JPH0587714A - Method and device for measuring quality of cold rolling thin steel plate - Google Patents
Method and device for measuring quality of cold rolling thin steel plateInfo
- Publication number
- JPH0587714A JPH0587714A JP4066393A JP6639392A JPH0587714A JP H0587714 A JPH0587714 A JP H0587714A JP 4066393 A JP4066393 A JP 4066393A JP 6639392 A JP6639392 A JP 6639392A JP H0587714 A JPH0587714 A JP H0587714A
- Authority
- JP
- Japan
- Prior art keywords
- thin steel
- value
- cold
- steel sheet
- frequency
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は冷延薄鋼板の材質をオフ
ラインで迅速かつ非破壊的に測定するための方法およ
び、その装置、あるいはオンライン通板中に非破壊的に
測定するための方法および、その装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for rapidly and nondestructively measuring the material of a cold-rolled thin steel sheet off-line, and an apparatus therefor, or a method for nondestructively measuring on-line rolling. And the apparatus.
【0002】[0002]
【従来の技術】冷延薄鋼板は自動車の車体や家庭電気製
品の外装に用いられるため高いプレス成形性が要求され
る。冷延薄鋼板は多結晶体でありそのプレス成形性はい
わゆる集合組織によってほとんど決定づけられる。従来
はプレス成形性はX線極点図法あるいはランクフォード
値(r値)によって推定されていた。しかし、X線極点
図法では冷延薄鋼板より試験片を切り取ってこれにX線
を照射して測定しなければならないため時間がかかり、
さらに試験片を切り取らねばならないため破壊的測定法
であると言える。一方、ランクフォード値を測定する方
法では引張試験片のサイズの変化の精密な測定が必要な
ため時間がかかり、また試験片を冷延薄鋼板より切り取
って測定しなければならないためこれも破壊的測定法で
あると言える。簡便法も提案(C.A.Stickels and Moul
d,"The use of Young's modulus for predicting the p
lastic strain ratioof low carbon steel sheets",Met
allurgical Transaction Vol.1,pp1303-1312(1970))さ
れたが、この方法では固有振動法により測定したヤング
率とランクフォード値との間の経験的な相関関係を利用
するため簡便ではあるが、この方法でも試験片を冷延薄
鋼板より切り取って測定しなければならないため、これ
も破壊的測定法である。2. Description of the Related Art Cold-rolled thin steel sheets are required to have high press formability because they are used for exteriors of automobile bodies and household electric appliances. Cold-rolled thin steel sheet is a polycrystalline body, and its press formability is mostly determined by the so-called texture. Conventionally, press formability has been estimated by the X-ray pole figure method or the Rankford value (r value). However, in the X-ray pole figure method, it takes time because it is necessary to cut a test piece from a cold-rolled thin steel sheet and irradiate it with X-rays for measurement.
Furthermore, it is a destructive measurement method because the test piece must be cut off. On the other hand, the method for measuring the Rankford value requires time because it requires precise measurement of the change in size of the tensile test piece, and it is also destructive because the test piece must be cut from the cold-rolled steel sheet. It can be said to be a measurement method. Proposed a simple method (CAStickels and Moul
d, "The use of Young's modulus for predicting the p
lastic strain ratioof low carbon steel sheets ", Met
Allurgical Transaction Vol.1, pp1303-1312 (1970)), but this method is simple because it uses the empirical correlation between Young's modulus and Rankford value measured by the eigenvibration method. This method is also a destructive measurement method because the test piece must be cut from the cold-rolled thin steel sheet and measured.
【0003】そこで、試験片を切り取る必要がなく、冷
延薄鋼板の自然のサイズのままで非破壊的に測定する方
法として超音波の音速を測定する方法が提案された。非
破壊的測定法で冷延薄鋼板のヤング率またはランクフォ
ード値を得る方法(例えば、特願平1−29755)で
は、前記K1 ,K2 の値を共振型電磁超音波センサによ
り測定するとともに、該冷延薄鋼板の内部を圧延方向と
45度をなす方向に伝播するSH0板波超音波の速度V
SHO (45°)と圧延方向と平行な方向あるいは直角を
なす方向に伝播するSH0板波超音波の速度VSHO (0
°)あるいはVSHO (90°)との比の値、K3 を電磁
超音波センサ方式のSH0板波超音波により測定しなけ
ればならないため、共振型電磁超音波センサならびにS
H0板波超音波センサを必要とする。特に、K3 を測定
するためのSH0板波超音波センサとして上記の2組の
センサを必要とするのでコンパクト化が困難であること
および、オンラインで非接触測定の場合、SH0板波超
音波を安定的に発生・検出することが困難であること等
の問題がある。Therefore, a method of measuring the sound velocity of ultrasonic waves has been proposed as a method for nondestructively measuring the natural size of a cold-rolled thin steel sheet without the need to cut a test piece. In the method of obtaining the Young's modulus or Rankford value of a cold-rolled thin steel sheet by a nondestructive measurement method (for example, Japanese Patent Application No. 1-29755), the values of K 1 and K 2 are measured by a resonance type electromagnetic ultrasonic sensor. At the same time, the velocity V of the SH0 plate wave ultrasonic wave propagating inside the cold-rolled thin steel plate in a direction forming 45 degrees with the rolling direction.
SHO (45 °) and propagates in the direction forming an rolling direction and the direction parallel or perpendicular SH0 plate wave ultrasonic velocity V SHO (0
°) or the value of V SHO (90 °) ratio, K 3 , must be measured by SH0 plate wave ultrasonic wave of the electromagnetic ultrasonic sensor method.
Requires a H0 plate wave ultrasonic sensor. In particular, it is difficult to make compact because the above-mentioned two sets of sensors are required as the SH0 plate wave ultrasonic wave sensor for measuring K 3 , and in the case of online non-contact measurement, the SH0 plate wave ultrasonic wave is used. There are problems such as difficulty in stable generation and detection.
【0004】また、金属薄板の深絞り性評価装置の発明
(例えば、特開平1−214757)では、圧延方向に
対し0、45、90度方向にS0 モードの超音波を伝播
させ、一定距離を伝播する時間の測定によりランクフォ
ード値を得ている。この方法では発信用電磁超音波セン
サおよび受信用電磁超音波センサが3組必要であり発受
信装置全体が30cm×30cm以上の大きなものになり、
取扱が不便である。Further, in the invention of a deep drawability evaluation apparatus for a thin metal plate (for example, Japanese Patent Laid-Open No. 1-214757), ultrasonic waves of S 0 mode are propagated in directions of 0, 45, and 90 degrees with respect to the rolling direction, and a certain distance is maintained. The Rank Ford value is obtained by measuring the time it takes to propagate. In this method, three sets of transmitting electromagnetic ultrasonic sensors and receiving electromagnetic ultrasonic sensors are required, and the entire transmitting / receiving device becomes large, 30 cm × 30 cm or more,
Inconvenient to handle.
【0005】この他の発明(例えば、特開昭64−83
322)では、本発明と同じ板厚方向に伝播する3種の
超音波の音速を測定し、縦波音速に対する2種の横波の
平均音速の比の値Kを計算している。このKと結晶方位
係数W400、面内平均ランクフォード値が関連している
ことが示されているが、実際にはKと面内平均ランクフ
ォード値との2次回帰式を実験式より求め、Kより面内
平均ランクフォード値を推定しようとしている。ただ
し、この方法では縦波音速と2種の横波の平均音速との
比をとっているためデータは1個であり結晶方位係数W
420 、W440 を考慮していないので精度が落ちると考え
られる。板厚1mm程度以下の金属薄板の板厚方向の伝播
時間あるいは音速を相対精度1/1000程度の高精度
でオンライン測定することは一般に困難である。さら
に、実施例によれば金属薄板と超音波探触子を接触させ
て測定しているのでオンライン測定には適さない。Other inventions (for example, JP-A-64-83)
In 322), the sound velocity of three kinds of ultrasonic waves propagating in the same plate thickness direction as in the present invention is measured, and the value K of the ratio of the average sound velocity of two kinds of transverse waves to the longitudinal wave sound velocity is calculated. It has been shown that this K is related to the crystal orientation coefficient W 400 and the in-plane average Rank Ford value. Actually, a quadratic regression equation of K and the in-plane average Rank Ford value was obtained from an experimental formula. , K, we are trying to estimate the in-plane average rank Ford value. However, in this method, the ratio of the longitudinal sound velocity to the average sound velocity of two types of transverse waves is taken, so there is only one data, and the crystal orientation coefficient W
Since 420 and W 440 are not taken into consideration, it is thought that the accuracy will drop. It is generally difficult to measure online the propagation time or the sound velocity in the thickness direction of a thin metal plate having a thickness of about 1 mm or less with high accuracy of relative accuracy of about 1/1000. Further, according to the embodiment, the thin metal plate and the ultrasonic probe are brought into contact with each other for measurement, which is not suitable for online measurement.
【0006】[0006]
【発明が解決しようとする課題】本発明はコンパクトな
センサを使い非破壊・非接触でオンラインにて高精度で
測定するという課題を解決するために、前記の共振周波
数比K1 およびK2 の測定値、ならびに鉄単結晶の3個
の弾性係数から冷延薄鋼板のヤング率の面内平均値また
はランクフォード値の面内平均値を得る方法および、そ
の測定装置を提供することを目的とする。SUMMARY OF THE INVENTION In order to solve the problem of non-destructive, non-contact online measurement with high accuracy using a compact sensor, the present invention has the above-mentioned resonance frequency ratios K 1 and K 2 . An object of the present invention is to provide a method for obtaining an in-plane average value of Young's modulus or an in-plane average value of Rankford value of a cold-rolled thin steel sheet from measured values and three elastic moduli of iron single crystals, and a measuring device therefor. To do.
【0007】[0007]
【課題を解決するための手段】本発明は下記の方法およ
び装置を要旨とする。 (1)冷延薄鋼板の内部を圧延方向と平行な方向に振動
しつつ厚さ方向に伝播する横波超音波の厚み共振周波数
と厚さ方向に伝播する縦波超音波の厚み共振周波数との
比の値と、該冷延薄鋼板の内部を圧延方向と直角をなす
方向に振動しつつ厚さ方向に伝播する横波超音波の厚み
共振周波数と厚さ方向に伝播する縦波超音波の厚み共振
周波数との比の値とを測定し、該測定された2種の比の
値をもとに前記冷延薄鋼板のヤング率およびランクフォ
ード値を得る冷延薄鋼板の材質測定法。SUMMARY OF THE INVENTION The invention features the following methods and apparatus. (1) The thickness resonance frequency of transverse ultrasonic waves propagating in the thickness direction while vibrating in the direction parallel to the rolling direction inside the cold-rolled thin steel sheet, and the thickness resonance frequency of longitudinal ultrasonic waves propagating in the thickness direction. Ratio value and thickness of transverse ultrasonic waves propagating in the thickness direction while vibrating inside the cold-rolled thin steel sheet in a direction perpendicular to the rolling direction and resonance frequency and thickness of longitudinal ultrasonic waves propagating in the thickness direction. A method for measuring the material of a cold-rolled thin steel sheet, which comprises measuring a value of a ratio with a resonance frequency and obtaining the Young's modulus and Rankford value of the cold-rolled thin steel sheet based on the measured values of the two kinds of ratios.
【0008】(2)前記2種の比と値を測定する過程
と、前記冷延薄鋼板の内部を圧延方向と45°をなす方
向に伝播するSH0板波の音速と圧延方向と平行な方向
あるいは直角をなす方向に伝播するSH0板波の音速と
の比を一定値とみなす過程と、前記3種の比の値ならび
に鉄単結晶の既知の弾性係数の値から、冷延薄鋼板のヤ
ング率およびランクフォード値の面内平均値を近似的に
演算する過程とを含む(1)記載の材質測定法。(2) The process of measuring the ratio and value of the two types, and the sound velocity of the SH0 plate wave propagating in the cold-rolled thin steel plate in a direction forming 45 ° with the rolling direction and the direction parallel to the rolling direction. Alternatively, from the process of considering the ratio of the sound velocity of SH0 plate wave propagating in the direction perpendicular to a constant value as a constant value and the value of the above three types and the known elastic modulus of the iron single crystal, The method for measuring a material according to (1), including a step of approximately calculating an in-plane average value of the rate and the Rankford value.
【0009】(3)少なくとも共振型電磁超音波センサ
を含む電磁超音波装置を用いて前記2種の横波超音波お
よび前記1種の縦波超音波を発生・検出し、前記の厚み
共振型周波数の比の値を測定する(1)記載の材質測定
法。(3) The electromagnetic resonance apparatus including at least a resonance type electromagnetic ultrasonic wave sensor is used to generate and detect the two kinds of transverse wave ultrasonic waves and the one kind of longitudinal wave ultrasonic waves, and the thickness resonance type frequency. The material measurement method according to (1), wherein the value of the ratio is measured.
【0010】(4)前記電磁超音波装置が、冷延薄鋼板
中に渦電流を誘起するための高周波電流を流すコイル
と、前記冷延薄鋼板に所定の磁界を印加する磁石と、前
記渦電流と前記磁界との相互作用のために前記冷延薄鋼
板の表面近傍に生ずる電磁力により発生する前記2種の
横波超音波および前記1種の縦波超音波を検出する前記
共振型電磁超音波センサとを備え、前記コイルに流す高
周波電流の周波数を掃引しながら前記横波超音波および
縦波超音波を発生・検出し、該検出された超音波が極大
となるときの周波数を記録することにより前記3種の厚
み共振周波数を得る(3)記載の材質測定法。(4) The electromagnetic ultrasonic device comprises a coil for passing a high-frequency current for inducing an eddy current in the cold-rolled thin steel sheet, a magnet for applying a predetermined magnetic field to the cold-rolled thin steel sheet, and the vortex. The resonance-type electromagnetic supersonic wave detecting the two kinds of transverse ultrasonic waves and the one kind of longitudinal ultrasonic waves generated by an electromagnetic force generated in the vicinity of the surface of the cold-rolled thin steel sheet due to an interaction between an electric current and the magnetic field. An ultrasonic wave sensor, generating and detecting the transverse ultrasonic waves and the longitudinal ultrasonic waves while sweeping the frequency of the high-frequency current flowing in the coil, and recording the frequency when the detected ultrasonic waves reach a maximum. (3) The material measuring method according to (3), wherein the three types of thickness resonance frequencies are obtained by:
【0011】(5)前記電磁超音波装置と、該電磁超音
波装置により測定された前記の厚み共振周波数の比の値
をもとに冷延薄鋼板のヤング率およびランクフォード値
を演算する演算装置と、前記共振型電磁超音波センサと
前記冷延薄鋼板とのギャップを一定にするための倣い機
構を含む倣い装置とを備える(3)記載の冷延薄鋼板の
材質測定装置。(5) An operation for calculating the Young's modulus and Rankford value of the cold-rolled thin steel sheet based on the electromagnetic ultrasonic wave device and the value of the ratio of the thickness resonance frequency measured by the electromagnetic ultrasonic wave device. (3) The cold rolling thin steel sheet material measuring device according to (3), further comprising: a device, and a copying device including a copying mechanism for making a gap between the resonance type electromagnetic ultrasonic sensor and the cold rolling thin steel plate constant.
【0012】(6)前記電磁超音波装置が、前記冷延薄
鋼板中に2種の横波超音波および1種の縦波超音波を発
生するため、周波数を掃引させながら高周波電流を出力
する周波数解析装置と、該横波超音波および縦波超音波
を検出する共振型電磁超音波センサを備え、該共振型電
磁超音波センサにより検出された信号の中から、前記周
波数解析装置より出力された高周波電流と同一周波数成
分を有する信号を前記周波数解析装置により抽出して前
記の厚み共振周波数の比の値を得る(5)記載の材質測
定装置。(6) Since the electromagnetic ultrasonic device generates two kinds of transverse ultrasonic waves and one kind of longitudinal ultrasonic waves in the cold-rolled thin steel sheet, a frequency for outputting a high frequency current while sweeping the frequency. An analysis device and a resonance type electromagnetic ultrasonic sensor for detecting the transverse ultrasonic waves and the longitudinal ultrasonic waves, and from the signals detected by the resonance type electromagnetic ultrasonic sensor, the high frequency output from the frequency analysis device The material measuring device according to (5), wherein a signal having the same frequency component as the current is extracted by the frequency analysis device to obtain the value of the thickness resonance frequency ratio.
【0013】[0013]
【作用】共振型電磁超音波センサのみを用いて冷延薄鋼
板の内部を圧延方向と平行な方向に振動しつつ厚さ方向
に伝播する横波超音波の厚み共振周波数fzxと厚さ方向
に伝播する縦波超音波の厚み共振周波数fzzとの比
K2 ,ならびに該冷延薄鋼板の内部を圧延方向と直角を
なす方向に振動しつつ厚さ方向に伝播する横波超音波の
厚み共振周波数fzyと厚さ方向に伝播する該縦波超音波
の厚み共振周波数fzzとの比K1 を測定し、近似的な演
算式によりヤング率の面内平均値またはランクフォード
値の面内平均値を得ることができる。The thickness resonance frequency f zx of the transverse ultrasonic wave propagating in the thickness direction while vibrating in the direction parallel to the rolling direction inside the cold-rolled thin steel sheet using only the resonance type electromagnetic ultrasonic sensor and in the thickness direction The ratio K 2 of the propagating longitudinal ultrasonic wave to the thickness resonance frequency f zz , and the thickness resonance of the transverse ultrasonic wave propagating in the thickness direction while vibrating inside the cold-rolled steel sheet in a direction perpendicular to the rolling direction. The ratio K 1 between the frequency f zy and the thickness resonance frequency f zz of the longitudinal ultrasonic wave propagating in the thickness direction is measured, and the in-plane average value of the Young's modulus or the in-plane of the Rankford value is calculated by an approximate calculation formula. The average value can be obtained.
【0014】まず、前記K1 ,K2 ,K3 を使ってヤン
グ率の面内平均値を計算する方法を特願平1−2975
5あるいは文献(Katsuhiro Kawashima,"Nondestructiv
e characterization of texture and plastic strain r
atio of metal sheetswithelectromagnetic acoustic t
ransducers"J.Acoust.Soc.America Vol.87,No.2,Februa
ry 1990,pp681-690 )に従って示し、次に、K1 ,K2
の測定値だけで近似的にヤング率の面内平均値を計算す
る本発明の方法を示す。First, Japanese Patent Application No. 1-2975 discloses a method for calculating the in-plane average value of Young's modulus by using the above K 1 , K 2 and K 3 .
5 or literature (Katsuhiro Kawashima, "Nondestructiv
e characterization of texture and plastic strain r
atio of metal sheetswithelectromagnetic acoustic t
ransducers "J.Acoust.Soc.America Vol.87, No.2, Februa
ry 1990, pp681-690), and then K 1 , K 2
The method of the present invention for approximating the in-plane average value of Young's modulus only by the measured value of is shown.
【0015】初めに、前記出願の発明に従って理論的背
景を述べる。冷延薄鋼板は多くの微細な鉄単結晶(立方
晶)から成る多結晶体であるが巨視的に見た場合は異方
性を有する連続体とみてさしつかえない。連続体とみな
された薄鋼板は近似的には3枚の互いに直交する面
(1.圧延面(xy面),2.圧延面と垂直で圧延方向
と平行な面(xz面),3.圧延面と垂直で圧延方向に
垂直な面(yz面))に関して面対称な物理的性質を有
すると考えられている。ただしxは圧延方向であり薄鋼
板の長手方向に相当する。yはこれに直角な方向であり
薄鋼板の幅方向に相当する。zはxとyの両方に垂直な
方向であり薄鋼板の面に垂直な方向に相当する。このよ
うな場合は薄鋼板の弾性係数行列は9個の異なる弾性係
数を有しそれはつぎのように表わせることは既に知られ
ている。First, the theoretical background will be described in accordance with the invention of the above-mentioned application. The cold-rolled thin steel sheet is a polycrystalline body composed of many fine iron single crystals (cubic crystals), but when viewed macroscopically, it can be regarded as a continuous body having anisotropy. The thin steel sheet regarded as a continuum is approximately three planes orthogonal to each other (1. rolling plane (xy plane), 2. planes perpendicular to the rolling plane and parallel to the rolling direction (xz plane), 3. It is considered to have plane-symmetrical physical properties with respect to a plane (yz plane) perpendicular to the rolling plane and perpendicular to the rolling direction. However, x is the rolling direction and corresponds to the longitudinal direction of the thin steel sheet. y is a direction perpendicular to this and corresponds to the width direction of the thin steel sheet. z is a direction perpendicular to both x and y, and corresponds to a direction perpendicular to the plane of the thin steel sheet. In such a case, it is already known that the elastic modulus matrix of a thin steel plate has nine different elastic moduli, which can be expressed as follows.
【0016】[0016]
【数1】 [Equation 1]
【0017】ここで、Cijは薄鋼板の9個の異なる弾性
係数を表わす。一方多結晶体を構成する多くの単結晶の
うちで薄鋼板に対してある一定の方向(θ,ψ,φ)を
有するものの割合は結晶方位分布関数W(ξ,ψ,φ)
(以後CODFと称する)で表わせることは知られてい
る(R.J.Roe,"Description of crystallite orientatio
n in polycrystalline materials",Journal of Applied
Physics,Vol.36,pp2024-2031(1965) )。但しξ=cos
θである。W(ξ,ψ,φ)は次の(2)式のように一
般化されたルジャンドル関数Zlmnによる級数展開で表
わせることも知られている。Here, C ij represents nine different elastic moduli of the thin steel sheet. On the other hand, the ratio of those having a certain direction (θ, ψ, φ) to the thin steel plate among the many single crystals constituting the polycrystal is the crystal orientation distribution function W (ξ, ψ, φ)
It is known that it can be represented by (hereinafter referred to as CODF) (RJRoe, "Description of crystallite orientatio
n in applied materials ", Journal of Applied
Physics, Vol.36, pp2024-2031 (1965)). Where ξ = cos
θ. It is also known that W (ξ, ψ, φ) can be represented by a series expansion by the generalized Legendre function Z lmn as in the following equation (2).
【0018】[0018]
【数2】 ここで、θ,ψ,φは単結晶と薄鋼板との関係を表わす
ために用いられるオイラー角である。またξ=cos θで
ある。またW(ξ,ψ,φ)は薄鋼板にたいしてある一
定の方向(θ,ψ,φ)を有する単結晶の量の割合を表
わす関数であり結晶方位分布関数と呼ばれる。Wlmn は
CODF係数である。このうちW400 ,W420 ,W440
が多結晶体の弾性的性質と関連していることが知られて
いる。[Equation 2] Here, θ, ψ, and φ are Euler angles used to represent the relationship between the single crystal and the thin steel plate. Further, ξ = cos θ. W (ξ, ψ, φ) is a function expressing the ratio of the amount of a single crystal having a certain direction (θ, ψ, φ) to a thin steel plate and is called a crystal orientation distribution function. W lmn is a CODF coefficient. Of these, W 400 , W 420 , W 440
Is known to be related to the elastic properties of polycrystalline bodies.
【0019】さて、冷延薄鋼板の場合は既述のように9
個の異なる弾性係数Cijを有するがこれらは6個の独立
な変数,すなわち鉄単結晶の3個の弾性係数C0 11,C
0 12,C0 44と3個のCODF係数W400 ,W420 ,W
440 によって次式(3)のように表わされることが知ら
れている(C.M.Sayers,"Ultrasonic velocities in ani
sotropic polycrystalline aggregates",Journal of Ph
ysics D,Vol.15,pp2157-2167(1982))。In the case of cold rolled thin steel sheet, as described above, 9
Have different elastic moduli C ij , but these have 6 independent variables, namely the three elastic moduli C 0 11 , C of the iron single crystal.
0 12 , C 0 44 and three CODF coefficients W 400 , W 420 , W
It is known to be expressed by the following formula (3) by 440 (CMSayers, "Ultrasonic velocities in ani
sotropic aggregates ", Journal of Ph
ysics D, Vol.15, pp2157-2167 (1982)).
【0020】[0020]
【数3】 ここで、CODF係数W400 ,W420 ,W440は次の
(4),(5),(6)式の通りである。[Equation 3] Here, the CODF coefficients W 400 , W 420 and W 440 are as shown in the following equations (4), (5) and (6).
【0021】[0021]
【数4】 [Equation 4]
【0022】本発明に関連する各種のモードの超音波を
図1に示す。太い矢印は超音波の伝播方向を示し、細い
矢印は超音波の振動方向を示す。これらの矢印は薄鋼板
の外側に描かれているがこれは便宜上であり実際の超音
波は全て薄鋼板内を伝播するものであることは言うまで
もない。Vzzは板厚方向に伝播する縦波の音速,Vzxは
圧延方向に偏向し板厚方向に伝播する横波の音速,Vzy
は圧延方向と直角の方向に偏向し板厚方向に伝播する横
波の音速を表わす。VSHO (0°)は圧延方向と直角の
方向に偏向し圧延面内を圧延方向に伝播するSH0モー
ド板波の音速,VSHO (90°)は圧延方向に偏向し圧
延面内を圧延方向と直角の方向に伝播するSH0モード
板波の音速,VSHO (45°)は圧延面内を圧延方向と
45°の方向に伝播するSH0モード板波の音速を表わ
す。共振周波数比K1 ,K2 は(7),(8)式を、音
速比K3 は(9)式を利用することにより求められる。The various modes of ultrasound associated with the present invention are shown in FIG. The thick arrow indicates the propagation direction of ultrasonic waves, and the thin arrow indicates the vibration direction of ultrasonic waves. These arrows are drawn on the outer side of the thin steel plate, but it is for convenience, and it goes without saying that all the actual ultrasonic waves propagate inside the thin steel plate. V zz is the sound velocity of a longitudinal wave propagating in the plate thickness direction, V zx is the sound velocity of a transverse wave which is deflected in the rolling direction and propagates in the plate thickness direction, V zy
Represents the sound velocity of a transverse wave that is deflected in the direction perpendicular to the rolling direction and propagates in the plate thickness direction. V SHO (0 °) is the sound velocity of SH0 mode plate wave that is deflected in the direction perpendicular to the rolling direction and propagates in the rolling direction in the rolling direction, and V SHO (90 °) is deflected in the rolling direction and the rolling direction is in the rolling direction. V SHO (45 °) represents the speed of sound of the SH0 mode plate wave propagating in the direction perpendicular to, and V SHO (45 °) represents the speed of sound of the SH0 mode plate wave propagating in the rolling plane in the direction of 45 ° with the rolling direction. The resonance frequency ratios K 1 and K 2 are obtained by using the equations (7) and (8), and the sound velocity ratio K 3 is obtained by using the equation (9).
【0023】[0023]
【数5】 [Equation 5]
【0024】ここで、fzym ,fzxn ,fzzlはそれぞ
れ、冷延薄鋼板の内部を厚さ方向に伝播し圧延方向と直
角の方向に振動する横波超音波のm次共振周波数、圧延
方向と平行の方向に振動する横波超音波のn次共振周波
数、厚さ方向に振動する縦波超音波のl次共振周波数で
ある。Here, f zym , f zxn , and f zzl are the m-th resonance frequency and rolling direction of transverse ultrasonic waves that propagate in the thickness direction of the cold-rolled steel sheet and vibrate in a direction perpendicular to the rolling direction. It is the n-th resonance frequency of the transverse ultrasonic wave oscillating in the direction parallel to and the 1-th resonance frequency of the longitudinal ultrasonic wave oscillating in the thickness direction.
【0025】また、SH0板波の進行方向が圧延方向に
一致している場合の音速をVSHO (0°)、進行方向が
圧延方向と45°をなす場合の音速をVSHO (45°)
であり、t0 ,t45はSH0板波の進行方向が圧延方向
とそれぞれ0°,45°をなす場合に同一距離を伝播す
るに要する時間である。The velocity of sound when the traveling direction of the SH0 plate wave coincides with the rolling direction is V SHO (0 °), and the velocity of sound when the traveling direction is 45 ° with the rolling direction is V SHO (45 °).
And t 0 and t 45 are times required to propagate the same distance when the traveling direction of the SH0 plate wave is 0 ° and 45 ° with the rolling direction, respectively.
【0026】(4),(5)式は既に知られていたが
(C.M.Sayersand D.R.Allen,"The influence of stress
on the principal polarization directions of ultra
sonicshear waves in textured steel plates",Journal
of Physics D,Vol.17,pp1399-1413(1984)),(6)式
は特願平1−29755によって初めて見いだされたも
のである。(4),(5),(6)式によれば既に知ら
れている鉄単結晶の3個の弾性係数の値(C0 11=23
7GPa ,C0 12=141GPa ,C0 44=116GPa )を
利用すれば共振周波数比K1 ,K2 ,および音速比K3
を測定するのみでW400 ,W420 ,W440 を全て計算に
より得ることができる。W400 ,W420 ,W440 が得ら
れればこれを(3)式に代入することにより薄鋼板の9
個の弾性係数Cijを得ることが出来る。Although equations (4) and (5) have already been known (CMSayers and DRAllen, "The influence of stress"
on the principal polarization directions of ultra
sonicshear waves in textured steel plates ", Journal
of Physics D, Vol.17, pp1399-1413 (1984)), formula (6) was first discovered by Japanese Patent Application No. 1-29755. According to the equations (4), (5) and (6), the values of three elastic coefficients (C 0 11 = 23) of the already known iron single crystal are known.
7GPa, C 0 12 = 141GPa, C 0 44 = 116GPa) resonant frequency ratio By utilizing K 1, K 2, and the sound velocity ratio K 3
All of W 400 , W 420 , and W 440 can be obtained by calculation simply by measuring If W 400 , W 420 , and W 440 are obtained, by substituting them into equation (3),
It is possible to obtain individual elastic coefficients C ij .
【0027】また圧延方向と角度αをなす方向の圧延面
内における薄鋼板のヤング率E(α)は次式(10)で
表わせることはよく知られている(F.Boric and G.A.Al
ers,"Measurement of the elastic properties of roll
ed sheet"Trans.Metal.Soc.AIME 233,7-11(1965))。 1/E(α)=S22 sin4 α+S11 cos4 α +(S66+2S12) sin2 α cos2 α (10) ただし S11=(C22C33−C23 2 )S S22=(C11C33−C13 2 )S S12=(C13C23−C12C33)S S66=1/C66 S=1/(C11C22C33+2C12C23C13−C11C23 2
−C22C13 2 −C33C12 2 )It is well known that the Young's modulus E (α) of a thin steel sheet in the rolling plane in the direction forming an angle α with the rolling direction can be expressed by the following equation (10) (F. Boric and GAAl).
ers, "Measurement of the elastic properties of roll
ed sheet "Trans.Metal.Soc.AIME 233,7-11 (1965)). 1 / E (α) = S 22 sin 4 α + S 11 cos 4 α + (S 66 + 2S 12 ) sin 2 α cos 2 α ( 10) However, S 11 = (C 22 C 33 -C 23 2 ) S S 22 = (C 11 C 33 -C 13 2 ) S S 12 = (C 13 C 23 -C 12 C 33 ) S S 66 = 1 / C 66 S = 1 / (C 11 C 22 C 33 + 2C 12 C 23 C 13 −C 11 C 23 2
-C 22 C 13 2 -C 33 C 12 2 )
【0028】(10)式に上記の方法で得られた薄鋼板
の9個の弾性係数Cijを代入しヤング率E(α)を計算
することにより得ることができる。なお、ヤング率の圧
延面内における平均値は次の(11)式を用いて求め
る。 E=〔E(0°)+2E(45°)+E(90°)〕/4 (11)It can be obtained by substituting the nine elastic coefficients C ij of the thin steel sheet obtained by the above method into the equation (10) and calculating the Young's modulus E (α). The average value of the Young's modulus in the rolling plane is calculated using the following equation (11). E = [E (0 °) + 2E (45 °) + E (90 °)] / 4 (11)
【0029】次に、本発明で提案する方法、すなわちK
1 ,K2の測定値および一定とみなした音速比K3 、鉄
単結晶の3個の弾性係数から近似的にヤング率の面内平
均値を計算できる方法を示す。(3),(4),
(5),(6),(10),(11)式からわかるよう
にK1 ,K2 ,K3 で表されるヤング率は(12)式の
パラメータKP ・KM ,およびK3 で表される。Next, the method proposed in the present invention, that is, K
A method for approximating the in-plane average value of Young's modulus from the measured values of 1 , K 2 , the sound velocity ratio K 3 regarded as constant, and the three elastic coefficients of the iron single crystal is shown. (3), (4),
As can be seen from the equations (5), (6), (10) and (11), the Young's modulus represented by K 1 , K 2 and K 3 is the parameters K P · K M and K 3 of the equation (12). It is represented by.
【0030】[0030]
【数6】 [Equation 6]
【0031】冷延薄板500枚を測定した結果、KP =
0.32〜0.37,KM =−0.04〜0.0,K3
=0.94〜1.024の範囲であった。そこで、パラ
メータKP ,KM ,K3 を上記の範囲でそれぞれ等間隔
で5点、計125点の組合せに対して前記(3)〜(1
2)式に代入し計算したシミュレーション結果を示すと
図3となる。これからわかるようにヤング率の面内平均
値は3変数K1 ,K2 ,K3 、あるいはKP ,KM ,K
3 の関数であるがK3 の寄与率は非常に小さく上記の範
囲のKP ,KM ,K3 では高々ヤング率の面内平均値の
変化は0.2GPa 程度である。従って、K3 =0.96
とした場合ヤング率の誤差は高々±0.6GPa 、ヤング
率240GPa に対して±0.09%である。(11)式
の平均値を使わず、(10)式のE(α)を積分して求
めた平均値を使っても同様の結果である。このようにK
P ,KM すなわちK1 ,K2だけで近似的にヤング率の
面内平均値を計算できる。K1 ,K2 の測定値とK3 =
0.96により近似したヤング率の面内平均値とK1 ,
K2 ,K3 から厳密計算したヤング率の面内平均値との
強い相関を図4に示す。この結果を使い、さらにヤング
率とランクフォード値との経験的な関係を最小2乗法を
用いて2次式近似することによりランクフォード値の面
内平均値を得ることができる。As a result of measuring 500 cold-rolled thin plates, K P =
0.32 to 0.37, K M = -0.04 to 0.0, K 3
= 0.94 to 1.024. Therefore, for the combinations of the parameters K P , K M , and K 3 of 5 points at equal intervals within the above range, for a total of 125 points, the above (3) to (1
FIG. 3 shows the simulation result calculated by substituting into the equation (2). As can be seen, the in-plane average value of Young's modulus is three variables K 1 , K 2 , K 3 , or K P , K M , K.
Although it is a function of 3 , the contribution rate of K 3 is very small, and at K P , K M , and K 3 in the above range, the change in the in-plane average value of Young's modulus is about 0.2 GPa. Therefore, K 3 = 0.96
If so, the Young's modulus error is ± 0.6 GPa at most, and the Young's modulus is ± 0.09% with respect to 240 GPa. The same result is obtained by using the average value obtained by integrating E (α) in the equation (10) without using the average value in the equation (11). K like this
The in-plane average value of the Young's modulus can be approximately calculated only by P , K M, that is, K 1 , K 2 . Measured values of K 1 and K 2 and K 3 =
In-plane mean value of Young's modulus approximated by 0.96 and K 1 ,
FIG. 4 shows the strong correlation with the in-plane average value of Young's modulus calculated strictly from K 2 and K 3 . Using this result, the in-plane average value of the Rankford value can be obtained by further approximating the empirical relationship between the Young's modulus and the Rankford value using the least square method.
【0032】次に共振周波数比K1 とK2 を測定する方
法について説明する。厚さが2mm以下の薄鋼板の中を厚
さ方向に伝播する超音波の厚み共振周波数fzz,fzx,
fzyを測定するのに電磁超音波を利用した定在波法
(“厚み共振法”とも呼ばれる。以下に“共振法”と呼
ぶ)が適していることは既に知られている(S.A.Fillim
onov,B.A.Budenkov,and N.A.Glukhov,"Ultrasonic cont
actless resonance testing method",Soviet Journal o
f Nondestructive Testing,No.1,pp102-104(1971))。
図2にこの共振法のための電磁超音波センサを示す。図
2(a)は正面から見た断面図である。この電磁超音波
センサは回転対称構造を有する。図2(b)は上から見
たものでありこの電磁超音波センサによって生ずる渦電
流,電磁力等を示している。図2(a)に示す偏平な円
形コイルに高周波は電流を流すと薄鋼板中には渦電流I
φが誘起する。一方永久磁石によって薄鋼板中に磁界が
生じている。磁界は薄鋼板の表面に垂直な成分Bzと、
薄鋼板の表面に平行且つ放射状に分布する成分Brを有
している。IφとBzの相互作用により薄鋼板の表面に
平行且つ放射状に分布する電磁力Frが生じる。またI
φとBrの相互作用により薄鋼板の表面に垂直な電磁力
Fzが生じる。電磁力Frは圧延方向に平行な成分Fx
と圧延方向に垂直な成分Fyに分けることが出来る。F
zにより板厚方向に伝播する縦波Vzzが発生し、Fxに
より圧延方向に偏向し板厚方向に伝播する横波Vzxが発
生し、Fyにより圧延方向と直角の方向に偏向し板厚方
向に伝播する横波Vzyが発生する。なお、上記の永久磁
石は薄鋼板中に磁界を発生させるためのものであり、電
磁石の代わりに使用しても差し支えない。Next, a method of measuring the resonance frequency ratios K 1 and K 2 will be described. Thickness resonance frequencies f zz , f zx of ultrasonic waves propagating in the thickness direction in a thin steel plate having a thickness of 2 mm or less,
It is already known that the standing wave method (also referred to as “thickness resonance method”, hereinafter referred to as “resonance method”) using electromagnetic ultrasonic waves is suitable for measuring f zy (SAFillim).
onov, BABudenkov, and NAGlukhov, "Ultrasonic cont
actless resonance testing method ", Soviet Journal o
f Nondestructive Testing, No.1, pp102-104 (1971)).
FIG. 2 shows an electromagnetic ultrasonic sensor for this resonance method. FIG. 2A is a sectional view seen from the front. This electromagnetic ultrasonic sensor has a rotationally symmetrical structure. FIG. 2 (b) is viewed from above and shows the eddy current, electromagnetic force, etc. generated by this electromagnetic ultrasonic sensor. When a high frequency current is applied to the flat circular coil shown in FIG.
φ induces. On the other hand, a magnetic field is generated in the thin steel plate by the permanent magnet. The magnetic field has a component Bz perpendicular to the surface of the thin steel plate,
It has a component Br that is distributed in parallel and radially to the surface of the thin steel sheet. Due to the interaction between Iφ and Bz, an electromagnetic force Fr that is distributed radially and parallel to the surface of the thin steel sheet is generated. Also I
An electromagnetic force Fz perpendicular to the surface of the thin steel sheet is generated by the interaction between φ and Br. The electromagnetic force Fr is a component Fx parallel to the rolling direction.
And the component Fy perpendicular to the rolling direction can be divided. F
A longitudinal wave V zz propagating in the sheet thickness direction is generated by z, a transverse wave V zx is deflected by Fx in the rolling direction and propagating in the sheet thickness direction, and is deflected in a direction perpendicular to the rolling direction by Fy. A transverse wave V zy that propagates in the vertical direction is generated. The above-mentioned permanent magnet is for generating a magnetic field in the thin steel plate, and may be used in place of the electromagnet.
【0033】こうして発生した超音波は逆の物理的過程
で検出される。さてコイルに流す高周波電流の周波数が
f=nV/(2d)(V=音速,d=板厚,n=整数)
を満足する場合に薄鋼板の中にその厚さ方向に定在波が
生じることは知られている。コイルに流す高周波電流の
周波数を掃引しながら上記のような過程に従って超音波
を発生・検出させ、検出された超音波が極大となるとき
の周波数を記録することによりこの式で表わされる周波
数を得ることができる。共振型電磁超音波センサに広帯
域パルス電流を印加し、電磁超音波を発生させ、受信信
号をフーリエ変換することにより共振周波数を検出する
方法を用いてもよい。この場合は周波数掃引の必要はな
い。(7),(8)式によれば共振周波数比であるか
ら、薄鋼板の厚さdは消去され測定する必要のないこと
がわかる。広い薄鋼板の厚さdを測定するにはX線等に
よる測定が必要であるため、これが不要であるのは実用
上非常に好ましいことである。The ultrasonic waves thus generated are detected in the opposite physical process. The frequency of the high-frequency current flowing in the coil is f = nV / (2d) (V = sound velocity, d = plate thickness, n = integer)
It is known that a standing wave is generated in the thickness direction of a thin steel plate when the above condition is satisfied. The frequency represented by this formula is obtained by generating and detecting ultrasonic waves according to the above process while sweeping the frequency of the high frequency current flowing in the coil, and recording the frequency at which the detected ultrasonic waves reach their maximum. be able to. A method of detecting a resonance frequency by applying a broadband pulse current to the resonance type electromagnetic ultrasonic sensor to generate an electromagnetic ultrasonic wave and Fourier-transforming a received signal may be used. In this case, frequency sweep is not necessary. According to the equations (7) and (8), since it is the resonance frequency ratio, it can be seen that the thickness d of the thin steel plate is erased and it is not necessary to measure. Since the measurement of the thickness d of a wide thin steel sheet requires measurement by X-ray or the like, the fact that this is not necessary is very preferable in practical use.
【0034】最後にオンライン通板中の冷延薄鋼板の共
振周波数比K1 、ならびにK2 を測定し、ヤング率の面
内平均値またはランクフォード値の面内平均値を得る方
法を示す。上記共振型電磁超音波センサを用いてn次の
横波超音波の共振周波数2種ならびに(n/2)次の縦
波超音波の共振周波数1種を測定するために公称板厚、
3種の超音波音速の概略値から測定周波数帯を設定しこ
の周波数帯で周波数を掃引することにより上記3種の共
振周波数を測定でき、K1 、ならびにK2 を測定でき
る。この測定時間は0.01秒以下で可能であるからこ
の時間に走行する薄鋼板の材質が一定、かつ板厚が一定
と仮定できるのでヤング率の面内平均値またはランクフ
ォード値の面内平均値を得ることができる。なお、この
電磁超音波センサに広帯域パルス電流を印加し、電磁超
音波を発生させ、受信信号をフーリエ変換することによ
り共振周波数を検出でき、K1 ,K2 を測定する方法を
使ってもよい。Finally, a method for obtaining the in-plane average value of Young's modulus or the in-plane average value of Rankford value by measuring the resonance frequency ratios K 1 and K 2 of the cold-rolled thin steel sheet during online threading will be described. Nominal plate thickness for measuring two resonance frequencies of n-th transverse ultrasonic wave and one resonance frequency of (n / 2) th longitudinal ultrasonic wave using the resonance electromagnetic ultrasonic sensor,
By setting the measurement frequency band from the approximate values of the three types of ultrasonic sonic speeds and sweeping the frequency in this frequency band, the above three types of resonance frequencies can be measured, and K 1 and K 2 can be measured. Since this measurement time can be 0.01 seconds or less, it can be assumed that the material of the thin steel sheet that runs during this time is constant and the plate thickness is constant. Therefore, the in-plane average of Young's modulus or Rank-ford average is obtained. You can get the value. A wideband pulse current may be applied to this electromagnetic ultrasonic sensor to generate an electromagnetic ultrasonic wave, and the received signal may be Fourier transformed to detect the resonance frequency, and a method of measuring K 1 and K 2 may be used. ..
【0035】[0035]
【実施例】100枚の薄鋼板について実際に共振型セン
サを用いてK1 ,K2 を測定し、K3 =0.96とおい
て近似的にヤング率の面内平均値を求めた結果と特願平
1−29755に記述してある方法でK1 ,K2 ,K3
を測定し厳密に求めたヤング率の面内平均値との比較を
図4に示す。本発明の近似的方法により測定された10
0枚の薄鋼板のヤング率の圧延面内における平均値(=
〔E(0°)+2E(45°)+E(90°)〕/4)
と引張試験によって測定されたランクフォード値(r
値)の圧延面内における平均値(=〔r(0°)+2r
(45°)+r(90°)〕/4)との関係を図5に示
している。ヤング率とランクフォード値の関係式を最小
2乗法により2次式近似した場合、残差の標準偏差が
0.1程度となりランクフォード値の圧延面内における
平均値を得ることができる。本発明の方法で得られたラ
ンクフォード値(r)と引張試験により得られたランク
フォード値の比較を図6に示す。[Examples] With respect to 100 thin steel sheets, K 1 and K 2 were actually measured using a resonance type sensor, and K 3 = 0.96 was set, and an in-plane average value of Young's modulus was approximately obtained. According to the method described in Japanese Patent Application No. 1-29755, K 1 , K 2 , K 3
FIG. 4 shows a comparison with the in-plane average value of Young's modulus which was measured and strictly determined. 10 measured by the approximate method of the present invention
Average value of Young's modulus of 0 thin steel plate in the rolling plane (=
[E (0 °) + 2E (45 °) + E (90 °)] / 4)
And Rankford value (r
Value) within the rolling surface (= [r (0 °) + 2r
The relationship with (45 °) + r (90 °)] / 4) is shown in FIG. When the relational expression of Young's modulus and Rankford value is quadratic-approximated by the method of least squares, the standard deviation of the residual is about 0.1, and the average value of the Rankford value in the rolling plane can be obtained. FIG. 6 shows a comparison between the Rankford value (r) obtained by the method of the present invention and the Rankford value obtained by the tensile test.
【0036】次に、オンラインで上記のK1 、ならびに
K2 を測定し、ヤング率の面内平均値またはランクフォ
ード値の面内平均値を得る測定システムの概要を図7に
示す。1は上位計算機で、冷延薄鋼板の鋼板情報(例え
ば、鋼板ナンバー、板厚、通板厚み共振周波数等)およ
び、測定結果を送受信する。2は測定装置の計算機、3
は送信アンプ、4は共振型電磁超音波センサ、5は倣い
装置、6は冷延薄鋼板、7は受信アンプ、8はゲート、
9は周波数分析器、10は入側ブライドルロール、11
は出側ブライドルロールである。測定装置の計算機2は
周波数分析器9を制御し、9から得られたデータを用い
共振周波数比K1 ,K2 を演算し、ヤング率およびラン
クフォード値を演算する。電磁超音波装置は送信アンプ
3、共振型電磁超音波センサ4、受信アンプ7、および
ゲート8から構成される。倣い装置5は共振型電磁超音
波センサ4と冷延薄鋼板6とのギャップを一定にした
り、上昇待避させるものである。10,11のブライド
ルロールは6の冷延薄鋼板のバタツキを抑制するための
ものである。10または11のブライドルロールの位置
に共振型電磁超音波センサを設置しなくとも冷延薄鋼板
のバタツキを抑制するような機構の所に設置しても良
い。なお、実線は信号または情報の流れを示し、破線は
制御の流れを示す。Next, FIG. 7 shows an outline of a measuring system for measuring the above K 1 and K 2 online to obtain the in-plane average value of Young's modulus or the in-plane average value of Rankford value. Reference numeral 1 denotes a host computer, which transmits and receives steel plate information (for example, steel plate number, plate thickness, plate thickness resonance frequency, etc.) of cold rolled thin steel plates and measurement results. 2 is a calculator of measuring device, 3
Is a transmission amplifier, 4 is a resonance type electromagnetic ultrasonic sensor, 5 is a copying device, 6 is a cold-rolled thin steel plate, 7 is a reception amplifier, 8 is a gate,
9 is a frequency analyzer, 10 is an entrance side bridle roll, 11
Is the outgoing bridle roll. The calculator 2 of the measuring device controls the frequency analyzer 9, calculates the resonance frequency ratios K 1 and K 2 using the data obtained from 9, and calculates the Young's modulus and the Rankford value. The electromagnetic ultrasonic device includes a transmission amplifier 3, a resonance type electromagnetic ultrasonic sensor 4, a reception amplifier 7, and a gate 8. The copying apparatus 5 is for making a gap between the resonance type electromagnetic ultrasonic sensor 4 and the cold rolled thin steel sheet 6 constant or for raising and retracting the gap. The bridle rolls 10 and 11 are for suppressing the flapping of the cold-rolled thin steel sheet 6. Even if the resonance type electromagnetic ultrasonic sensor is not installed at the position of the bridle roll 10 or 11, it may be installed at a mechanism that suppresses flapping of the cold-rolled thin steel sheet. The solid line shows the flow of signals or information, and the broken line shows the flow of control.
【0037】オンライン通板中に冷延薄鋼板のランクフ
ォード値(r値)の圧延面内平均値を5m毎に測定した
結果を図8に示す。本発明の方法により測定した結果を
□印で示し、この冷延薄鋼板を切り出し引張試験機で測
定した結果を○印で示す。図8からわかるようにランク
フォード値の範囲は小さいが引張試験機で測定した値と
対応がとれている。FIG. 8 shows the results obtained by measuring the rolling in-plane average value of the Rankford value (r value) of the cold-rolled thin steel sheet during online threading every 5 m. The results measured by the method of the present invention are shown by □, and the results obtained by cutting out this cold-rolled thin steel sheet with a tensile tester are shown by ◯. As can be seen from FIG. 8, the range of the Rankford value is small, but it corresponds to the value measured by the tensile tester.
【0038】[0038]
【発明の効果】以上述べたように本発明では共振型電磁
超音波センサのみを用いて完全に非破壊的にかつ冷延薄
鋼板を汚すことなく、また共振周波数比K1ならびにK
2 を利用して近似的な演算式によりヤング率の面内平均
値またはランクフォード値の面内平均値を得ることがで
きる。オフラインでは簡便かつ迅速に冷延薄鋼板のヤン
グ率の面内平均値またはランクフォード値の面内平均値
の測定ができる。さらにセンサのコンパクト化および高
速測定ができるので、オンライン通板中でも冷延薄鋼板
のヤング率の面内平均値またはランクフォード値の面内
平均値の測定が可能となり、オンライン品質管理に有効
となる。As described above, in the present invention, only the resonance type electromagnetic ultrasonic sensor is used to completely nondestructively and without polluting the cold rolled steel sheet, and the resonance frequency ratios K 1 and K.
By using 2 , it is possible to obtain the in-plane average value of Young's modulus or the in-plane average value of Rankford value by an approximate arithmetic expression. The in-plane average of the Young's modulus of the cold-rolled thin steel sheet or the in-plane average of the Rankford value can be easily and quickly measured off-line. Furthermore, because the sensor can be made compact and high-speed measurement is possible, it is possible to measure the in-plane average value of the Young's modulus of the cold-rolled thin steel sheet or the in-plane average value of the Rankford value even during online rolling, which is effective for online quality control ..
【図1】本発明に関連する各種のモードの超音波の伝播
方向と振動方向を示す図。FIG. 1 is a diagram showing propagation directions and vibration directions of ultrasonic waves of various modes related to the present invention.
【図2】薄鋼板の厚さ方向に伝播する縦波超音波と2種
の横波超音波を発生・検出するための共振型電磁超音波
センサを示す図。FIG. 2 is a diagram showing a resonant electromagnetic ultrasonic sensor for generating and detecting a longitudinal ultrasonic wave and two kinds of transverse ultrasonic waves propagating in the thickness direction of a thin steel plate.
【図3】K3 の変化とヤング率の面内平均値の関係を示
す図。FIG. 3 is a diagram showing a relationship between changes in K 3 and average values of Young's modulus in a plane.
【図4】本発明により共振周波数比K1 ,K2 の測定値
と音速比K3 =0.96から近似的に求めたヤング率の
面内平均値と共振周波数比K1 ,K2 、および音速比K
3 の測定値から求めたヤング率の面内平均値とを比較し
た図。FIG. 4 is an in-plane average value of Young's modulus and resonance frequency ratios K 1 and K 2 , which are approximately obtained from measured values of resonance frequency ratios K 1 and K 2 and sound velocity ratio K 3 = 0.96 according to the present invention. And sound velocity ratio K
The figure which compared the Young's modulus in-plane average value calculated | required from the measured value of 3 .
【図5】本発明の方法により得られたヤング率の圧延面
内における平均値(E)と引張試験機により得られたラ
ンクフォード値の圧延面内における平均値(r)との関
係を示す図。FIG. 5 shows the relationship between the average value (E) of the Young's modulus in the rolled surface obtained by the method of the present invention and the average value (r) of the Rankford value obtained by the tensile tester in the rolled surface. Fig.
【図6】本発明の方法により得られたランクフォード値
の圧延面内における平均値(r)と引張試験機により得
られたランクフォード値の圧延面内における平均値
(r)との関係を示す図。FIG. 6 shows the relationship between the average value (r) of the Rankford values obtained by the method of the present invention in the rolled surface and the average value (r) of the Rankford values obtained by the tensile tester in the rolled surface. FIG.
【図7】オンラインでヤング率の面内平均値またはラン
クフォード値の面内平均値を得る測定システムの概要を
示す図。FIG. 7 is a diagram showing an outline of a measurement system for obtaining an in-plane average value of Young's modulus or an in-plane average value of Rankford values online.
【図8】オンライン通板中の冷延薄鋼板のランクフォー
ド値(r値)測定結果を示す図FIG. 8 is a diagram showing a Rankford value (r value) measurement result of a cold-rolled thin steel sheet during online threading.
1 上位計算機 2 測定装置の計算機 3 送信アンプ 4 共振型電磁超音波センサ 5 倣い装置 6 冷延薄鋼板 7 受信アンプ 8 ゲート 9 周波数分析器 10 入側ブライドルロール 11 出側ブライドルロール 1 High-order computer 2 Measuring device computer 3 Transmitting amplifier 4 Resonance type electromagnetic ultrasonic sensor 5 Copying device 6 Cold rolled thin steel plate 7 Receiving amplifier 8 Gate 9 Frequency analyzer 10 Incoming bridle roll 11 Outgoing bridle roll
Claims (6)
向に振動しつつ厚さ方向に伝播する横波超音波の厚み共
振周波数と厚さ方向に伝播する縦波超音波の厚み共振周
波数との比の値と、該冷延薄鋼板の内部を圧延方向と直
角をなす方向に振動しつつ厚さ方向に伝播する横波超音
波の厚み共振周波数と厚さ方向に伝播する縦波超音波の
厚み共振周波数との比の値とを測定し、該測定された2
種の比の値をもとに前記冷延薄鋼板のヤング率およびラ
ンクフォード値を得ることを特徴とする冷延薄鋼板の材
質測定法。1. A thickness resonance frequency of transverse ultrasonic waves propagating in the thickness direction while vibrating inside the cold rolled thin steel sheet in a direction parallel to the rolling direction and a thickness resonance frequency of longitudinal ultrasonic waves propagating in the thickness direction. And the thickness resonance frequency of transverse ultrasonic waves propagating in the thickness direction while vibrating in the direction perpendicular to the rolling direction inside the cold-rolled thin steel sheet and longitudinal ultrasonic waves propagating in the thickness direction. The value of the ratio to the thickness resonance frequency of the
A method for measuring the material properties of a cold-rolled thin steel sheet, characterized in that the Young's modulus and the Rankford value of the cold-rolled thin steel sheet are obtained based on the value of the seed ratio.
記冷延薄鋼板の内部を圧延方向と45°をなす方向に伝
播するSH0板波の音速と圧延方向と平行な方向あるい
は直角をなす方向に伝播するSH0板波の音速との比を
一定値とみなす過程と、前記3種の比の値ならびに鉄単
結晶の既知の弾性係数の値から、冷延薄鋼板のヤング率
およびランクフォード値の面内平均値を近似的に演算す
る過程とを含む請求項1記載の材質測定法。2. The process of measuring the ratio and value of the two kinds, and the sound velocity of SH0 plate wave propagating in the cold rolled thin steel sheet in a direction forming 45 ° with the rolling direction and a direction parallel to the rolling direction or The Young's modulus of the cold-rolled thin steel sheet was determined from the process of considering the ratio of the sound velocity of SH0 plate waves propagating in the direction perpendicular to the sound velocity as a constant value and the value of the three types of ratios and the known elastic modulus of the iron single crystal. And a step of approximately calculating an in-plane average value of the Rankford value.
む電磁超音波装置を用いて前記2種の横波超音波および
前記1種の縦波超音波を発生・検出し、前記の厚み共振
型周波数の比の値を測定する請求項1記載の材質測定
法。3. An electromagnetic ultrasonic device including at least a resonant electromagnetic ultrasonic sensor is used to generate and detect the two types of transverse ultrasonic waves and the one type of longitudinal ultrasonic wave, and to detect the thickness resonant frequency. The material measuring method according to claim 1, wherein the value of the ratio is measured.
渦電流を誘起するための高周波電流を流すコイルと、前
記冷延薄鋼板に所定の磁界を印加する磁石と、前記渦電
流と前記磁界との相互作用のために前記冷延薄鋼板の表
面近傍に生ずる電磁力により発生する前記2種の横波超
音波および前記1種の縦波超音波を検出する前記共振型
電磁超音波センサとを備え、前記コイルに流す高周波電
流の周波数を掃引しながら前記横波超音波および縦波超
音波を発生・検出し、該検出された超音波が極大となる
ときの周波数を記録することにより前記3種の厚み共振
周波数を得る請求項3記載の材質測定法。4. The electromagnetic ultrasonic device comprises a coil for passing a high-frequency current for inducing an eddy current in the cold-rolled thin steel sheet, a magnet for applying a predetermined magnetic field to the cold-rolled thin steel sheet, and the eddy current. And the magnetic field, the resonance type electromagnetic ultrasonic wave for detecting the two kinds of transverse ultrasonic waves and the one kind of longitudinal ultrasonic waves generated by the electromagnetic force generated in the vicinity of the surface of the cold-rolled steel sheet. By generating and detecting the transverse ultrasonic wave and the longitudinal ultrasonic wave while sweeping the frequency of the high-frequency current flowing through the coil, and recording the frequency when the detected ultrasonic wave reaches a maximum. The material measuring method according to claim 3, wherein the three types of thickness resonance frequencies are obtained.
置により測定された前記の厚み共振周波数の比の値をも
とに冷延薄鋼板のヤング率およびランクフォード値を演
算する演算装置と、前記共振型電磁超音波センサと前記
冷延薄鋼板とのギャップを一定にするための倣い機構を
含む倣い装置とを備える請求項3記載の冷延薄鋼板の材
質測定装置。5. An electromagnetic ultrasonic device and an arithmetic device for calculating Young's modulus and Rankford value of a cold-rolled thin steel sheet based on a value of a ratio of the thickness resonance frequency measured by the electromagnetic ultrasonic device. 4. The material measuring device for a cold-rolled thin steel sheet according to claim 3, further comprising: and a copying apparatus including a copying mechanism for making a gap between the resonance type electromagnetic ultrasonic sensor and the cold-rolled thin steel sheet constant.
中に2種の横波超音波および1種の縦波超音波を発生す
るため、周波数を掃引させながら高周波電流を出力する
周波数解析装置と、該横波超音波および縦波超音波を検
出する共振型電磁超音波センサを備え、該共振型電磁超
音波センサにより検出された信号の中から、前記周波数
解析装置より出力された高周波電流と同一周波数成分を
有する信号を前記周波数解析装置により抽出して前記の
厚み共振周波数の比の値を得る請求項5記載の材質測定
装置。6. A frequency analysis in which a high frequency current is output while sweeping the frequency because the electromagnetic ultrasonic device generates two kinds of transverse ultrasonic waves and one kind of longitudinal ultrasonic wave in the cold rolled steel sheet. An apparatus and a resonance type electromagnetic ultrasonic sensor for detecting the transverse ultrasonic waves and the longitudinal ultrasonic waves, and from the signals detected by the resonance electromagnetic ultrasonic sensor, a high frequency current output from the frequency analysis device 6. The material measuring device according to claim 5, wherein a signal having the same frequency component as that of is extracted by the frequency analyzing device to obtain the value of the ratio of the thickness resonance frequencies.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4066393A JPH0587714A (en) | 1991-03-27 | 1992-03-24 | Method and device for measuring quality of cold rolling thin steel plate |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6314291 | 1991-03-27 | ||
JP3-63142 | 1991-03-27 | ||
JP4066393A JPH0587714A (en) | 1991-03-27 | 1992-03-24 | Method and device for measuring quality of cold rolling thin steel plate |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0587714A true JPH0587714A (en) | 1993-04-06 |
Family
ID=26404225
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4066393A Pending JPH0587714A (en) | 1991-03-27 | 1992-03-24 | Method and device for measuring quality of cold rolling thin steel plate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0587714A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006098404A1 (en) * | 2005-03-16 | 2006-09-21 | The Tokyo Electric Power Company, Incorporated | Method of measuring hydrogen concentration in member and device of measuring hydrogen concentration |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02210258A (en) * | 1989-02-10 | 1990-08-21 | Nippon Steel Corp | Method for measuring material of cold rolled steel sheet and measuring instrument of speed of ultrasonic wave propagated in cold rolled steel plate |
-
1992
- 1992-03-24 JP JP4066393A patent/JPH0587714A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02210258A (en) * | 1989-02-10 | 1990-08-21 | Nippon Steel Corp | Method for measuring material of cold rolled steel sheet and measuring instrument of speed of ultrasonic wave propagated in cold rolled steel plate |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006098404A1 (en) * | 2005-03-16 | 2006-09-21 | The Tokyo Electric Power Company, Incorporated | Method of measuring hydrogen concentration in member and device of measuring hydrogen concentration |
JP2006258569A (en) * | 2005-03-16 | 2006-09-28 | Tokyo Electric Power Co Inc:The | Concentration measuring method for hydrogen in member and hydrogen concentration measuring instrument |
US7930925B2 (en) | 2005-03-16 | 2011-04-26 | Global Nuclear Fuel-Japan Co., Ltd. | Method of measuring hydrogen concentration in member and device of measuring hydrogen concentration |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5154081A (en) | Means and method for ultrasonic measurement of material properties | |
Wolf et al. | Investigation of Lamb waves having a negative group velocity | |
US6532821B2 (en) | Apparatus and method for evaluating the physical properties of a sample using ultrasonics | |
KR100561215B1 (en) | Magnetostrictive Transducer for Generating and Sensing Elastic Ultrasonic waves, and Apparatus for Structural Diagnosis Using It | |
Kawashima | Nondestructive characterization of texture and plastic strain ratio of metal sheets with electromagnetic acoustic transducers | |
US5467655A (en) | Method for measuring properties of cold rolled thin steel sheet and apparatus therefor | |
Dixon et al. | Texture measurements of metal sheets using wideband electromagnetic acoustic transducers | |
Murav’eva et al. | Methodological peculiarities of using SH-and Lamb waves when assessing the anisotropy of properties of flats | |
Castaings et al. | Air-coupled measurement of plane wave, ultrasonic plate transmission for characterising anisotropic, viscoelastic materials | |
Ogi et al. | Noncontact ultrasonic spectroscopy on deforming polycrystalline copper: Dislocation damping and acoustoelasticity | |
JPH0587714A (en) | Method and device for measuring quality of cold rolling thin steel plate | |
JPH06118064A (en) | Method and device for measuring material of metal sheet | |
Murav’ev et al. | Acoustic assessment of the internal stress and mechanical properties of differentially hardened rail | |
US20100319454A1 (en) | Method and system for determining young's modulus and poisson's ratio for a crystalline material | |
JPH0687054B2 (en) | Method for measuring material of cold-rolled steel sheet and measuring device for ultrasonic velocity propagating in cold-rolled steel sheet | |
Clark Jr et al. | Ultrasonic measurement of sheet steel texture and formability: Comparison with neutron diffraction and mechanical measurements | |
Rose et al. | Ultrasonic wave considerations for the development of an NDE feature matrix for anisotropic media | |
JP2773535B2 (en) | Ultrasonic applied measuring device | |
JP7222365B2 (en) | SUBJECT THICKNESS MEASURING DEVICE AND THICKNESS MEASURING METHOD | |
JPH06148148A (en) | Ultrasonic attenuation measuring method, and material characteristic evaluating method | |
Minachi et al. | Delamination sizing in composite materials using a Gauss—Hermite beam model | |
Ganguli et al. | Experimental investigation of ultrasound wave focusing in attenuative solids | |
Schmerr Jr | Fundamental models and measurements for ultrasonic nondestructive evaluation systems | |
JPH0679018B2 (en) | Evaluation method for deep drawability of thin metal sheets | |
Achenbach | Flaw characterization by ultrasonic scattering methods |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 19960820 |