでき
ることと、アレーに直接触わらないのでアレー基板を汚
染しないという効果を得る。FIG. 5 is a partial sectional view of an array substrate and a measuring film according to still another embodiment. A polarizing plate film 21 is provided on the back surface of the array substrate 20, and a liquid crystal polymer film is used as a measuring film. 22, an electrode body 23, a glass substrate 24, and a polarizing plate film 25 are sequentially stacked, and a small space 26 is formed in the array substrate 20.
The measurement film is superposed with the liquid crystal polymer film 22 facing each other with the film interposed therebetween. By refining in this way, when an electric signal is applied to the array substrate 20, a portion which does not have a regular voltage is easily grasped by human eyes as a difference in intensity of light transmitted through the polarizing plate. And the effect that the array substrate is not contaminated because it does not come into direct contact with the array.
【0017】以上のように、従来技術が電場による導体
中の電導を測定の基本メカニズムにしてしていたのに対
し、本発明は電場による液晶物質の姿勢変化(詳しく
は、電場による液晶分子内の誘電分極とそれに伴なう電
気的モーメントによる変位)を測定基本メカニズムにし
て電圧の測定していることが理解できる。As described above, while the conventional technique uses the electric conduction in the conductor by the electric field as the basic mechanism of the measurement, the present invention changes the posture of the liquid crystal substance by the electric field (specifically, the liquid crystal molecules are It can be understood that the voltage is measured by using the dielectric polarization and the displacement due to the electrical moment accompanying it as the basic measurement mechanism.
【0018】[0018]
【発明の効果】以上のように本発明は次の利点を有す
る。As described above, the present invention has the following advantages.
【0019】 プロービングをする必要がないので操
作が早い、位置合わせが不要、被測定物を傷つけない 光で検出する方式なので二次元的に情報処理できる
ので処理が早い、人間の目にも感覚的に判断させること
も可能になる。Operation is fast because there is no need for probing. Positioning is not necessary, and because it is a method that detects light with a light that does not damage the object to be measured, it is possible to perform two-dimensional information processing, so processing is fast, and it is also sensible to the human eye. It is also possible to let them judge.
【図1】本発明の一実施例における測定用フィルムと被
測定物の部分断面図FIG. 1 is a partial cross-sectional view of a measuring film and an object to be measured according to an embodiment of the present invention.
【図2】図1の電気一光学的動作を示すグラフFIG. 2 is a graph showing the electro-optical operation of FIG.
【図3】別の実施例を示す測定用フィルムの部分断面図FIG. 3 is a partial sectional view of a measuring film showing another embodiment.
【図4】別の実施例を示す測定用フィルムの部分断面図FIG. 4 is a partial sectional view of a measuring film showing another embodiment.
【図5】別の実施例による測定方法を示す測定用フィル
ムと被測定物の部分断面図FIG. 5 is a partial cross-sectional view of a measuring film and an object to be measured showing a measuring method according to another embodiment.
【図6】従来例を示す部分府瞰図FIG. 6 Partial perspective view showing a conventional example
6、6′、10、10′、17、17′ 液晶 4、9、14、15 フィルム 5、11、18 電極体 2、3、20 被測定物 6, 6 ', 10, 10', 17, 17 'Liquid crystal 4, 9, 14, 15 Film 5, 11, 18 Electrode body 2, 3, 20 DUT
フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H01L 29/784 Continuation of front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location H01L 29/784
Claims (7)
のフィルム体の表面に設けられた電極体よりなる測定用
フィルムを、被測定物の表面と電極体との間に液晶を含
むフィルム体が位置するように対向させ、電極体と費測
定物の少なくともどちらか一方を実質的に透明体とな
し、費測定物と電極体とを電気的に接続した状態で、液
晶を含むフィルム体に光ビームを入射し、出射した光ビ
ームを検知することにより費測定物の表面電位を読み取
る電圧分布測定方法。1. A measuring film comprising a film body containing at least a liquid crystal and an electrode body provided on the surface of the film body, wherein the film body containing the liquid crystal is located between the surface of the object to be measured and the electrode body. So that at least one of the electrode body and the cost measurement object is substantially a transparent body, and the cost measurement object and the electrode element are electrically connected, a light beam is applied to the film body containing the liquid crystal. A voltage distribution measuring method for reading the surface potential of an object to be measured by detecting a light beam that is incident on and emitted.
リマーフィルムより成る特許請求の範囲第1項記載の電
圧分布測定方法。2. The voltage distribution measuring method according to claim 1, wherein the film body containing liquid crystal is a high molecular weight liquid crystal polymer film.
ーフィルムに液晶分子を分散させてなる特許請求の範囲
第1項記載の電圧分布測定方法。3. The voltage distribution measuring method according to claim 1, wherein the film body containing liquid crystal is formed by dispersing liquid crystal molecules in a polymer film.
ミド延伸フィルム間に液晶を封入し、スペーサにて2枚
のポリイミド延伸フィルムの距離を一定に保ったフィル
ム体である特許請求の範囲第1項記載の電圧分布測定方
法。4. The liquid crystal-containing film body is a film body in which liquid crystal is enclosed between two polyimide stretched films and a distance between the two polyimide stretched films is kept constant by a spacer. The voltage distribution measuring method according to item 1.
平板上に固定し、液晶を含むフィルム体が表面に出るよ
う構成した特許請求の範囲第1項記載の電圧分布測定方
法。5. The voltage distribution measuring method according to claim 1, wherein the film body containing liquid crystal and the electrode body are fixed on a solid plate so that the film body containing liquid crystal appears on the surface.
ム体上に偏光板をのせ、偏光板から出射する光量を検知
する特許請求の範囲第1項記載の電圧分布測定方法。6. The voltage distribution measuring method according to claim 1, wherein a polarizing plate is placed on a film body containing at least an object to be measured and a liquid crystal, and the amount of light emitted from the polarizing plate is detected.
位相差を検知する特許請求の範囲第1項記載の電圧分布
測定方法。7. The voltage distribution measuring method according to claim 1, wherein a phase difference between an incident light beam and an emitted light beam is detected.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24883591A JPH0587839A (en) | 1991-09-27 | 1991-09-27 | Measurement of voltage distribution |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24883591A JPH0587839A (en) | 1991-09-27 | 1991-09-27 | Measurement of voltage distribution |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0587839A true JPH0587839A (en) | 1993-04-06 |
Family
ID=17184132
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP24883591A Pending JPH0587839A (en) | 1991-09-27 | 1991-09-27 | Measurement of voltage distribution |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0587839A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1995018369A1 (en) * | 1993-12-24 | 1995-07-06 | Hoechst Aktiengesellschaft | Device for detecting wiring defect of wiring substrate |
US5844249A (en) * | 1993-12-24 | 1998-12-01 | Hoechst Aktiengesellschaft | Apparatus for detecting defects of wires on a wiring board wherein optical sensor includes a film of polymer non-linear optical material |
-
1991
- 1991-09-27 JP JP24883591A patent/JPH0587839A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1995018369A1 (en) * | 1993-12-24 | 1995-07-06 | Hoechst Aktiengesellschaft | Device for detecting wiring defect of wiring substrate |
US5844249A (en) * | 1993-12-24 | 1998-12-01 | Hoechst Aktiengesellschaft | Apparatus for detecting defects of wires on a wiring board wherein optical sensor includes a film of polymer non-linear optical material |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4983911A (en) | Voltage imaging system using electro-optics | |
US5124635A (en) | Voltage imaging system using electro-optics | |
US5543729A (en) | Testing apparatus and connector for liquid crystal display substrates | |
US5097201A (en) | Voltage imaging system using electro-optics | |
US4723077A (en) | Dual liquid crystal light valve based visible-to-infrared dynamic image converter system | |
JPH0587839A (en) | Measurement of voltage distribution | |
US5614839A (en) | Method for optically testing flat panel display base plates | |
US4002404A (en) | Imaging system with latent alignment image | |
US5750981A (en) | Non-contact electro-optic detection of photovoltages created in a semiconductor by a probe beam | |
KR102610079B1 (en) | Electro-optical device for detecting local changes in electric fields | |
CN106597705A (en) | Liquid crystal display panel and energization detection device | |
Mei et al. | Local dynamics in polymer-dispersed liquid crystals studied by near-field scanning optical microscopy | |
US5311137A (en) | Liquid crystal electric field tester for circuit boards | |
JP3373691B2 (en) | Display device with coordinate input function | |
EP0989444B1 (en) | Liquid crystal display device | |
JP2001289917A (en) | Inspection device for circuit board and inspection method of circuit board | |
Jeong et al. | Dynamic characteristics of the PDLC-based electro-optic modulator for TFT LCD inspection | |
JP4403701B2 (en) | Circuit board inspection equipment | |
WO1997014047A1 (en) | Non-contact electro-optic detection of photovoltages | |
WO2002095488A1 (en) | Method and apparatus for predicting dc offset in a liquid crystal display device | |
JP2591347B2 (en) | Mounting board inspection equipment | |
JP2596865B2 (en) | Electric field sensor for circuit testing | |
JPH0358670B2 (en) | ||
RU1770843C (en) | Method of visualization of microhomogeneities in crystals | |
Nakajima et al. | Edge enhancement recording with ferroelectric liquid crystal spatial light modulator using SiO2/a-Si: H photosensor |