JPH0587683A - Photo pulse tester - Google Patents

Photo pulse tester

Info

Publication number
JPH0587683A
JPH0587683A JP27476091A JP27476091A JPH0587683A JP H0587683 A JPH0587683 A JP H0587683A JP 27476091 A JP27476091 A JP 27476091A JP 27476091 A JP27476091 A JP 27476091A JP H0587683 A JPH0587683 A JP H0587683A
Authority
JP
Japan
Prior art keywords
light
signal
optical
modulated
modulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27476091A
Other languages
Japanese (ja)
Inventor
Yoshizo Honda
芳三 本多
Shinya Nagashima
伸哉 長島
Akio Ichikawa
昭夫 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ando Electric Co Ltd
Original Assignee
Ando Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ando Electric Co Ltd filed Critical Ando Electric Co Ltd
Priority to JP27476091A priority Critical patent/JPH0587683A/en
Publication of JPH0587683A publication Critical patent/JPH0587683A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

PURPOSE:To reduce the distortion of the measuring waveform due to noises by branching the coherent light to a signal light and a locally emitted light, combining the back scattering light generated when a modulated pulse signal obtained by modulating the signal light enters an optical fiber with the locally emitted light, and A/D converting and averaging a photoelectrically converted light of the detected combined light. CONSTITUTION:This tester is provided with a branching filter 2 for branching the coherent light, from a light source 1 to a signal light 11 and a locally emitted light 12, a modulated signal generator 3 for generating a plurality of modulated signals 16, and an optical modulator 4 which modulates the signal light 11 to a modulated pulse signal 13. When the modulated signal 16 generated in the generator 3 is applied to the modulator 4, the intensity of the signal light 11 is modulated, and consequently a modulated light pulse signal 13 is output. There are provided a branching filter 5 which takes out a back scattering light 14 generated when the signal 13 enters an optical fiber 10, an optical multiplexer 6 which combines the scattering light 14 and the locally emitted light 12, and a photodetector 7 which detects the combined light. Accordingly, the interference between the back scattering lights is averaged in a signal processing part, whereby the distortion of the measuring waveform can be reduced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、光ホモダイン受光ま
たは光ヘテロダイン受光を利用して光ファイバの損失お
よび破断点位置の測定をする光パルス試験器についての
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical pulse tester for measuring loss and break position of an optical fiber by using optical homodyne light reception or optical heterodyne light reception.

【0002】[0002]

【従来の技術】次に、従来技術による光パルス試験器の
構成を図5により説明する。図5の構成は、ホモダイン
受光を用いた構成である。図5の21はコヒーレント光
源、2は光分岐器、5は光分岐器、6は光合波器、7は
光検出器、8は信号処理部、10は光ファイバ、24は
光パルス変調器、25はタイミング発生器である。な
お、図5は特願平3-175980号の図8と同じものである。
2. Description of the Related Art Next, the structure of a conventional optical pulse tester will be described with reference to FIG. The configuration of FIG. 5 is a configuration using homodyne light reception. In FIG. 5, 21 is a coherent light source, 2 is an optical splitter, 5 is an optical splitter, 6 is an optical multiplexer, 7 is a photodetector, 8 is a signal processing unit, 10 is an optical fiber, 24 is an optical pulse modulator, 25 is a timing generator. 5 is the same as FIG. 8 of Japanese Patent Application No. 3-175980.

【0003】光源21は安定した光周波数のコヒーレン
ト光を連続して出射し、光分岐器2は光源21から出射
した光を信号光11と局発光12に分岐する。光パルス
変調器24は信号光11をタイミング発生器25からの
信号により光パルス変調を行い、光パルス信号22とし
て出射する。光分岐器5は光ファイバ10からの後方散
乱光14を光合波器6へ分岐する。光合波器6は光ファ
イバ10からの後方散乱光14と局発光12を合波し、
光検出器7は光合波器6で合波した信号光を光ホモダイ
ン検波する。信号処理部8は、光検出器7で光−電気変
換した信号を増幅し、A/D変換し、平均化および表示
をする。
The light source 21 continuously emits coherent light having a stable optical frequency, and the optical splitter 2 splits the light emitted from the light source 21 into a signal light 11 and a local light 12. The optical pulse modulator 24 performs optical pulse modulation on the signal light 11 with a signal from the timing generator 25, and emits it as an optical pulse signal 22. The optical branching device 5 branches the backscattered light 14 from the optical fiber 10 to the optical multiplexer 6. The optical multiplexer 6 combines the backscattered light 14 from the optical fiber 10 and the local light 12,
The photodetector 7 performs optical homodyne detection on the signal light multiplexed by the optical multiplexer 6. The signal processing unit 8 amplifies the signal photoelectrically converted by the photodetector 7, performs A / D conversion, and averages and displays.

【0004】[0004]

【発明が解決しようとする課題】図5で、コヒーレンシ
ィのよい光源21を用いて光ファイバ10からの後方散
乱光14を測定した場合、後方散乱光14の強度雑音が
増加し、測定波形に歪を生じるため光ファイバの損失お
よび破断点位置の測定では精度と確度が十分ではない。
図4アと図4イはコヒーレンシィのよい光源を用いた場
合の測定波形のモデルである。
In FIG. 5, when the backscattered light 14 from the optical fiber 10 is measured using the light source 21 with good coherency, the intensity noise of the backscattered light 14 increases and the measured waveform becomes Because of the distortion, the accuracy and accuracy are not sufficient for measuring the loss of the optical fiber and the position of the break point.
4A and 4A are models of measured waveforms when a light source with good coherency is used.

【0005】光パルス信号13は光ファイバ10の中を
そのパルス幅だけ広がって前方に進みながら散乱光を光
ファイバ10の各点で発生させる。パルス幅内のある位
置と時刻に発生した散乱光は、もっと前方の他の位置と
時刻で発生して戻りつつある散乱光と合成されて光ファ
イバ10を後方へ戻り、また別の位置と時刻に発生した
散乱光と合成されながら戻る。各散乱光どうしの合成の
結果、すなわち干渉により打ち消しや強め合いが生じる
が、合成後の光強度は各散乱光の位相や振幅の大きさに
依存する。この干渉の様子は、合成が生じる散乱領域で
異なる。これが後方散乱光14の強度雑音の主な原因の
一つと考えられている。
The optical pulse signal 13 spreads in the optical fiber 10 by its pulse width and travels forward to generate scattered light at each point of the optical fiber 10. Scattered light generated at a certain position and time within the pulse width is combined with scattered light that is generated and returned at another position and time further ahead and returns to the optical fiber 10 backward, and at another position and time. It returns while being combined with the scattered light generated in. As a result of the combination of the scattered lights, that is, cancellation and strengthening occur due to interference, the light intensity after the combination depends on the phase and amplitude of each scattered light. The manner of this interference differs depending on the scattering region where the synthesis occurs. This is considered to be one of the main causes of the intensity noise of the backscattered light 14.

【0006】この発明は、コヒーレント光源1から出射
された信号光11を光変調部4により変調する場合に、
変調信号発生器3から発生する複数の変調信号16によ
り生成した変調光パルス信号13を光ファイバ10に入
射することにより、各位置で散乱される光が合成される
ときの位相または大きさを変化させて、合成後の光強度
を変調光パルス信号13ごとに変化させることにより、
コヒーレント光により発生した後方散乱光14の光強度
を平均化処理し、強度雑音による測定波形の歪を減らす
光パルス試験器の提供を目的とする。
In the present invention, when the signal light 11 emitted from the coherent light source 1 is modulated by the optical modulator 4,
By inputting the modulated optical pulse signal 13 generated by the plurality of modulated signals 16 generated from the modulated signal generator 3 into the optical fiber 10, the phase or magnitude when the light scattered at each position is combined is changed. Then, by changing the combined light intensity for each modulated optical pulse signal 13,
An object of the present invention is to provide an optical pulse tester that averages the light intensity of the backscattered light 14 generated by coherent light and reduces the distortion of the measurement waveform due to intensity noise.

【0007】[0007]

【課題を解決する手段】この目的を達成するために、こ
の発明では、連続するコヒーレント光を出射する光源1
と、光源1のコヒーレント光を信号光11と局発光12
に分岐する光分岐器2と、複数の変調信号16を発生す
る変調信号発生器3と、光分岐器2で分岐された信号光
11を変調して変調光パルス信号13とする光変調部4
と、変調光パルス信号13が光ファイバ10に入射する
ことにより発生する後方散乱光14を取り出す光分岐器
5と、光分岐器5で分岐された後方散乱光14と光分岐
器2で分岐された局発光12を合波する光合波器6と、
光合波器6で合波された光を検波する光検出器7と、光
検出器7で光−電気変換された信号を増幅、A/D変換
および平均化する信号処理部8とを備える。
In order to achieve this object, in the present invention, a light source 1 for emitting continuous coherent light is provided.
And the coherent light from the light source 1 to the signal light 11 and the local light 12
An optical branching device 2 for branching the optical signal, a modulation signal generator 3 for generating a plurality of modulated signals 16, and an optical modulator 4 for modulating the signal light 11 branched by the optical branching device 2 into a modulated optical pulse signal 13.
An optical branching device 5 for extracting a backscattered light 14 generated by the modulated optical pulse signal 13 entering the optical fiber 10, a backscattered light 14 branched by the optical branching device 5, and a light branching device 2. An optical multiplexer 6 for multiplexing the local light 12
The optical detector 6 includes a photodetector 7 for detecting the light multiplexed by the optical multiplexer 6, and a signal processing unit 8 for amplifying, A / D converting, and averaging the signals optoelectrically converted by the photodetector 7.

【0008】[0008]

【作用】次に、この発明による光パルス試験器の構成図
を図1により説明する。図1は図5に対し、タイミング
発生器25の代わりに変調信号発生器3を用い、変調信
号16を2種類以上にして、光変調部4に接続したもの
である。また、図5の光パルス変調器24の代わりに図
1では光変調部4を用い、光強度変調及び光位相変調の
機能をもつものである。図1のその他の構成は図5と同
じものである。図1はホモダイン受光を用いた場合であ
り、ヘテロダイン受光を用いる場合は、さらに光変調部
4に音響光学素子などの光周波数をシフトする変調器を
用いる。
1 is a block diagram of the optical pulse tester according to the present invention. In contrast to FIG. 5, the modulation signal generator 3 is used instead of the timing generator 25 in FIG. 5, two or more kinds of modulation signals 16 are provided, and the modulation signal 16 is connected to the optical modulator 4. Further, instead of the optical pulse modulator 24 of FIG. 5, the optical modulator 4 is used in FIG. 1 and has a function of optical intensity modulation and optical phase modulation. The other configuration of FIG. 1 is the same as that of FIG. FIG. 1 shows a case where homodyne light reception is used. When heterodyne light reception is used, a modulator such as an acousto-optical element that shifts the optical frequency is further used as the light modulator 4.

【0009】次に、図1の光変調部4の構成例を図2に
より説明する。図2アは光変調部4に光強度変調器を利
用したものである。変調信号発生器3で発生した変調信
号16を光強度変調器4に印加することにより、信号光
11の光強度が変調され、変調光パルス信号13が出力
される。光強度変調器4には、例えば、LiNbO3
電気光学効果を応用したマッハ・ツェンダー干渉計型の
光強度変調素子を用いれば印加電圧によって入射光に対
する透過率を変えることができる。
Next, an example of the structure of the light modulator 4 shown in FIG. 1 will be described with reference to FIG. FIG. 2A uses a light intensity modulator for the light modulator 4. By applying the modulation signal 16 generated by the modulation signal generator 3 to the light intensity modulator 4, the light intensity of the signal light 11 is modulated and the modulated light pulse signal 13 is output. For the light intensity modulator 4, for example, if a Mach-Zehnder interferometer type light intensity modulator applying the electro-optic effect of LiNbO 3 is used, the transmittance for incident light can be changed by the applied voltage.

【0010】図2イは、光変調部4に光位相変調器を利
用したものである。変調信号発生器3で発生した変調信
号16aを光強度変調器4aに印加し、変調信号発生器
3で発生した変調信号16bを光位相変調器4bに印加
することにより、光変調部4に入力された信号光11は
光パルスに変調され、続いて、位相変調を受け、変調光
パルス信号13が出力される。光位相変調器4bには、
例えば、LiNbO3の電気光学効果を応用した単一導
波路型の光位相変調素子を用れば印加電圧によって入射
光の位相を変えて出力することができる。
FIG. 2A shows that an optical phase modulator is used for the optical modulator 4. The modulated signal 16a generated by the modulated signal generator 3 is applied to the optical intensity modulator 4a, and the modulated signal 16b generated by the modulated signal generator 3 is applied to the optical phase modulator 4b, thereby inputting to the optical modulator 4. The signal light 11 thus obtained is modulated into an optical pulse, which is then subjected to phase modulation, and a modulated optical pulse signal 13 is output. The optical phase modulator 4b includes
For example, if a single waveguide type optical phase modulation element applying the electro-optic effect of LiNbO 3 is used, it is possible to change the phase of incident light by the applied voltage and output.

【0011】次に、図3により図2の構成例による変調
信号16と変調光パルス信号13の関係を説明する。図
3アは、図2アの変調信号16により変調光パルス信号
13が強度を変調された光として出射される様子を示し
ている。横軸は時間で、2つのグラフの横軸は同じ時刻
を示す。ここでは、3種類の変調を行っている例を示
す。
Next, the relationship between the modulated signal 16 and the modulated optical pulse signal 13 according to the configuration example of FIG. 2 will be described with reference to FIG. FIG. 3A shows how the modulated light pulse signal 13 is emitted as light whose intensity is modulated by the modulated signal 16 of FIG. The horizontal axis shows time, and the horizontal axes of the two graphs show the same time. Here, an example in which three types of modulation are performed is shown.

【0012】図3イは、図2イの変調信号16a及び1
6bにより変調光パルス信号13がパルスとなり位相変
調された光として出射される様子を示している。横軸は
時間で、3つのグラフの横軸は同じ時刻を示す。ここで
は、3種類の変調を行っている例を示す。
FIG. 3A shows the modulated signals 16a and 16a of FIG.
6B shows that the modulated light pulse signal 13 is converted into a pulse by 6b and is emitted as phase-modulated light. The horizontal axis shows time, and the horizontal axes of the three graphs show the same time. Here, an example in which three types of modulation are performed is shown.

【0013】次に、図4により平均化により測定波形の
ゆらぎが低減されることを説明する。図4アは変調信号
が図3Aの場合の測定波形であり、図4イは変調信号が
図3Bの場合の測定波形である。図4の横軸は、変調光
パルス信号13を出射してからの時間であり、散乱光の
生じたファイバの領域までの距離に相当する。図4アと
図4イでは、散乱光どうしの干渉の様子が異なり、図4
アで強め合いが生じている距離では、必ずしも、図4イ
の同じ距離でも強め合いが生じているとは限らない。逆
に、図4アで打ち消しが生じている距離では、必ずし
も、図4イの同じ距離でも打ち消しが生じているとは限
らない。したがって、このようなデータを多く集めて、
平均化すればするほど、さまざまな干渉の結果が平均さ
れるので、図4ウのように、歪の少ない波形が得られ
る。
Next, it will be described with reference to FIG. 4 that the fluctuation of the measured waveform is reduced by averaging. FIG. 4A shows the measured waveform when the modulated signal is as shown in FIG. 3A, and FIG. 4A is the measured waveform when the modulated signal is as shown in FIG. 3B. The horizontal axis of FIG. 4 is the time after the modulated light pulse signal 13 is emitted, and corresponds to the distance to the region of the fiber where the scattered light is generated. 4A and FIG. 4A show different states of interference between scattered lights.
In the distance in which the strengthening occurs in A, the strengthening does not always occur in the same distance in FIG. On the contrary, at the distance where the cancellation occurs in FIG. 4A, the cancellation does not always occur even at the same distance in FIG. 4A. Therefore, collecting a lot of such data,
As the averaging is performed, the results of various interferences are averaged, so that a waveform with less distortion can be obtained as shown in FIG. 4C.

【0014】[0014]

【発明の効果】この発明によれば、2種類以上の変調光
パルス信号を用いるので、光源のコヒーレンシィが高い
ために発生する後方散乱光の強度雑音は、さまざまな散
乱光間干渉を平均化することにより低減され、光ファイ
バの損失および破断点位置の測定において精度と確度を
改善できる。
According to the present invention, since two or more kinds of modulated light pulse signals are used, the intensity noise of the backscattered light generated due to the high coherency of the light source averages out various scattered light interferences. By doing so, it is possible to improve the accuracy and accuracy in the measurement of the loss and break point position of the optical fiber.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明による光パルス試験器の構成図であ
る。
FIG. 1 is a configuration diagram of an optical pulse tester according to the present invention.

【図2】図1の光変調部4と変調信号発生器3の構成図
である。
2 is a configuration diagram of an optical modulator 4 and a modulation signal generator 3 of FIG.

【図3】図2の変調信号16と変調光パルス信号13の
関係図である。
3 is a relational diagram between the modulated signal 16 and the modulated optical pulse signal 13 of FIG.

【図4】変調光パルス信号13が異なるときの測定波形
図である。
FIG. 4 is a measurement waveform diagram when the modulated optical pulse signal 13 is different.

【図5】従来技術による光パルス試験器の構成図であ
る。
FIG. 5 is a block diagram of a conventional optical pulse tester.

【符号の説明】[Explanation of symbols]

1 光源 2 光分岐器 3 変調信号発生器 4 光変調部 5 光分岐器 6 光合波器 7 光検出器 8 信号処理部 10 光ファイバ 11 信号光 12 局発光 13 変調光パルス信号 14 後方散乱光 16 変調信号 DESCRIPTION OF SYMBOLS 1 light source 2 optical splitter 3 modulation signal generator 4 optical modulator 5 optical splitter 6 optical multiplexer 7 photodetector 8 signal processor 10 optical fiber 11 signal light 12 local light 13 modulated light pulse signal 14 backscattered light 16 Modulation signal

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 連続するコヒーレント光を出射する光源
(1) と、 光源(1) のコヒーレント光を信号光(11)と局発光(12)に
分岐する第1の光分岐器(2) と、 複数の変調信号(16)を発生する変調信号発生器(3) と、 第1の光分岐器(2) で分岐された信号光(11)を変調して
変調光パルス信号(13)とする光変調部(4) と、 変調光パルス信号(13)を光ファイバ(10)に入射すること
により発生する後方散乱光(14)を取り出す第2の光分岐
器(5) と、 第2の光分岐器(5) で分岐された後方散乱光(14)と第1
の光分岐器(2) で分岐された局発光(12)を合波する光合
波器(6)と、 光合波器(6) で合波された光を検波する光検出器(7)
と、 光検出器(7) で光−電気変換された信号を増幅、A/D
変換および平均化する信号処理部(8) とを備えることを
特徴とする光パルス試験器。
1. A light source for emitting continuous coherent light
(1), a first optical branching device (2) that branches the coherent light of the light source (1) into a signal light (11) and a local light (12), and a modulation signal that generates a plurality of modulation signals (16) A generator (3), an optical modulator (4) that modulates the signal light (11) split by the first optical splitter (2) into a modulated optical pulse signal (13), and a modulated optical pulse signal The second optical branching device (5) for extracting the backscattered light (14) generated by making the (13) incident on the optical fiber (10), and the backscattering light branched by the second optical branching device (5) Light (14) and first
The optical multiplexer (6) that combines the local light (12) that has been split by the optical splitter (2) and the photodetector (7) that detects the light that has been multiplexed by the optical multiplexer (6).
And the signal photo-electrically converted by the photodetector (7) is amplified and A / D
An optical pulse tester comprising a signal processing unit (8) for converting and averaging.
JP27476091A 1991-09-26 1991-09-26 Photo pulse tester Pending JPH0587683A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27476091A JPH0587683A (en) 1991-09-26 1991-09-26 Photo pulse tester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27476091A JPH0587683A (en) 1991-09-26 1991-09-26 Photo pulse tester

Publications (1)

Publication Number Publication Date
JPH0587683A true JPH0587683A (en) 1993-04-06

Family

ID=17546200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27476091A Pending JPH0587683A (en) 1991-09-26 1991-09-26 Photo pulse tester

Country Status (1)

Country Link
JP (1) JPH0587683A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9051635B2 (en) 2008-02-20 2015-06-09 Herng-Jeng Jou Lower-cost, ultra-high-strength, high-toughness steel
CN113884753A (en) * 2021-08-17 2022-01-04 之江实验室 Laser output power measuring circuit

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9051635B2 (en) 2008-02-20 2015-06-09 Herng-Jeng Jou Lower-cost, ultra-high-strength, high-toughness steel
CN113884753A (en) * 2021-08-17 2022-01-04 之江实验室 Laser output power measuring circuit
CN113884753B (en) * 2021-08-17 2024-05-03 之江实验室 Laser output power measuring circuit

Similar Documents

Publication Publication Date Title
US8144334B2 (en) Fiber-optic, digital system for laser Doppler vibrometers (LDVs)
CN107505041B (en) Phase demodulation device and method based on phase sensitive optical time domain reflectometer
US6545785B1 (en) Optical communication system with phase modulation
CN113447110B (en) Distributed optical fiber vibration sensing system and phase carrier demodulation method thereof
JP3657362B2 (en) Optical pulse characteristic measuring apparatus and measuring method thereof
CN108507662B (en) Optical fiber distributed sensing method and device based on multi-wavelength double-optical pulse
CN111157101A (en) Weak grating array distributed vibration sensing system and method
JP2000180265A (en) Brillouin gain spectrum measuring method and device
JPWO2020084825A1 (en) Optical pulse test device and optical pulse test method
KR100216595B1 (en) Laser line width measurement apparatus using stimulated brillouin scattering
CN111912516A (en) Phase-synchronized optical fiber distributed vibration measurement device, driver and method
US10816368B2 (en) Method and system for high sensitivity in distributed fiber sensing applications
KR101889351B1 (en) Spatially-selective brillouin distributed optical fiber sensor with increased effective sensing points and sensing method using brillouin scattering
JP2003322588A (en) Reflection type method and instrument for measuring brillouin spectrum distribution
JP2017044503A (en) Optical fiber strain measurement device and method for measuring optical fiber strain
JP4107603B2 (en) Laser radar equipment
JPH0587683A (en) Photo pulse tester
CN201983882U (en) Spontaneous Brillouin scattered light time-domain reflector based on double-laser frequency locking
CN211926897U (en) Feed-forward structure for improving noise of light source and optical fiber vibration measuring device
JP2001165808A (en) Measuring method of back-scattering light, and its apparatus
JP2004125520A (en) Apparatus and method for measuring characteristics of optical fiber
US6490068B1 (en) Linear analog optical communication system with two transmitted beams and phase modulation
JP3152314B2 (en) Method and apparatus for measuring backscattered light
JP2515018B2 (en) Backscattered light measurement method and device
CN213842395U (en) Dynamic and static combined measurement distributed optical fiber sensing system