JPH0587731B2 - - Google Patents

Info

Publication number
JPH0587731B2
JPH0587731B2 JP60121054A JP12105485A JPH0587731B2 JP H0587731 B2 JPH0587731 B2 JP H0587731B2 JP 60121054 A JP60121054 A JP 60121054A JP 12105485 A JP12105485 A JP 12105485A JP H0587731 B2 JPH0587731 B2 JP H0587731B2
Authority
JP
Japan
Prior art keywords
furnace
temperature
combustion
supply amount
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60121054A
Other languages
Japanese (ja)
Other versions
JPS61280311A (en
Inventor
Masashi Tatsumori
Michiaki Kato
Takehiko Mishina
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP60121054A priority Critical patent/JPS61280311A/en
Publication of JPS61280311A publication Critical patent/JPS61280311A/en
Publication of JPH0587731B2 publication Critical patent/JPH0587731B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/02Regulating fuel supply conjointly with air supply
    • F23N1/022Regulating fuel supply conjointly with air supply using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2225/00Measuring
    • F23N2225/08Measuring temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2235/00Valves, nozzles or pumps
    • F23N2235/02Air or combustion gas valves or dampers
    • F23N2235/06Air or combustion gas valves or dampers at the air intake
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2235/00Valves, nozzles or pumps
    • F23N2235/12Fuel valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2235/00Valves, nozzles or pumps
    • F23N2235/12Fuel valves
    • F23N2235/18Groups of two or more valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2237/00Controlling
    • F23N2237/20Controlling one or more bypass conduits

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Regulation And Control Of Combustion (AREA)
  • Control Of Combustion (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、セラミツクの焼成等、各種用途に用
いる燃焼式加熱炉に関し、詳しくは、炉内温度の
経時用変化パターンを設定する手段、及び、炉内
温度を検出する手段を設け、その検出手段による
検出炉内温度が前記設定手段により設定された変
化パターンに沿つて経時変化するように、炉加熱
用バーナに対する燃料供給状態及び燃焼用酸素含
有ガス供給状態を自動調整して炉内温度を制御す
る装置を設け、炉の運転を自動化するようにした
燃焼式加熱炉に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a combustion heating furnace used for various purposes such as firing ceramics, and more particularly, to a means for setting a pattern of change in furnace temperature over time; , a means for detecting the temperature inside the furnace is provided, and the state of fuel supply to the furnace heating burner and the oxygen for combustion are adjusted so that the temperature inside the furnace detected by the detection means changes over time in accordance with the change pattern set by the setting means. The present invention relates to a combustion heating furnace that is equipped with a device that automatically adjusts the supply state of contained gas to control the temperature inside the furnace, thereby automating the operation of the furnace.

〔従来の技術〕[Conventional technology]

従来、上記の如き燃焼式加熱炉においては、炉
加熱用バーナに対する燃料供給量と燃焼用酸素含
有ガス供給量との比を所定の値に維持しながらそ
れら供給量を同調して変更することにより炉内温
度を制御するように制御装置を構成していた。
(文献を示すことができない。) 〔発明が解決しようとする問題点〕 しかしながら、上述の如き制御では、セラミツ
クの焼成等のように炉内温度の制御巾が広い場
合、低温度域においてバーナからの燃焼ガス発生
量が大巾に減少し、炉内における単位時間当たり
の燃焼ガス循環量が大巾に減少するために、低温
度域での炉内均一加熱性が大巾に低下し、そのこ
とが、加熱対象物の品質低下等を招く問題があつ
た。
Conventionally, in the above-mentioned combustion type heating furnace, the ratio between the amount of fuel supplied to the furnace heating burner and the amount of oxygen-containing gas supplied for combustion is maintained at a predetermined value, and the supply amounts are changed in synchrony. A control device was configured to control the temperature inside the furnace.
(No reference can be found.) [Problem to be solved by the invention] However, with the above-mentioned control, when the furnace temperature is controlled over a wide range, such as when firing ceramics, the burner cannot be turned off in the low temperature range. The amount of combustion gas generated in the furnace is greatly reduced, and the amount of combustion gas circulated within the furnace per unit time is greatly reduced, so the uniform heating inside the furnace in the low temperature range is greatly reduced. This caused problems such as deterioration of the quality of the object to be heated.

又、本来的にバーナの燃焼負荷変更巾には限界
があることから、前述の如く広い炉内温度制御巾
の全域にわたつて安定的な炉内温度制御を実行し
ようとすると、互いに能力が異なる二種のバーナ
を装備してそれらバーナを低温域と高温域とで選
択使用するようにしたり、あるいは、炉に対して
熱風を供給する熱風発生装置を別に装備してその
発生装置からの熱風供給により低温域運転を実行
したりしなければならず、そのために、設備構
成、特に制御構成が大巾に複雑化して装置コスト
が高価となる問題があり、殊に、熱風発生装置を
付設したものにあつては低温域での炉内均一加熱
性はある程度改善されるものの、別装置の付加で
ある故に装置コスト面並びに工場等への設置面で
特に不利であつた。
Furthermore, since there is inherently a limit to the range in which the burner's combustion load can be changed, when attempting to perform stable furnace temperature control over the wide range of furnace temperature control as described above, there are differences in the capabilities of each burner. Equipped with two types of burners and selectively use these burners in low temperature range and high temperature range, or equipped with a separate hot air generator that supplies hot air to the furnace and hot air supplied from that generator. Therefore, the equipment configuration, especially the control configuration, becomes significantly complicated and the equipment cost becomes high.This is especially true for equipment equipped with a hot air generator. Although uniform heating in the furnace at low temperatures can be improved to some extent, this method is particularly disadvantageous in terms of equipment cost and installation in factories, etc. since it requires the addition of separate equipment.

本発明の目的は、炉内温度制御を合理的に行う
ことにより、低温域における炉内均一加熱性に向
上し、しかも、設備構成を簡略化する点にある。
An object of the present invention is to rationally control the temperature inside the furnace to improve uniform heating within the furnace in a low temperature range, and to simplify the equipment configuration.

〔問題点を解決するための手段〕[Means for solving problems]

本発明による燃焼式加熱炉の特徴構成は、炉内
温度が第1設定温度以下の低温域運転状態か、第
2設定温度以上の高温域運転状態かを判別する手
段を設け、検出炉内温度が設定変化パターンに沿
つて経時変化するように、炉加熱用バーナに対す
る燃料供給状態及び燃焼用酸素含有ガス供給状態
を自動調整して炉内温度を制御する装置に対し、
前記判別手段による判別結果に基づいて、前記低
温域運転状態においては、燃料供給量をほぼ設定
最小量に維持しながら燃焼用酸素含有ガス供給量
を変更することにより炉内温度を制御し、かつ、
前記高温域運転状態においては、燃料供給量と燃
焼用酸素含有ガス供給量との比を設定値に維持し
ながらそれら供給量を同調して変更することによ
り炉内温度を制御する実行手段を備えさせてある
ことにあり、その作用・効果は次の通りである。
The characteristic configuration of the combustion type heating furnace according to the present invention is that means is provided for determining whether the furnace temperature is in a low-temperature range operating state below a first set temperature or in a high-temperature range operating state above a second set temperature. For a device that controls the furnace temperature by automatically adjusting the fuel supply state and the combustion oxygen-containing gas supply state to the furnace heating burner so that the temperature changes over time according to a setting change pattern,
Based on the determination result by the determination means, in the low temperature range operating state, the furnace temperature is controlled by changing the supply amount of oxygen-containing gas for combustion while maintaining the fuel supply amount approximately at the set minimum amount, and ,
In the high temperature range operating state, the furnace includes execution means for controlling the temperature inside the furnace by synchronizing and changing the ratio of the fuel supply amount and the combustion oxygen-containing gas supply amount while maintaining the ratio at the set value. The functions and effects are as follows.

〔作用〕[Effect]

つまり、炉内温度を設定変化パターンに沿つて
経時変化させる炉の自動運転のうち、従前におい
て特に問題がない高温域運転については従前と同
様に燃料供給量と燃焼用酸素含有ガス供給量と
を、それらの比を設定値に維持して同調変更させ
ることにより炉内温度を制御するが、従前におい
て均一加熱性の面での問題、並びに、低温域専用
の小能力バーナや熱風発生装置の付加が必要とな
る問題があつた低温域運転においては、燃料供給
量をほぼ設定最小量に維持しながら燃焼用酸素含
有ガス供給量を変更して設定最小量の燃焼供給量
に対する燃焼用酸素含有ガス供給量の比を変更さ
せることにより炉内温度を制御する。
In other words, in the automatic operation of a furnace that changes the temperature inside the furnace over time according to the set change pattern, the fuel supply amount and the combustion oxygen-containing gas supply amount are changed as before for high-temperature operation where there has been no particular problem in the past. The temperature inside the furnace is controlled by maintaining the ratio at the set value and changing the synchronization, but in the past there were problems in terms of uniform heating, and the addition of small capacity burners and hot air generators specifically for low temperature ranges. In low-temperature operation, where there was a problem that required combustion, the combustion oxygen-containing gas supply amount was changed while maintaining the fuel supply amount at approximately the set minimum amount. The temperature inside the furnace is controlled by changing the ratio of feed rates.

すなわち、ほぼ設定最小量の燃料供給量に対し
て過剰の燃焼用酸素含有ガスを供給することによ
り生成燃焼ガスの単位体積当たりにおける燃焼カ
ロリーを低下させて炉内雰囲気を低温度化し、そ
の状態で燃焼用酸素含有ガスの供給量のみを変更
して燃焼用酸素含有ガスの過剰率を変更すること
により低温域での炉内温度制御を実現するのであ
る。
In other words, by supplying an excess amount of combustion oxygen-containing gas relative to the set minimum amount of fuel supply, the combustion calorie per unit volume of the generated combustion gas is lowered, and the temperature of the furnace atmosphere is lowered. By changing only the amount of oxygen-containing gas supplied for combustion and changing the excess rate of oxygen-containing gas for combustion, temperature control in the furnace in a low temperature range is realized.

したがつて、低温域においても、過剰の燃焼用
酸素含有ガスにより大きな燃焼ガス発生量を確保
できて、炉内における単位時間当たりの燃焼ガス
循環量を大きく維持できるから、従前に比して低
温域での炉内均一加熱性を大巾に向上でき、又、
その均一加熱性の向上故に、低温域での炉内温度
制御精度も大巾に向上できる。
Therefore, even in a low temperature range, a large amount of combustion gas can be generated by using excess oxygen-containing gas for combustion, and a large amount of combustion gas circulation per unit time in the furnace can be maintained, so the temperature can be lowered compared to before. It can greatly improve the uniform heating performance in the furnace in the area, and
Because of the improved uniform heating properties, the accuracy of furnace temperature control in the low temperature range can also be greatly improved.

しかも、低温域においては燃料供給量をほぼ設
定最小量に、換言すれば、バーナの燃焼負荷を最
小負荷に維持しておくものであつて、バーナの燃
焼負荷変更可能巾が高温域における炉内温度の制
御巾にさせ対処可能な巾であれば良いから、バー
ナ燃焼負荷変更巾の限界に対処するために従前の
如く低温域専用の小能力バーナや熱風発生装置等
を装備する必要が無く、全体制御構成を大巾に簡
略化でき、又、全体設備構成を簡略かつコンパク
トにできる。
Moreover, in the low temperature range, the fuel supply amount is maintained at almost the set minimum amount, in other words, the combustion load of the burner is maintained at the minimum load, and the width within which the burner combustion load can be changed is within the range of the furnace in the high temperature range. As long as the temperature can be controlled within a range that can be handled, there is no need to equip a small-capacity burner or hot air generator exclusively for low-temperature ranges, as in the past, in order to cope with the limits of the burner combustion load change range. The overall control configuration can be greatly simplified, and the overall equipment configuration can be made simple and compact.

〔発明の効果〕〔Effect of the invention〕

上述の結果、炉内均一加熱性が高く、又、高い
炉内温度制御精度を有することから、加熱品の仕
上品質を大巾に向上でき、ひいては、例えばセラ
ミツク焼成品の利用分野の拡充にも寄与できる有
用な加熱炉でありながら、構成の簡略化故に装置
コスト面で有利で、しかも、コンパクト化により
工場等への設置面でも有利な極めて実用効果の高
い燃焼式加熱炉にできた。
As a result of the above, since the furnace has high uniform heating properties and high furnace temperature control accuracy, the finishing quality of heated products can be greatly improved, and it can also be used to expand the field of application of ceramic fired products, for example. Although it is a useful heating furnace that can contribute, it is advantageous in terms of equipment cost because of the simplified configuration, and is also advantageous in terms of installation in factories etc. due to its compact size, making it an extremely practical combustion type heating furnace.

〔実施例〕 次に本発明の実施例を図面に基づいて説明す
る。
[Example] Next, an example of the present invention will be described based on the drawings.

第1図及び第2図は、セラミツク焼成用の加熱
炉を示し、炉1の四側壁夫々にバーナ2を、夫々
上下2段に配置して、かつ、各側壁のバーナ2か
らの燃焼ガス吐出により炉内全域にわたつて燃焼
ガス循環流が形成されるように配設し、燃焼用空
気予熱用の熱交換器3を介装した排気路4をを炉
1に接続してある。
1 and 2 show a heating furnace for firing ceramics, in which burners 2 are arranged on each of the four side walls of the furnace 1 in two stages, upper and lower, and combustion gas is discharged from the burners 2 on each side wall. The exhaust passage 4 is connected to the furnace 1 in such a manner that a combustion gas circulation flow is formed throughout the entire area of the furnace, and an exhaust passage 4 is provided with a heat exchanger 3 for preheating combustion air.

図中1Aは、炉1の開閉扉に兼用した焼成処理
物載置台であり、その昇降操作により焼成処理物
の出入れを行うように構成してある。
Reference numeral 1A in the figure is a baking product mounting table which also serves as an opening/closing door of the furnace 1, and is configured so that the baking material can be taken in and out by raising and lowering the table.

第3図に示すように、バーナ2に対して、第1
及び第2の燃料ガス供給路5A,5B、並びに、
燃焼用空気メイン供給路6から分岐した第1及び
第2の燃焼用空気供給路6A,6Bを夫々並列に
接続し、第1ガス供給路5Aに、流路開閉用の第
1ガス弁V1及び流量設定用弁V2を、かつ、第2
ガス供給路5Bに、流路開閉用の第2ガス弁V3
及び流量制御用の第3ガス弁V4を夫々介装する
と共に、第1空気供給路6Aに流量制御用の第1
空気弁V5を、かつ、第2空気供給路6Bに流量
制御用の第2空気弁V6及び前記の予熱用熱交換
器3を夫々介装してある。
As shown in FIG.
and second fuel gas supply paths 5A, 5B, and
First and second combustion air supply passages 6A and 6B branched from the combustion air main supply passage 6 are connected in parallel, respectively, and a first gas valve V 1 for opening and closing the flow passage is connected to the first gas supply passage 5A. and a flow rate setting valve V 2 , and a second
A second gas valve V 3 for opening and closing the flow path is provided in the gas supply path 5B.
and a third gas valve V4 for controlling the flow rate, and a first gas valve V4 for controlling the flow rate is installed in the first air supply path 6A.
An air valve V5 , a second air valve V6 for flow rate control, and the preheating heat exchanger 3 are interposed in the second air supply path 6B, respectively.

図中7は燃焼用空気加圧供給用ブロアーであ
り、又、8は燃焼用空気として酸素富化空気を供
給する装置である。
In the figure, 7 is a blower for supplying combustion air under pressure, and 8 is a device for supplying oxygen-enriched air as combustion air.

そして、炉内温度を検出するセンサー9、及
び、焼成工程における炉内温度の経時的変化パタ
ーン(第4図参照)を設定する回路10を設ける
と共に、センサー9による検出炉内温度tが設定
回路10により設定された変化パターンに沿つて
経時変化するように、前記の各ガス弁並びに空気
弁を自動操作して炉内温度を制御する制御装置1
1を設け、炉を自動運転するように構成してあ
る。
A sensor 9 for detecting the furnace temperature and a circuit 10 for setting the temporal change pattern of the furnace temperature in the firing process (see FIG. 4) are provided, and the furnace temperature t detected by the sensor 9 is set by the circuit 10. A control device 1 that automatically operates each of the gas valves and air valves to control the temperature inside the furnace so that the temperature changes over time according to a change pattern set by the control device 1.
1, and the furnace is configured to operate automatically.

第4図に示した設定変化パターンにおいて、炉
自動運転序盤の低温域Aは、炉内温度tを設定温
度ta以下に保つて焼成処理物から水分や有機バイ
ンダーを蒸発させる工程であり、炉自動運転中盤
の高温域Bは、炉内温度tを前記設定温度taより
も高温化して焼成処理物を焼結させる工程、又、
炉自動運転終盤の徐冷域Cは焼成処理物を冷却す
る工程である。
In the setting change pattern shown in Fig. 4, the low temperature range A at the beginning of the furnace automatic operation is a process in which the furnace temperature t is kept below the set temperature ta to evaporate moisture and organic binder from the fired material. The high temperature region B in the middle of the operation is a step in which the furnace temperature t is made higher than the set temperature ta to sinter the fired product, and
The slow cooling zone C at the final stage of automatic furnace operation is a step in which the fired product is cooled.

具体的制御構成について更に説明すると、第1
ガス供給路5Aに介装した流量設定用弁V2によ
り、第1ガス供給路5Aのみを介しての燃料ガス
供給量をバーナ2の燃焼負荷がほぼ最小となるよ
うな設定最小量に規定しておき、又、第2空気供
給路6Bに介装した第2空気弁V6の操作に伴い
第2ガス供給路5Bに介装した第3ガス弁V4
連動作動して第2空気供給路6Bを介しての燃焼
用空気供給量と第2ガス供給路5Bを介しての燃
料ガス供給量と設定比を維持しながら同調変化す
るように、パイロツト空気圧式の連係機構12を
介して第3ガス弁V4を第2空気弁V6に連係させ
てある。
To further explain the specific control configuration, the first
The flow rate setting valve V 2 installed in the gas supply path 5A regulates the amount of fuel gas supplied only through the first gas supply path 5A to a set minimum amount such that the combustion load on the burner 2 is almost minimized. Furthermore, in conjunction with the operation of the second air valve V6 installed in the second air supply path 6B, the third gas valve V4 installed in the second gas supply path 5B operates in conjunction with the operation to supply the second air. The combustion air supply amount via the passage 6B and the fuel gas supply amount via the second gas supply passage 5B are synchronously changed while maintaining the set ratio. A third gas valve V4 is linked to a second air valve V6 .

そして、炉自動運転の経時時間Tを設定変化パ
ターンに照合することにより各時点の運転状態が
低温域A、高温域B、並びに徐冷域Cのいずれに
あるかを判別する回路11A、及び、その判別回
路11Aによる判別結果に基づいて(第5図参
照)、 (イ) 低温域運転状態において、第1ガス弁V1
開き、かつ、第2ガス弁V3を閉じて前記設定
最小量の燃料ガスを供給し、更に、第1空気弁
V5を設定開度に開いて設定量の燃焼用空気を
第1空気供給路6Aから供給しながら、第2空
気弁V6を自動操作して燃焼用空気の全体供給
量を変更調整することにより、炉内温度を、そ
れが低温度Aにおける設定変化パターンに沿つ
て変化するように制御し、 (ロ) 高温域運転状態においては、第1ガス弁V1
を閉じ、かつ第2ガス弁V3を開き、更に、第
1空気弁VEを閉じた状態で第2空気弁V6を自
動操作して、第3ガス弁V4を連動作動させな
がら燃料ガス供給量と燃焼用空気供給量とをそ
れらの比を設定比に維持したままで同調変更す
ることにより、炉内温度を、それが高温域Bに
おける設定変化パターンに沿つて変化するよう
に制御し、 (ハ) 又、徐冷機Cにおいては、第1及び第2ガス
弁V1,V3、並びに、第1及び第2空気弁V5
V6を閉じてバーナ2の燃焼作動を停止するこ
とにより、炉内温度を自然冷却により降下させ
る。
and a circuit 11A that determines whether the operating state at each point in time is in the low temperature range A, the high temperature range B, or the slow cooling range C by comparing the elapsed time T of automatic furnace operation with the setting change pattern; Based on the determination result by the circuit 11A (see Fig. 5), (a) In the low-temperature operating state, open the first gas valve V 1 and close the second gas valve V 3 to supply the set minimum amount of fuel. supplying gas, and furthermore, a first air valve
While V 5 is opened to a set opening degree and a set amount of combustion air is supplied from the first air supply path 6A, the second air valve V 6 is automatically operated to change and adjust the overall supply amount of combustion air. (b) In the high temperature range operating state, the first gas valve V 1
is closed and the second gas valve V 3 is opened. Furthermore, with the first air valve VE closed, the second air valve V 6 is automatically operated, and the third gas valve V 4 is operated in conjunction with the fuel gas. By synchronously changing the supply amount and combustion air supply amount while maintaining their ratio at the set ratio, the furnace temperature is controlled so that it changes in accordance with the setting change pattern in high temperature range B. , (c) In the slow cooling machine C, the first and second gas valves V 1 , V 3 and the first and second air valves V 5 ,
By closing V 6 and stopping the combustion operation of burner 2, the temperature inside the furnace is lowered by natural cooling.

実行回路11Bを制御装置11に組込んであ
る。
An execution circuit 11B is incorporated into the control device 11.

つまり、各焼成工程のうち特に低温域について
は、上述(イ)の如き制御を行い、設定最小量の燃料
ガス供給量に対して過剰の燃焼用空気を供給する
ことにより生成燃焼ガス単位体積当たりにおける
燃焼カロリーを低下させて炉内雰囲気を低温度化
し、その状態で燃焼用空気の供給量のみを変更し
て燃焼用空気の過剰率を変更することにより炉内
温度を制御するように構成してあり、それによつ
て、炉内燃焼ガス循環量を大きくして低温域Aに
おける炉内均一加熱性を向上するようにし、又、
バーナ2の燃焼負荷変更可能巾よりも広い炉内温
度制御巾に対しても、一種のバーナ2だけで低温
域Aから高温域Bにわたる全制御巾に対処できる
ようにしてある。
In other words, especially in the low temperature range of each firing process, control as described in (a) above is performed, and by supplying excess combustion air relative to the set minimum amount of fuel gas supply, per unit volume of generated combustion gas. The temperature in the furnace is controlled by lowering the combustion calories in the furnace to lower the temperature of the atmosphere in the furnace, and in that state, changing only the supply amount of combustion air and changing the excess rate of combustion air. As a result, the circulation amount of combustion gas in the furnace is increased to improve uniform heating in the furnace in the low temperature region A, and
Even if the furnace temperature control range is wider than the range in which the combustion load of the burner 2 can be changed, the entire control range from the low temperature range A to the high temperature range B can be handled with just one type of burner 2.

〔別実施例〕[Another example]

次に本発明の別実施例を設明する。 Next, another embodiment of the present invention will be proposed.

燃料供給量をほぼ設定最小量に維持しながら燃
焼用酸素含有ガス(例えば空気)の供給量を変更
して炉内温度を制御する低温域、及び、燃料供給
量と燃焼用酸素含有ガス供給量とをそれらの比を
設定比に維持しながら同調変更して炉内温度を制
御する高温域の夫々を設定するに、炉内温度が第
1設定温度以下の制御域を低温域とし、かつ、炉
内温度が第2設定温度以上の制御域を高温域と
し、それら第1及び第2設定温度を異ならせても
良く、又、炉内温度の設定変化パターン中に前述
低温域及び高温域以外の加熱制御域を設定しても
良い。
A low temperature range in which the furnace temperature is controlled by changing the supply amount of combustion oxygen-containing gas (for example, air) while maintaining the fuel supply amount at approximately the set minimum amount, and the fuel supply amount and combustion oxygen-containing gas supply amount. and to set each of the high-temperature ranges in which the temperature inside the furnace is controlled by changing the synchronization while maintaining their ratio at the set ratio, the control range where the temperature inside the furnace is equal to or lower than the first set temperature is set as the low-temperature range, and The control range in which the furnace temperature is equal to or higher than the second set temperature may be defined as the high temperature range, and the first and second set temperatures may be different. It is also possible to set a heating control range.

炉内温度の変化パターンは炉の用途に応じて適
宜形態に設定すれば良い。
The change pattern of the temperature inside the furnace may be set as appropriate depending on the use of the furnace.

運転状態が低温域運転状態か高温域運転状態か
を判別させるに、自動運転を経過時間を設定変化
パターンに照合させて判別させるに代えて、炉内
温度検出手段9から与えられる炉内温度情報に基
づいて判別させるようにしても良く、判別手段1
1Aの具体的判別方式並びに構成は種々の変更が
可能である。
In order to determine whether the operating state is a low-temperature region operating state or a high-temperature region operating state, the furnace temperature information given from the furnace temperature detection means 9 is used instead of comparing the automatic operation with the elapsed time against the setting change pattern. The discrimination may be made based on the discrimination means 1.
Various changes can be made to the specific determination method and configuration of 1A.

低温域及び高温域において前述の如く夫々異な
る制御形態で炉内温度を制御するように制御装置
11に装備する実行手段11Bの具体構成は、例
えば、マイクロコンピユータを適用した構成やシ
ーケンス回路から成る構成等、斐々の種成変更が
可能である。
The specific configuration of the execution means 11B installed in the control device 11 so as to control the furnace temperature in different control modes in the low temperature range and the high temperature range as described above is, for example, a configuration using a microcomputer or a configuration consisting of a sequence circuit. etc., various species changes are possible.

燃料供給量変更構成、並びに、燃焼用酸素含有
ガス供給量の変更構成としては、バーナ2に対す
る燃料供給路5及び燃焼用酸素含有ガス供給路6
の夫々に量制御用弁を介装し、それら弁を自動操
作することだけで、互いに制御形態が異なる低温
域炉内温度制御を高温域炉内制御との夫々を実行
するように構成しても良く、燃料供給量及び燃焼
用酸素含有ガス供給量を変更するための具体的流
路構成並びに弁構成は夫々種々の改良が可能であ
る。
The configuration for changing the amount of fuel supply and the configuration for changing the amount of oxygen-containing gas for combustion include a fuel supply path 5 and a combustion oxygen-containing gas supply path 6 for the burner 2.
A quantity control valve is installed in each of the valves, and by simply operating these valves automatically, low temperature range furnace temperature control and high temperature range furnace temperature control, which have different control forms, can be performed. Various improvements can be made to the specific flow path configuration and valve configuration for changing the amount of fuel supplied and the amount of oxygen-containing gas supplied for combustion.

本発明による燃焼式加熱炉の用途は不問であ
る。
The use of the combustion type heating furnace according to the present invention is not limited.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第5図は本発明の実施例を示し、
第1図は縦断面図、第2図は平面視断面図、第3
図は制御構成を示す系統図、第4図は炉内温度の
変化パターンを示すグラフ、第5図は弁操作パタ
ーンを示す表である。 2……バーナ、9……炉内温度検出手段、10
……炉内温度変化パターン設定手段、11……制
御装置、11A……判別手段、11B……実行手
段。
1 to 5 show embodiments of the present invention,
Figure 1 is a longitudinal sectional view, Figure 2 is a planar sectional view, and Figure 3 is a longitudinal sectional view.
The figure is a system diagram showing the control configuration, FIG. 4 is a graph showing the change pattern of the furnace temperature, and FIG. 5 is a table showing the valve operation pattern. 2...Burner, 9...Furnace temperature detection means, 10
... Furnace temperature change pattern setting means, 11 ... Control device, 11A ... Discrimination means, 11B ... Execution means.

Claims (1)

【特許請求の範囲】[Claims] 1 炉内温度の経時的変化パターンを設定する手
段10、及び、炉内温度を検出する手段9を設
け、その検出手段9による検出炉内温度が前記設
定手段10により設定された変化パターンに沿つ
て経時変化するように、炉加熱用バーナ2に対す
る燃料供給状態及び燃焼用酸素含有ガス供給状態
を自動調整して炉内温度を制御する装置11を設
けた燃焼式加熱炉であつて、炉内温度が第1設定
温度以下の低温域運転状態か、第2設定温度以上
の高温域運転状態かを判別する手段11Aを設
け、その判別手段11Aによる判別結果に基づい
て、前記低温域運転状態においては、燃料供給量
をほぼ設定最小量に維持しながら燃焼用酸素含有
ガス供給量を変更することにより炉内温度を制御
し、かつ、前記高温域運転状態においては、燃料
供給量と燃焼用酸素含有ガス供給量との比を設定
値に維持しながらそれら供給量を同調して変更す
ることにより炉内温度を制御する実行手段11B
を前記制御装置11に備えた燃焼式加熱炉。
1. Means 10 for setting a temporal change pattern of the furnace temperature and means 9 for detecting the furnace temperature are provided, and the furnace temperature detected by the detecting means 9 follows the change pattern set by the setting means 10. The combustion type heating furnace is equipped with a device 11 that automatically adjusts the fuel supply state and the combustion oxygen-containing gas supply state to the furnace heating burner 2 so that the temperature inside the furnace changes over time. A means 11A is provided for determining whether the temperature is in a low-temperature range operating state where the temperature is below the first set temperature or a high-temperature range operating state where the temperature is higher than or equal to the second set temperature. The furnace temperature is controlled by changing the supply amount of oxygen-containing gas for combustion while maintaining the fuel supply amount at approximately the set minimum amount, and in the high temperature range operation state, the fuel supply amount and the combustion oxygen Execution means 11B that controls the furnace temperature by synchronizing and changing the supply amount while maintaining the ratio to the supply amount of the contained gas at the set value.
A combustion type heating furnace comprising the control device 11.
JP60121054A 1985-06-03 1985-06-03 Combustion type heating furnace Granted JPS61280311A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60121054A JPS61280311A (en) 1985-06-03 1985-06-03 Combustion type heating furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60121054A JPS61280311A (en) 1985-06-03 1985-06-03 Combustion type heating furnace

Publications (2)

Publication Number Publication Date
JPS61280311A JPS61280311A (en) 1986-12-10
JPH0587731B2 true JPH0587731B2 (en) 1993-12-17

Family

ID=14801694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60121054A Granted JPS61280311A (en) 1985-06-03 1985-06-03 Combustion type heating furnace

Country Status (1)

Country Link
JP (1) JPS61280311A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5329777B2 (en) * 2007-07-03 2013-10-30 高砂工業株式会社 Temperature control method for low oxygen atmosphere and temperature control system for low oxygen atmosphere
CN101936667B (en) * 2010-08-25 2012-07-04 盐城市康杰机械制造有限公司 Explosion prevention system for fuel gas aluminum brazing thermal-degreasing furnace
CN103256623B (en) * 2012-02-20 2015-06-17 宝山钢铁股份有限公司 Method for flexibly controlling air excess coefficient of impulse burner

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5344050A (en) * 1976-10-02 1978-04-20 Kawasaki Heavy Ind Ltd Method of measuring movement of machines and piping

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5344050A (en) * 1976-10-02 1978-04-20 Kawasaki Heavy Ind Ltd Method of measuring movement of machines and piping

Also Published As

Publication number Publication date
JPS61280311A (en) 1986-12-10

Similar Documents

Publication Publication Date Title
CA2202227C (en) Fuel-fired modulating furnace calibration apparatus and methods
US4942832A (en) Method and device for controlling NOx emissions by vitiation
MX2007013164A (en) Conveyor oven.
KR910003325A (en) Heat pump type heating device and its control method
US3276755A (en) Kiln system and method
US3947237A (en) Method and apparatus for controlling the air volume in a tunnel kiln according to the batch density
JP3047192B2 (en) Continuous heating furnace
US4946097A (en) Control system for heating container for use on motor vehicle
JPH0587731B2 (en)
US4654004A (en) Controller for clinker cooler
JP3307697B2 (en) Batch type firing furnace
US2856669A (en) Periodic oxidation and reduction kiln
US3142884A (en) Method and apparatus for controlling the cooling zone of a tunnel kiln
JP3095530B2 (en) Temperature control device of thermal storage deodorizer
KR19990055427A (en) Sintered ore device and sintered ore manufacturing method
JPH02130387A (en) Industrial furnace
JPS6380149A (en) Air conditioner
JPH04270884A (en) Roller hearth continuous furnace
JPH1163844A (en) Method for controlling temperature of cooling zone for baking furnace
JPH0740834Y2 (en) Furnace atmosphere temperature control device
JPH0755347A (en) Burning furnace
JP3173817B2 (en) Automatic gas baking equipment for confectionery or food
JPH1163843A (en) Method for controlling temperature in baking furnace
SU1121545A1 (en) Method of controlling fuel supply to heating furnace
JPS638747Y2 (en)