JPH0587638A - Light wavelength meter - Google Patents

Light wavelength meter

Info

Publication number
JPH0587638A
JPH0587638A JP24777491A JP24777491A JPH0587638A JP H0587638 A JPH0587638 A JP H0587638A JP 24777491 A JP24777491 A JP 24777491A JP 24777491 A JP24777491 A JP 24777491A JP H0587638 A JPH0587638 A JP H0587638A
Authority
JP
Japan
Prior art keywords
line sensor
line
interference
wavelength
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP24777491A
Other languages
Japanese (ja)
Inventor
Arinori Tokuhashi
有紀 徳橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP24777491A priority Critical patent/JPH0587638A/en
Publication of JPH0587638A publication Critical patent/JPH0587638A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Spectrometry And Color Measurement (AREA)

Abstract

PURPOSE:To obtain a very accurate small-sized light wavelength meter by arranging a plurality of line sensors in parallel to each other so that one element of one line sensor and one corresponding element of the other line sensor are mutually shifted by definite quantity. CONSTITUTION:The interference fringes 5 appearing through a Fabry-Perot etalon 3 and a lens 4 are projected on the line sensors 6a, 6b parallelly arranged on the border of the center of the concentric circles thereof and the position thereof is detected. The line sensor 6b is arranged in parallel to the line sensor 6a in close vicinity thereto so that the positions of the elements of the line sensor 6b in the arrangement direction thereof are shifted by the width (12.5mum) 1/2 each of the elements, for example, having a width of 25mum from the end surface of the line sensor 6a. Therefore, when the p-th interference fringe 5p from the center of the concentric circles of the interference fringes 5 is present on the (n+1)-th element of the line sensor 6a and the n-th element of the line sensor 6b, it can be detected that the interference fringe position is present between (25n)mum and (25n+12.5)mum. Twice resolving power is obtained as compared with a case using only one line sensor.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高精度干渉計測に用い
られるコヒーレント光源の波長を測定する光波長計に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical wavelength meter for measuring the wavelength of a coherent light source used for high precision interferometry.

【0002】[0002]

【従来の技術】この種従来の光波長計として、図5に示
す、ファブリ・ペロー・エタロン(以下、エタロンとい
う)を利用したものが知られている(A.Fisher, R.Kull
mer and W.Demtoder: Opt.Commun.39, 1981, 277.)。こ
れは、入射光束1を、レンズ系2により僅かな広がり角
を与えてエタロン3に入射し、該エタロンの多重干渉作
用により現れる同心円状の干渉縞5をレンズ4を通して
ラインセンサー6上に投影するよう構成されている。か
かる構成により、被測定光と既知の波長λs を持つ参照
光の各々を入射した場合に現れる干渉縞の直径を測定
し、これを比較することにより被測定光の波長λx を決
定するようになっている。
2. Description of the Related Art As a conventional optical wavelength meter of this kind, one using a Fabry-Perot etalon (hereinafter referred to as an etalon) shown in FIG. 5 is known (A. Fisher, R. Kull).
mer and W. Demtoder: Opt.Commun. 39, 1981, 277.). This is because the incident light beam 1 is incident on the etalon 3 with a slight divergence angle by the lens system 2, and concentric interference fringes 5 appearing due to the multiple interference action of the etalon are projected on the line sensor 6 through the lens 4. It is configured as follows. With such a configuration, the diameter of the interference fringe that appears when the light to be measured and the reference light having a known wavelength λs are respectively incident, and the wavelength λx of the light to be measured is determined by comparing these. ing.

【0003】即ち、ラインセンサー6上に投影される干
渉縞5の同心円の中心からp番目のリング状干渉縞の直
径Dp は、入射光1の波長をλ、エタロン3の共振器長
をd、レンズ4の焦点距離をfとすると、 で与えられる。ここで、nはエタロンを構成する媒質の
屈折率、n0 は空気の屈折率である。又、εは干渉次数
の端数(少数)部である。式(1)から明らかなよう
に、干渉縞5の同心円の中心からp番目の干渉縞の直径
Dp とq番目の干渉縞の直径Dq との差は、入射光の波
長λとエタロンの共振器長dに依存している。依って、
共振器長dの異なる複数のエタロンを用い、且つ同心円
上の幾つかの干渉縞の直径Dp ,Dq 等を測定すること
により、入射光の波長λが未知であっても、干渉次数を
求めることができる。従って、被測定光を入射したとき
の干渉次数を(mx +εx )、波長λs を有する参照光
の干渉次数を(ms +εs )とすると、被測定光の波長
λx は、 で決定することができる。但し、mx ,ms は次数の整
数部分、εx ,εs は端数である。
That is, the diameter Dp of the p-th ring-shaped interference fringe from the center of the concentric circle of the interference fringe 5 projected on the line sensor 6, the wavelength of the incident light 1 is λ, the resonator length of the etalon 3 is d, If the focal length of the lens 4 is f, Given in. Here, n is the refractive index of the medium forming the etalon, and n 0 is the refractive index of air. Further, ε is a fractional part of the interference order. As is clear from the equation (1), the difference between the diameter Dp of the p-th interference fringe and the diameter Dq of the q-th interference fringe from the center of the concentric circle of the interference fringe 5 is the wavelength λ of the incident light and the resonator of the etalon. It depends on the length d. Therefore,
To obtain the interference order even if the wavelength λ of the incident light is unknown by using a plurality of etalons having different resonator lengths d and measuring the diameters Dp and Dq of some interference fringes on the concentric circles. You can Therefore, assuming that the interference order when the measured light is incident is (mx + εx) and the interference order of the reference light having the wavelength λs is (ms + εs), the wavelength λx of the measured light is Can be determined at. However, mx and ms are integer parts of the order, and εx and εs are fractions.

【0004】[0004]

【発明が解決しようとする課題】従来技術において、波
長λx の測定精度は、式(2)から明らかなように、干
渉次数の端数の精度,即ちεx 及びεs の精度で決まっ
ていた。例えば、波長λs が780nmの半導体レーザ
光を参照光として共振器長dが30mmのエタロンを用
いて干渉縞の直径を測定した場合、干渉次数(ms +ε
s )は105 程度となり、被測定光の波長λx を10-7
程度の精度で求めるためには、εx 及びεs は10-2
桁迄を正確に測定する必要がある。しかし、端数εx 及
びεs の精度は干渉縞の直径の測定精度に依存している
上、干渉縞の直径の測定精度はラインセンサーの分解能
に制限されるため、測定精度に限界があった。現在の検
出素子の作製技術では、ラインセンサーの1素子の幅は
25μm程度であり、これより小さくすることは著しい
コスト上昇を招く等の問題がある。そのため、このライ
ンセンサーの1素子の幅より微細に測定することが出来
なかった。一方、前記レンズ4の焦点距離fを1000
mm程度以上の長さに大きく設定するよう構成すれば測
定精度を向上させることは出来るが、装置が大型なもの
になってしまうという問題があった。
In the prior art, the measurement accuracy of the wavelength .lambda.x is determined by the accuracy of the fraction of the interference order, that is, the accuracy of .epsilon.x and .epsilon.s, as is clear from the equation (2). For example, when the diameter of the interference fringes is measured using a semiconductor laser beam having a wavelength λs of 780 nm as a reference beam and an etalon having a cavity length d of 30 mm, the interference order (ms + ε
s) is about 10 5 and the wavelength λx of the measured light is 10 −7.
In order to obtain it with a degree of accuracy, it is necessary to measure εx and εs accurately to the order of 10 -2 . However, since the accuracy of the fractions εx and εs depends on the measurement accuracy of the diameter of the interference fringes, and the measurement accuracy of the diameter of the interference fringes is limited by the resolution of the line sensor, the measurement accuracy is limited. In the current manufacturing technology of the detection element, the width of one element of the line sensor is about 25 μm, and making it smaller than this causes a problem such as a significant cost increase. Therefore, it was not possible to measure finer than the width of one element of this line sensor. On the other hand, the focal length f of the lens 4 is set to 1000
Although it is possible to improve the measurement accuracy by configuring it to be set to a length of about mm or more, there is a problem that the device becomes large.

【0005】本発明は、従来の技術の有するこのような
問題点に鑑みてなされたものであり、その目的とすると
ころは、高精度且つ小型の光波長計を提供しようとする
ものである。
The present invention has been made in view of the above problems of the prior art, and an object of the present invention is to provide a highly accurate and compact optical wavelength meter.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、既知の波長を持つ参照光と未知の波長を持つ被測定
光とをファブリ・ペロー・エタロンに入射し、ラインセ
ンサーに投影された干渉縞の位置から被測定光の波長を
測定する本発明の光波長計は、複数のラインセンサーを
備え、該ラインセンサーが互いに平行に、且つひとつの
ラインセンサーの1素子と、他のラインセンサーの対応
する1素子とが一定量ずれて並ぶように設置されてい
る。
In order to achieve the above object, a reference light having a known wavelength and a measured light having an unknown wavelength are incident on a Fabry-Perot etalon and projected onto a line sensor. The optical wavelength meter of the present invention for measuring the wavelength of the light to be measured from the position of the interference fringe includes a plurality of line sensors, the line sensors are parallel to each other, and one element of one line sensor and another line sensor. Are arranged so as to be lined up with a certain amount of offset.

【0007】[0007]

【作用】干渉縞が、ラインセンサー間の対応する複数の
素子上にある場合、干渉縞を検出したラインセンサーの
数及びラインセンサー間のずれ量から、干渉縞の正確な
位置又は直径を求めることが出来る。基準となるライン
センサーの(n+1)番目の素子が干渉縞を検出し、同
時に素子の1/2の幅分ずらして設置された他のライン
センサーにおいてはn番目の素子が干渉縞を検出してい
る場合、干渉縞は基準となるラインセンサーのn番目の
素子と(n+1)番目の素子の間にあることが判る。従
って、測定値が素子の分解能に限定されず、而も装置を
大型化することなく測定値の精度を高めることが出来
る。
When the interference fringes are present on a plurality of corresponding elements between the line sensors, the accurate position or diameter of the interference fringes is determined from the number of line sensors that have detected the interference fringes and the shift amount between the line sensors. Can be done. The (n + 1) th element of the reference line sensor detects the interference fringes, and at the same time, in the other line sensor that is installed with a shift of 1/2 the width of the element, the nth element detects the interference fringes. If the interference fringes are present, it can be seen that the interference fringe is located between the nth element and the (n + 1) th element of the reference line sensor. Therefore, the measured value is not limited to the resolution of the element, and the accuracy of the measured value can be improved without increasing the size of the device.

【0008】[0008]

【実施例】以下、図面を参照して従来例と同一の部材に
は同一の符号を用いて本発明の実施例を説明する。図1
は、第1実施例の光学系を示しており、図中、エタロン
3、レンズ4を透過して現れる干渉縞5は、該干渉縞の
同心円の中心を境に平行に設置されたラインセンサー6
a及び6b上に投影され、その位置が検出されるように
なっている。図2はラインセンサー6a及び6bの設置
状態を、ラインセンサーの端面からの距離と共に示して
おり、ラインセンサー6a及び6b中に記した数字は端
面からの素子の配列番号を示している。図2から明らか
なように、ラインセンサー6bはラインセンサー6aの
端面から、25μmの幅を有する素子の1/2の幅分
(12.5μm)、素子の配列方向に位置をずらして、
平行に近接して設置されている。従って、干渉縞5の同
心円の中心からp番目の干渉縞5pが、ラインセンサー
6aの(n+1)番目の素子とラインセンサー6bのn
番目の素子上にある場合、該干渉縞の位置は(25n)
μmと(25n+12.5)μmの間にあることを検出
できる。これにより、ラインセンサーを1つしか用いな
い従来例と比較して、2倍の分解能の測定値を得ること
が出来、装置を大型化することなく測定値の精度を高め
ることが出来る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT An embodiment of the present invention will be described below with reference to the drawings using the same reference numerals for the same members as in the conventional example. Figure 1
Shows the optical system of the first embodiment. In the figure, the interference fringes 5 appearing after passing through the etalon 3 and the lens 4 are line sensors 6 arranged in parallel with the center of the concentric circles of the interference fringes.
It is projected on a and 6b, and its position is detected. FIG. 2 shows the installation state of the line sensors 6a and 6b together with the distance from the end face of the line sensor, and the numbers written in the line sensors 6a and 6b show the array element numbers from the end face. As is clear from FIG. 2, the line sensor 6b is displaced from the end surface of the line sensor 6a by half the width (12.5 μm) of an element having a width of 25 μm in the arrangement direction of the elements,
They are installed close to each other in parallel. Therefore, the p-th interference fringe 5p from the center of the concentric circle of the interference fringe 5 is the (n + 1) th element of the line sensor 6a and the n-th line of the line sensor 6b.
If it is on the second element, the position of the interference fringe is (25n)
It can be detected that it is between μm and (25n + 12.5) μm. As a result, compared to the conventional example using only one line sensor, it is possible to obtain a measurement value with twice the resolution, and it is possible to improve the accuracy of the measurement value without increasing the size of the device.

【0009】図3は、第2実施例の光学系を示してお
り、図中、エタロン3、レンズ4を透過した干渉光はシ
リドリカル・レンズ7で縦方向に収束されてからグレー
ティング8で回折されて、回折光路上に配置されたライ
ンセンサー6a及び6bに入射するようになっている。
ラインセンサー6a及び6bは、第1実施例と同様に対
応する素子の位置が素子の1/2の幅分、素子の配列方
向に位置をずらして平行に設置されている。従って、従
来例と比較して2倍の分解能を得ることが出来、装置を
大型化することなく測定値の精度を高めることができ
る。更に、本実施例においては、ラインセンサーを近接
させる必要がないから装置の構成及びスペース上有利で
あり、又干渉光をラインセンサー上に集光させているの
で光量の無駄がなくなる等の利点を有している。
FIG. 3 shows the optical system of the second embodiment. In the figure, the interference light transmitted through the etalon 3 and lens 4 is vertically converged by the cylindrical lens 7 and then diffracted by the grating 8. Then, the light is incident on the line sensors 6a and 6b arranged on the diffracted light path.
Similar to the first embodiment, the line sensors 6a and 6b are arranged parallel to each other with the positions of the corresponding elements displaced by a half width of the elements in the arrangement direction of the elements. Therefore, it is possible to obtain twice the resolution as compared with the conventional example, and it is possible to improve the accuracy of the measured value without increasing the size of the device. Further, in the present embodiment, it is not necessary to bring the line sensor close to each other, which is advantageous in terms of the structure and space of the apparatus. Further, since the interference light is focused on the line sensor, there is an advantage that the light amount is not wasted. Have

【0010】尚、複数のラインセンサーの位置をずらし
て設置する方法としては、例えば図4に示したように、
干渉縞間隔が既知の直線状の干渉縞9をラインセンサー
6a及び6b上に投影してラインセンサーの位置を調整
すれば良い。又、上述した実施例においては、2本のラ
インセンサーを用いた構成に関して説明したが、これに
限らず、複数のラインセンサーを用いることにより測定
精度を更に高めることが可能である。又更に、本発明
は、平面ファブリ・ペロー・エタロンに限らず、球面フ
ァブリ・ペロー・エタロンにも応用可能である。
As a method of disposing the plurality of line sensors by shifting their positions, for example, as shown in FIG.
The position of the line sensor may be adjusted by projecting the linear interference fringe 9 having a known interference fringe interval on the line sensors 6a and 6b. Further, in the above-described embodiment, the configuration using the two line sensors has been described, but the present invention is not limited to this, and the measurement accuracy can be further improved by using a plurality of line sensors. Furthermore, the present invention is applicable not only to the plane Fabry-Perot etalon but also to the spherical Fabry-Perot etalon.

【0011】[0011]

【発明の効果】上述の如く、本発明によれば、測定精度
が素子の分解能に限定されず、而も装置を大型化するこ
となく測定値の精度を高めることが出来、測定値の高精
度化及び装置小型化に対し極めて有効である。
As described above, according to the present invention, the measurement accuracy is not limited to the resolution of the element, and the accuracy of the measurement value can be increased without increasing the size of the device, and the high accuracy of the measurement value can be obtained. It is extremely effective for downsizing and downsizing of the device.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による光波長計の第1実施例の光学系を
示す図である。
FIG. 1 is a diagram showing an optical system of a first embodiment of an optical wavelength meter according to the present invention.

【図2】第1実施例におけるラインセンサーの設置状態
を説明するための図である。
FIG. 2 is a diagram for explaining an installation state of a line sensor in the first embodiment.

【図3】本発明による光波長計の第2実施例の光学系を
示す図である。
FIG. 3 is a diagram showing an optical system of a second embodiment of the optical wavelength meter according to the present invention.

【図4】直線状の干渉縞を用いてラインセンサーの位置
を調整する場合を説明するための図である。
FIG. 4 is a diagram for explaining a case where the position of a line sensor is adjusted using linear interference fringes.

【図5】従来の光波長計の光学系を示す図である。FIG. 5 is a diagram showing an optical system of a conventional optical wavelength meter.

【符号の説明】[Explanation of symbols]

1 入射光束 2 レンズ系 3 ファブリ・ペロー・エタロン 4 レンズ 5 干渉縞 6 ラインセンサー 7 シリドリカル・レンズ 8 グレーティング 9 直線状干渉縞 1 Incident light flux 2 Lens system 3 Fabry-Perot etalon 4 Lens 5 Interference fringe 6 Line sensor 7 Cylindrical lens 8 Grating 9 Linear interference fringe

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 既知の波長を持つ参照光と未知の波長を
持つ被測定光とをファブリ・ペロー・エタロンに入射
し、ラインセンサーに投影された干渉縞の位置から被測
定光の波長を測定する光波長計において、 複数のラインセンサーを備え、該ラインセンサーが互い
に平行に、且つひとつのラインセンサーの1素子と、他
のラインセンサーの対応する1素子とが一定量ずれて並
ぶように設置されていることを特徴とする光波長計。
1. A reference light having a known wavelength and a measured light having an unknown wavelength are incident on a Fabry-Perot etalon, and the wavelength of the measured light is measured from the position of an interference fringe projected on a line sensor. The optical wavelength meter is equipped with a plurality of line sensors, and the line sensors are installed in parallel with each other, and one element of one line sensor and one element of the other line sensor are displaced by a certain amount. An optical wavelength meter characterized by being used.
JP24777491A 1991-09-26 1991-09-26 Light wavelength meter Withdrawn JPH0587638A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24777491A JPH0587638A (en) 1991-09-26 1991-09-26 Light wavelength meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24777491A JPH0587638A (en) 1991-09-26 1991-09-26 Light wavelength meter

Publications (1)

Publication Number Publication Date
JPH0587638A true JPH0587638A (en) 1993-04-06

Family

ID=17168455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24777491A Withdrawn JPH0587638A (en) 1991-09-26 1991-09-26 Light wavelength meter

Country Status (1)

Country Link
JP (1) JPH0587638A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150145531A (en) * 2014-06-20 2015-12-30 부산대학교 산학협력단 Apparatus and method for detecting wavelengths of light sources and apparatus and method for detecting characteristics of media

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150145531A (en) * 2014-06-20 2015-12-30 부산대학교 산학협력단 Apparatus and method for detecting wavelengths of light sources and apparatus and method for detecting characteristics of media

Similar Documents

Publication Publication Date Title
US4930895A (en) Encoder for forming interference fringes by re-diffracted lights from an optical type scale and photoelectrically converting the interference fringes to thereby detect the displacement of the scale
JP2586120B2 (en) encoder
JP2862417B2 (en) Displacement measuring device and method
JP4381671B2 (en) Displacement detector
US7389595B2 (en) Position-measuring device and method for operating a position-measuring device
KR100531458B1 (en) Optical displacement measurement system
US20070109556A1 (en) Methods and Apparatus for Reducing Error in Interferometric Imaging Measurements
JPS58191907A (en) Method for measuring extent of movement
US4395123A (en) Interferometric angle monitor
EP0489399A2 (en) Displacement detector
JPH0587638A (en) Light wavelength meter
JP4404184B2 (en) Displacement detector
EP0486050B1 (en) Method and apparatus for measuring displacement
KR100531693B1 (en) Optical displacement measurement system
JP2000186912A (en) Method and device for measuring minute displacements
JP4404185B2 (en) Displacement detector
JP3773073B2 (en) Apparatus and method for measuring aspheric shape
SU1744452A1 (en) Interferometer for inspection of reflecting surface planeness
JPS62163921A (en) Rotary encoder
JPS6151241B2 (en)
JP3517506B2 (en) Optical displacement measuring device
JPH06174423A (en) Length measuring and angle measuring device
JPS63222207A (en) Apparatus for measuring depth of recessed part and thickness of film
JPH03115809A (en) Encoder
JPH02157635A (en) Device for inspecting stability of light wavelength

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19981203