JPH0587563A - Method and sensor for detecting strain expansion - Google Patents

Method and sensor for detecting strain expansion

Info

Publication number
JPH0587563A
JPH0587563A JP25117991A JP25117991A JPH0587563A JP H0587563 A JPH0587563 A JP H0587563A JP 25117991 A JP25117991 A JP 25117991A JP 25117991 A JP25117991 A JP 25117991A JP H0587563 A JPH0587563 A JP H0587563A
Authority
JP
Japan
Prior art keywords
lever
strain
fulcrum
action point
detection sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25117991A
Other languages
Japanese (ja)
Other versions
JPH0812067B2 (en
Inventor
Hiroshi Ishii
紘 石井
Tadao Sugaya
忠雄 菅谷
Mizuo Sugaya
瑞雄 菅谷
Hideo Sugaya
日出夫 菅谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TECHNO SUGAYA KK
Original Assignee
TECHNO SUGAYA KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TECHNO SUGAYA KK filed Critical TECHNO SUGAYA KK
Priority to JP3251179A priority Critical patent/JPH0812067B2/en
Publication of JPH0587563A publication Critical patent/JPH0587563A/en
Publication of JPH0812067B2 publication Critical patent/JPH0812067B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

PURPOSE:To provide a small-sized inexpensive strain sensor developing high accuracy. CONSTITUTION:One elastic substrate 1 is continuously subjected to groove carving processing 4 to parallelly form a first fulcrum A1, a second fulcrum A2 and a first lever 5 and forms a fulcrum, an acting point and a lever in the same way in a continuous state and the displacement quantity of the final end of the lever is detected while strain is expanded by utilizing the principle of the lever. Since a strain expanding mechanism can be constituted only by subjecting one elastic substrate 1 to groove carving processing, a strain sensor can be minimized in the max. magnification and can be inexpensively produced only by groove carving processing. Since there is no assembling part in an expansion mechanism, there is no axiety of an assembling error and followability is well and high accuracy is achieved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、地殻変動、ダム、ビ
ル、岩盤等のあらゆる分野の微小歪みを連続的に拡大し
て検出するための方法及び歪み拡大検出センサに関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and a strain magnification detection sensor for continuously magnifying and detecting micro strains in all fields such as crustal movements, dams, buildings and rocks.

【0002】[0002]

【従来の技術】従来の歪みセンサとしては、a.オイル
シリコンをステンレスパイプ内に密封し、このオイルシ
リコンの体積変化を検出する機構と、b.ステンレスパ
イプ内に120°方向に3分割したシリコン室を形成
し、この中にオイルシリコンを夫々密封して三成分歪み
を検出できるように構成した検出機構が公知である。
2. Description of the Related Art Conventional strain sensors include a. A mechanism for sealing oil silicon in a stainless pipe and detecting a volume change of the oil silicon; b. A detection mechanism is known in which a silicon chamber divided into three parts in a 120 ° direction is formed in a stainless pipe, and oil silicon is sealed in each chamber to detect a three-component strain.

【0003】[0003]

【発明が解決しようとする課題】しかし、上記公知例に
おいては、次のような欠点がある。
However, the above-mentioned known examples have the following drawbacks.

【0004】a.オイルシリコンは温度変化の影響を受
け易く、a、bともに精度的に安定性がない。
A. Oil silicon is easily affected by temperature changes, and neither a nor b is stable in accuracy.

【0005】b.オイルシリコンの体積変化を検出する
ため、パイプ内に密封するオイルシリコンの量はある程
度多くならなければならない。このため、全体の形状、
重量ともに大きくなり、取扱い、設置等に際して不便で
ある。
B. In order to detect the volume change of oil silicon, the amount of oil silicon sealed in the pipe must be increased to some extent. Therefore, the overall shape,
The weight increases, which is inconvenient for handling and installation.

【0006】c.公知例a、bともに高価である。C. Both the known examples a and b are expensive.

【0007】本発明の第1の目的は、歪み検出センサに
おいて、小型化、軽量化を図ること、第2の目的は高精
度を発揮すること、第3の目的は温度の影響を受けない
こと、第4の目的は安価に製作できるようにすること、
第5の目的は連続歪みを検出できるようにすること、で
ある。
The first object of the present invention is to reduce the size and weight of the strain detection sensor, the second object is to achieve high accuracy, and the third object is to be unaffected by temperature. , The fourth purpose is to be able to manufacture inexpensively,
The fifth purpose is to enable detection of continuous distortion.

【0008】[0008]

【課題を解決するための手段】本発明の構成は次のとお
りである。
The constitution of the present invention is as follows.

【0009】1.歪みをテコの原理を応用して連続的に
拡大し、この拡大された最終端の変位量をセンサで検出
する歪み拡大検出方法。
1. A strain magnifying detection method in which the strain is continuously magnified by applying the lever principle, and the sensor detects the magnified displacement of the final end.

【0010】2.a.1枚の弾性基板と、 b.前記基板に連続的に溝彫りをすることにより並べて
加工された第1支点及び第1作用点と、 c.前記第1支点と第1作用点を結ぶ直線と並べて第1
支点を基点として連続的な溝彫りにより形成された第1
テコと、 d.前記第1テコの先端側において、第1テコと並べて
連続的な溝彫りにより形成された第2支点及び第1テコ
の先端が連続している第2作用点と、 e.以下同様のパターンで連続的な溝彫りにより形成さ
れた歪み拡大機構と、 f.最終テコの先端の変位量を検出するために設けられ
た変位検出センサと、 から成ることを特徴とする歪み拡大検出センサ。
2. a. One elastic substrate, b. A first fulcrum and a first action point that are machined side by side by continuously grooving the substrate; c. The first line is aligned with the straight line connecting the first fulcrum and the first action point.
First formed by continuous carving with the fulcrum as the base point
A lever, d. A second fulcrum formed by continuous groove engraving side by side with the first lever on the tip side of the first lever and a second action point where the tip of the first lever is continuous; e. A strain magnifying mechanism formed by continuous grooving in a similar pattern, and f. A strain detection sensor provided with a displacement detection sensor provided to detect the amount of displacement of the end of the final lever.

【0011】[0011]

【作用】歪みが第1作用点に作用すると、第1テコは第
1支点を中心点として歪みが作用した方向(基板の平面
に対して直角方向)に変位し、この変位量は第1テコの
先端側つまり第2作用点において拡大され、順次この拡
大が連続し、最終の検出端に至る。検出端の変位量は例
えば変位センサにより電気的な出力として取り出すこと
ができる。
When the strain acts on the first action point, the first lever is displaced about the first fulcrum in the direction in which the strain acts (the direction perpendicular to the plane of the substrate), and this displacement amount is the first lever. Is enlarged at the tip end side, that is, at the second action point, and this enlargement continues successively to reach the final detection end. The displacement amount of the detection end can be taken out as an electrical output by a displacement sensor, for example.

【0012】[0012]

【実施例】図1、図2に実施例を示す。EXAMPLE An example is shown in FIGS.

【0013】1は1枚の弾性材(例えばステンレス)か
ら成る基板、2は歪み作用部、3は基板1の固定部、4
は溝彫り部にして、溝彫り加工によって、第1支点
、前記歪み作用部2に連続する第1作用点B及び
第1テコ5、第2支点A、第2作用点B、第2テコ
6、第3支点A、第3作用点B、第3テコ7が平行
配置で形成されている。
Reference numeral 1 is a substrate made of one elastic material (for example, stainless steel), 2 is a strain acting portion, 3 is a fixing portion of the substrate 1, 4
Is a grooving portion, and by grooving processing, a first fulcrum A 1 , a first action point B 1 and a first lever 5 continuous with the strain action portion 2, a second fulcrum A 2 , a second action point B 2 , The second lever 6, the third fulcrum A 3 , the third action point B 3 , and the third lever 7 are formed in parallel arrangement.

【0014】8は第3テコ7の先端に取り付けられた検
出端、9は変位検出センサにして、前記検出端8の変位
量を電圧の変化量として検出し、歪み量が測定される。
Reference numeral 8 is a detection end attached to the tip of the third lever 7, and reference numeral 9 is a displacement detection sensor. The displacement amount of the detection end 8 is detected as a change amount of the voltage, and the strain amount is measured.

【0015】10は第1支点Aと第1作用点Bを形
成するために溝彫り加工された円内に補強用の支柱10
a、10bを嵌合した補強板である。
Numeral 10 is a support column 10 for reinforcement in a groove carved to form a first fulcrum A 1 and a first action point B 1.
It is a reinforcing plate in which a and 10b are fitted.

【0016】図3、図4は防水円柱状ケース11内に3
段に歪み検出センサを組み込んだ実施例にして、前記歪
み作用部2(第1作用点B)の位置は、図5中
(A)、(B)、(C)に示すように、120°ずつズ
ラしてあり、作用する360°方向からの歪みを検出で
きるように工夫されている。
FIG. 3 and FIG. 4 show three parts in a waterproof cylindrical case 11.
In the embodiment in which the strain detection sensor is incorporated in the step, the position of the strain acting portion 2 (first action point B 1 ) is 120 as shown in FIGS. 5 (A), 5 (B) and 5 (C). There is a shift by °, and it is devised so that the strain from the 360 ° direction that acts can be detected.

【0017】図6は防水ケース11と一体構造のものと
して防水ケース11内にケース内基板1aを一体に構成
し、このケース内基板1aに図2に示したパターンで各
支点と作用点及びテコを形成したもので、このようにす
ると、組み立ての誤差が全くなくなり、高精度が期待で
きる。なお、このケース内基板1aを数段重ね合わせる
ことにより多成分検出器として構成できる。
FIG. 6 shows a structure in which the case inner substrate 1a is integrally formed in the waterproof case 11 as an integral structure with the waterproof case 11, and each fulcrum, action point and lever are formed on the case inner substrate 1a in the pattern shown in FIG. In this way, there is no assembly error and high accuracy can be expected. A multi-component detector can be constructed by stacking the in-case substrates 1a in several stages.

【0018】[0018]

【実験例】図7に実験壕内に直径12cm、深さ1mの
ボーリング孔を掘削し、ここに図3及び図4に示したセ
ンサをセットしてセメントで固めて得た観測ひずみの時
間変化の一部を示す。この図7から明らかなように地球
潮汐および海洋潮汐による地殻ひずみの日変化が明瞭に
示されており、この記録からも10−7の感度は十分に
あることがわかる。
[Experimental example] In Fig. 7, a borehole with a diameter of 12 cm and a depth of 1 m was drilled in the experimental trench, and the sensor shown in Figs. Shows a part of. As is clear from FIG. 7, the diurnal variation of crustal strain due to the earth tide and ocean tide is clearly shown, and this record also shows that the sensitivity of 10 −7 is sufficient.

【0019】[0019]

【本発明の効果】本発明に係る歪み検出方法と歪みセン
サは以上の如き構成と作用から成るため、次の如き効果
を奏する。
The strain detecting method and strain sensor according to the present invention have the following effects because they have the above-described configurations and operations.

【0020】a.各支点と作用点を平行に形成すること
により、最小の面積で最大のパターン化が可能である。
この結果、センサの小型化、軽量化が可能である。
A. By forming each fulcrum and the point of action in parallel, maximum patterning is possible with a minimum area.
As a result, it is possible to reduce the size and weight of the sensor.

【0021】b.各支点と作用点及びテコを並べて配置
することにより、対となる支点と作用点の変形部(R支
柱)は作用時に平行変形し、バネ効果により誤差を吸収
し合うため、スムーズに拡大が連続して実用的には36
倍の拡大を可能にしている。
B. By arranging each fulcrum, action point and lever side by side, the deformation part (R strut) of the fulcrum and action point that makes a pair is deformed in parallel during action and the error is absorbed by the spring effect, so that the expansion continues smoothly. And practically 36
It is possible to double the size.

【0022】c.基板に温度の影響を受けないものを選
択することにより、温度の影響を全く無視することがで
きる。このため、温度の影響を受け易いダムやビル等へ
の設置の自由度が大きい。
C. By selecting a substrate that is not affected by temperature, the effect of temperature can be completely ignored. Therefore, there is a high degree of freedom in installation in dams, buildings, etc., which are easily affected by temperature.

【0023】d.基板を溝加工するだけでセンサを構成
できるので、製作は簡単であり、コストも安い。
D. Since the sensor can be configured simply by grooving the substrate, the manufacturing is simple and the cost is low.

【0024】e.一枚の基板に加工するため、組み立て
誤差の心配は全くなく、又変位の伝達に対してバックク
ラッシュがないことから、追従性が高く、高精度化でき
る。
E. Since it is processed into a single board, there is no concern about assembly error, and there is no back crush for displacement transmission, so high followability and high accuracy can be achieved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る歪みセンサの斜視図。FIG. 1 is a perspective view of a strain sensor according to the present invention.

【図2】歪みセンサの平面図。FIG. 2 is a plan view of a strain sensor.

【図3】歪みセンサのケースの一例を示す外観図。FIG. 3 is an external view showing an example of a case of a strain sensor.

【図4】図3に示す歪みセンサの断面図。FIG. 4 is a sectional view of the strain sensor shown in FIG.

【図5(A)】A−A′線断面図。FIG. 5A is a cross-sectional view taken along the line AA ′.

【図5(B)】B−B′線断面図。FIG. 5B is a sectional view taken along line BB ′.

【図5(C)】C−C′線断面図。FIG. 5C is a sectional view taken along the line CC ′.

【図6】ケースとセンサを一体に形成した実施例を示す
断面図。
FIG. 6 is a cross-sectional view showing an embodiment in which a case and a sensor are integrally formed.

【図7】実験データの説明図。FIG. 7 is an explanatory diagram of experimental data.

【符号の説明】[Explanation of symbols]

1 基板 2 作用部 3 固定部 4 溝彫り部 5 第1テコ 6 第2テコ 7 第3テコ 8 検出部 9 変位検出センサ 10 補強板 11 円柱状ケース A 第1支点 A 第2支点 A 第3支点 B 第1作用点 B 第2作用点 B 第3作用点DESCRIPTION OF SYMBOLS 1 Substrate 2 Working part 3 Fixed part 4 Groove part 5 1st lever 6 2nd lever 7 3rd lever 8 Detection part 9 Displacement detection sensor 10 Reinforcement plate 11 Cylindrical case A 1 1st fulcrum A 2 2nd fulcrum A 3 Third fulcrum B 1 First action point B 2 Second action point B 3 Third action point

───────────────────────────────────────────────────── フロントページの続き (72)発明者 菅谷 日出夫 東京都品川区西品川2−2−40有限会社テ クノ菅谷内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hideo Sugaya Techno Sugatani Co., Ltd. 2-2-40 Nishishinagawa, Shinagawa-ku, Tokyo

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 歪みをテコの原理を応用して連続的に拡
大し、この拡大された最終端の変位量をセンサで検出す
る歪み拡大検出方法。
1. A strain magnifying detection method in which strain is continuously magnified by applying the principle of leverage and a sensor detects the amount of displacement of the magnified final end.
【請求項2】 a.1枚の弾性基板と、 b.前記基板に連続的に溝彫りをすることにより並べて
加工された第1支点及び第1作用点と、 c.前記第1支点と第1作用点を結ぶ直線と並べて第1
支点を基点として連続的な溝彫りにより形成された第1
テコと、 d.前記第1テコの先端側において、第1テコと並べて
連続的な溝彫りにより形成された第2支点及び第1テコ
の先端が連続している第2作用点と、 e.以下同様のパターンで連続的な溝彫りにより形成さ
れた歪み拡大機構と、 f.最終テコの先端の変位量を検出するために設けられ
た変位検出センサと、から成ることを特徴とする歪み拡
大検出センサ。
2. a. One elastic substrate, b. A first fulcrum and a first action point that are machined side by side by continuously grooving the substrate; c. The first line is aligned with the straight line connecting the first fulcrum and the first action point.
First formed by continuous carving with the fulcrum as the base point
A lever, d. A second fulcrum formed by continuous groove engraving side by side with the first lever on the tip side of the first lever and a second action point where the tip of the first lever is continuous; e. A strain magnifying mechanism formed by continuous grooving in a similar pattern, and f. And a displacement detection sensor provided to detect the amount of displacement of the tip of the final lever.
【請求項3】 1枚の基板上に第1支点と第1作用点及
び第1テコを形成すると共に以下に連続する支点及び作
用点並びにテコを並べて形成して成る請求項2記載の歪
み拡大検出センサ。
3. The strain enlargement according to claim 2, wherein the first fulcrum, the first action point and the first lever are formed on one substrate and the following fulcrum, action point and lever are formed side by side. Detection sensor.
【請求項4】 ケース内において、このケースと一体に
構成された弾性板面に溝彫り加工して支点、作用点、テ
コを連続的に溝彫りして形成して成る請求項2記載の歪
み拡大検出センサ。
4. The strain according to claim 2, wherein the elastic plate surface integrally formed with the case is grooved to form a fulcrum, a point of action, and a lever continuously in the case. Enlargement detection sensor.
【請求項5】 ケース内に歪み検出センサを多段に組み
込むと共に各歪み拡大検出センサの第1作用点を等角度
ずつずらして成る請求項2記載の歪み拡大検出センサ。
5. The strain magnifying detection sensor according to claim 2, wherein the strain magnifying sensors are installed in multiple stages in the case, and the first action points of the strain magnifying detection sensors are shifted by equal angles.
【請求項6】 第1作用点に補強板を取り付けて成る請
求項2記載の歪み拡大検出センサ。
6. The strain enlargement detection sensor according to claim 2, wherein a reinforcing plate is attached to the first action point.
JP3251179A 1991-09-30 1991-09-30 Distortion magnifier Expired - Lifetime JPH0812067B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3251179A JPH0812067B2 (en) 1991-09-30 1991-09-30 Distortion magnifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3251179A JPH0812067B2 (en) 1991-09-30 1991-09-30 Distortion magnifier

Publications (2)

Publication Number Publication Date
JPH0587563A true JPH0587563A (en) 1993-04-06
JPH0812067B2 JPH0812067B2 (en) 1996-02-07

Family

ID=17218862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3251179A Expired - Lifetime JPH0812067B2 (en) 1991-09-30 1991-09-30 Distortion magnifier

Country Status (1)

Country Link
JP (1) JPH0812067B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006250804A (en) * 2005-03-11 2006-09-21 Makome Kenkyusho:Kk Displacement transfer device
JP2007064786A (en) * 2005-08-31 2007-03-15 Nano Control:Kk Force sensor
JP2012078233A (en) * 2010-10-04 2012-04-19 Association For The Development Of Earthquake Prediction Stress and distortion detection device
WO2013150614A1 (en) * 2012-04-03 2013-10-10 公益財団法人地震予知総合研究振興会 Stress and strain detecting device
JP2016523419A (en) * 2013-07-02 2016-08-08 エタ・フランセ・ルプレザンテ・パール・ル・デレゲ・ジェネラル・プール・ラルムマンETAT FRANCAIS represente par LE DELEGUE GENERAL POUR L’ARMEMENT Amplifying passive reversible microsensor
FR3124540A1 (en) * 2021-06-29 2022-12-30 Centre National De La Recherche Scientifique (Cnrs) Device for measuring deformations in a borehole
FR3124539A1 (en) * 2021-06-29 2022-12-30 Centre National De La Recherche Scientifique (Cnrs) Device for measuring deformations in a borehole

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7233144B1 (en) * 2022-09-05 2023-03-06 有限会社テクノ菅谷 Displacement magnifying device and measuring device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5776401A (en) * 1980-10-30 1982-05-13 Toshiba Corp Displacement gage for cylindrical test piece
JPS59175387A (en) * 1983-03-24 1984-10-04 Nec Corp Mechanical amplifying mechanism
JPS60150406U (en) * 1984-03-17 1985-10-05 株式会社東京精密 dimension detection device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5776401A (en) * 1980-10-30 1982-05-13 Toshiba Corp Displacement gage for cylindrical test piece
JPS59175387A (en) * 1983-03-24 1984-10-04 Nec Corp Mechanical amplifying mechanism
JPS60150406U (en) * 1984-03-17 1985-10-05 株式会社東京精密 dimension detection device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006250804A (en) * 2005-03-11 2006-09-21 Makome Kenkyusho:Kk Displacement transfer device
JP2007064786A (en) * 2005-08-31 2007-03-15 Nano Control:Kk Force sensor
JP2012078233A (en) * 2010-10-04 2012-04-19 Association For The Development Of Earthquake Prediction Stress and distortion detection device
WO2013150614A1 (en) * 2012-04-03 2013-10-10 公益財団法人地震予知総合研究振興会 Stress and strain detecting device
CN103443654A (en) * 2012-04-03 2013-12-11 公益财团法人地震预知综合研究振兴会 Stress and strain detecting device
US9027411B2 (en) 2012-04-03 2015-05-12 Public Interest Incorporated Foundations Association For The Development Of Earthquake Prediction Stress and strain sensing device
JP2016523419A (en) * 2013-07-02 2016-08-08 エタ・フランセ・ルプレザンテ・パール・ル・デレゲ・ジェネラル・プール・ラルムマンETAT FRANCAIS represente par LE DELEGUE GENERAL POUR L’ARMEMENT Amplifying passive reversible microsensor
FR3124540A1 (en) * 2021-06-29 2022-12-30 Centre National De La Recherche Scientifique (Cnrs) Device for measuring deformations in a borehole
FR3124539A1 (en) * 2021-06-29 2022-12-30 Centre National De La Recherche Scientifique (Cnrs) Device for measuring deformations in a borehole
WO2023275489A1 (en) * 2021-06-29 2023-01-05 Centre National De La Recherche Scientifique (Cnrs) Device for measuring deformations in a borehole

Also Published As

Publication number Publication date
JPH0812067B2 (en) 1996-02-07

Similar Documents

Publication Publication Date Title
US4926696A (en) Optical micropressure transducer
EP3499244B1 (en) Single axis inertial sensor with suppressed parasitic modes
US4376929A (en) Optimized stress and strain distribution diaphragms
WO2000012989A1 (en) Piezoresistive pressure sensor with sculpted diaphragm
JPS60244864A (en) Capacitative transducer
Tian et al. The novel structural design for pressure sensors
US20090223302A1 (en) Two-axis direct fluid shear stress sensor
US4507170A (en) Optimized stress and strain distribution diaphragms
JPH0587563A (en) Method and sensor for detecting strain expansion
JPH0425735A (en) Semicondcutor diaphragm for measuring pressure and differential pressure
CA2173786A1 (en) Semiconductor Differential Pressure Measuring Device
US5932809A (en) Sensor with silicon strain gage
US4793194A (en) Piezoresistive transducer
US3303451A (en) Beam-type transducers
US4737473A (en) Piezoresistive transducer
JPH09304126A (en) Ring-type multistage rock-bed change measuring apparatus
JPH02309259A (en) Semiconductor acceleration sensor
JP4605525B2 (en) Force transducer
Park et al. A capacitive absolute-pressure sensor with external pick-off electrodes
WO2003014690A1 (en) Pressure sensor
JP3458343B2 (en) Earth pressure gauge
Park et al. A low cost batch-sealed capacitive pressure sensor
JPH0692977B2 (en) Rotation sensor
JPS6330734A (en) Mechanical and electrical converter
JPH01284764A (en) Dynamic quantity sensor

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960801

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080207

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090207

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100207

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100207

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110207

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120207

Year of fee payment: 16

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120207

Year of fee payment: 16