JPH0587467A - Operating method for dc arc furnace - Google Patents

Operating method for dc arc furnace

Info

Publication number
JPH0587467A
JPH0587467A JP24968891A JP24968891A JPH0587467A JP H0587467 A JPH0587467 A JP H0587467A JP 24968891 A JP24968891 A JP 24968891A JP 24968891 A JP24968891 A JP 24968891A JP H0587467 A JPH0587467 A JP H0587467A
Authority
JP
Japan
Prior art keywords
arc
furnace
magnetic field
arrangement
deflection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24968891A
Other languages
Japanese (ja)
Inventor
Makoto Takahashi
誠 高橋
Kunitoshi Takao
邦俊 高尾
Kimiyoshi Goto
公義 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Nippon Steel Plant Designing Corp
Original Assignee
Nittetsu Plant Designing Corp
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nittetsu Plant Designing Corp, Nippon Steel Corp filed Critical Nittetsu Plant Designing Corp
Priority to JP24968891A priority Critical patent/JPH0587467A/en
Publication of JPH0587467A publication Critical patent/JPH0587467A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a method of operating an arc furnace which has no problem in the matters of equipment cost and easiness of maintenance as well by suppressing rationally a directional deflection of the arc caused by the magnetic field that is generated by the DC current flowing through the conductive bodies and making possible a stable operation and, at the same time, arranging the conductive bodies effectively. CONSTITUTION:The arrangement of the conductive bodies 10 with respect to an upper electrode 6 and electrode 7 in the furnace bottom is made to keep the relation L/R, where L is the directional deflection of the arc caused by magnetic field and R the inner radius of the furnace in the range below 0.05. With this arrangement the thermal load to the furnace wall is the same as when the arc 9 flies vertically and it is possible to make a rational arrangement of the conductive bodies 10.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、上部電極と炉底電極と
の間にアークを形成することにより、スクラップ等の被
溶解金属を溶融加熱するための直流アーク炉の操業方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of operating a DC arc furnace for melting and heating a metal to be melted such as scrap by forming an arc between an upper electrode and a furnace bottom electrode.

【0002】[0002]

【従来の技術】近年サイリスタ等の電力用半導体素子が
大容量化されるに従い、製鋼用アーク炉として直流アー
ク炉が一般的に用いられるようになった。直流アーク炉
は、交流アーク炉のように3本の可動電極を必要とせ
ず、少なくとも1本の可動電極(上部電極)と炉底電極
との間でアークを形成することによりスクラップ等の被
溶解金属を溶融加熱するもので、構造が簡単であるとい
う利点を有する。また、1本の上部電極の直流電気炉の
場合には炉本体の中心に上部電極を位置させることによ
り炉内に装入されたスクラップ等の溶解が、炉本体中心
の上部電極より発生したアークの熱源で同心円状に均一
に進み、交流アーク炉のようなホットスポット・コール
ドスポットの発生がなく熱効率が高いという利点を有し
ている。
2. Description of the Related Art With the recent increase in the capacity of power semiconductor devices such as thyristors, a DC arc furnace has come into general use as an arc furnace for steelmaking. Unlike the AC arc furnace, the DC arc furnace does not require three movable electrodes, and an arc is formed between at least one movable electrode (upper electrode) and the furnace bottom electrode to melt scrap or the like. It is a method of melting and heating a metal, and has an advantage that the structure is simple. In the case of a DC electric furnace with a single upper electrode, by locating the upper electrode in the center of the furnace body, the melting of scrap, etc. charged into the furnace will cause the arc generated from the upper electrode in the center of the furnace body. It has the advantage that the heat source advances uniformly in a concentric circle, and there is no generation of hot spots or cold spots as in an AC arc furnace, and the thermal efficiency is high.

【0003】しかしながら、上部電極そして炉底電極に
接続された導体を流れる直流電流によって、アーク発生
領域に直流磁界が形成され、この磁界とアーク電流との
間でフレミングの左手の法則に従った相互作用により、
アークに対し力(ローレンツ力)が作用しアークが偏向
することとなり、アークの熱量が特定方向に集中するた
め、スクラップ等の溶融加熱が不均等に行われ熱効率が
低下したり、炉壁に対してホットスポットとなり炉壁耐
火物・水冷ボックスの損耗が激しくなるといった問題が
ある。この現象はアーク溶接などでも発生し、磁気吹き
と呼ばれ、その対策として導体配置を調整し、導体を流
れる直流電流により発生する磁界を相殺させる方式が一
般的に行われている。
However, a direct current flowing through the conductors connected to the upper electrode and the bottom electrode forms a direct magnetic field in the arc generation region, and the magnetic field and the arc current are mutually compliant with Fleming's left-hand rule. By the action
The force (Lorentz force) acts on the arc and the arc is deflected, and the heat quantity of the arc is concentrated in a specific direction, so the melting and heating of scrap etc. is unevenly performed and the thermal efficiency decreases, It becomes a hot spot, and there is a problem that the wear of the furnace wall refractory and water cooling box becomes severe. This phenomenon also occurs in arc welding or the like, and is called magnetic spraying. As a countermeasure, a method is generally used in which the arrangement of conductors is adjusted to cancel the magnetic field generated by a direct current flowing through the conductors.

【0004】直流アーク炉でも原理は同様であり、数々
の対策が考えられているが、実開平2−24290号公
報等においては、炉底電極に接続された下部導体の一部
の配置を適切に定めることにより、アーク発生領域に於
ける磁界を相殺させるような磁界を発生させる技術が提
案されている。また、発明者らが先に出願した特開平2
−208354号においては、炉底電極に接続された下
部導体の一部を移動させることにより、上部導体の位置
変化により発生するアーク偏向力の変化を相殺させる技
術を提案している。
The principle is the same in a DC arc furnace, and various measures have been considered. However, in Japanese Utility Model Laid-Open No. 2-24290, etc., it is appropriate to dispose a part of the lower conductor connected to the furnace bottom electrode. There has been proposed a technique for generating a magnetic field that cancels the magnetic field in the arc generation region. In addition, Japanese Patent Application Laid-Open No. HEI 2-
No.-208354 proposes a technique for offsetting a change in arc deflection force caused by a change in position of the upper conductor by moving a part of the lower conductor connected to the furnace bottom electrode.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、導体配
置により完全にアーク発生領域の磁界を無くすことは困
難であり、また、アーク発生領域の磁界を極小化するた
めには導体配置が複雑になることとなり、このため銅ま
たはアルミ製の高価な導体設備が増えて設備費用が高く
なり、またアーク炉の整備性も、導体が複雑に配置され
るため悪化するという欠点を有しており、更に直流アー
ク炉での安定操業を可能とする適正な導体配置技術が明
確でないと言う問題があった。
However, it is difficult to completely eliminate the magnetic field in the arc generation region by the conductor arrangement, and the conductor arrangement becomes complicated in order to minimize the magnetic field in the arc generation region. Therefore, the cost of expensive conductor equipment made of copper or aluminum increases, the equipment cost increases, and the maintainability of the arc furnace deteriorates due to the complicated arrangement of the conductors. There is a problem that the proper conductor placement technology that enables stable operation in the arc furnace is not clear.

【0006】このような従来技術の問題点に鑑み、本発
明の主な目的は、アークの偏向による加熱溶融の不均
一、炉壁耐火物・水冷ボックスの局部損耗という操業上
の問題がなく、且つ設備費用の増加、整備性の劣化のな
いアーク炉の操業方法を提供することにある。
In view of such problems of the prior art, the main object of the present invention is to eliminate the operational problems of uneven heating and melting due to arc deflection and local wear of furnace wall refractory / water cooling box. Another object of the present invention is to provide a method of operating an electric arc furnace that does not increase facility costs and maintainability.

【0007】[0007]

【課題を解決するための手段】このような目的は、本発
明によれば、上部電極と炉底電極を有する直流アーク炉
の操業方法に於いて、炉内半径Rとアークの偏向量Lと
の関係をL/R=0.05以下にするように上・下導体
ルートを効果的に配置したことを特徴とする直流アーク
炉の操業方法を提供することにより達成される。
According to the present invention, the object of the invention is to provide a method of operating a DC arc furnace having an upper electrode and a furnace bottom electrode, in which the inner radius R and the deflection amount L of the arc are set. It is achieved by providing a method for operating a DC arc furnace, characterized in that the upper and lower conductor routes are effectively arranged so that the relation of L / R = 0.05 or less.

【0008】[0008]

【作用】上部電極より発生するアークを熱気柱とみなす
と、その熱気柱が溶融金属面に対して垂直に吹き付けら
れた場合、溶融金属面に衝突後、熱風は四方八方に均一
に分散されることとなる。この時周辺の炉壁の熱負荷も
また同様に均一となる。しかし、熱気柱が溶融金属面に
対して傾斜角を有して突入すると、衝突後の熱風には均
一に分散されることなく傾斜した方向に多く熱風が飛ぶ
こととなり、炉壁の熱負荷もまた同様に不均一となり傾
斜側が高くなる。これが溶解の不均一、炉壁に対するホ
ットスポットの発生へとつながる。この傾斜角を有した
熱気柱の溶融金属面に衝突する部分と炉中心からの偏芯
量つまりアークの偏向量Lと炉内半径Rとの関係に応じ
て炉壁の熱負荷の円周均一性は変化するが、その関係を
図4に示す。本図より判るようにL/Rが大きくなるに
従い、同一のアーク加熱条件で偏向方向の炉壁熱負荷が
大きくなり、特にL/Rが0.05を越えるとその増加
は急激となる。
[Function] When the arc generated from the upper electrode is regarded as a hot air column, when the hot air column is blown perpendicularly to the molten metal surface, the hot air is evenly dispersed in all directions after colliding with the molten metal surface. It will be. At this time, the heat load on the surrounding furnace wall is also uniform. However, if the hot air column enters at an angle of inclination with respect to the surface of the molten metal, the hot air after the collision will not be uniformly dispersed, but a large amount of hot air will fly in the inclined direction, and the heat load on the furnace wall will also increase. Similarly, it becomes non-uniform and the slope side becomes higher. This leads to uneven melting and hot spots on the furnace wall. The heat load on the furnace wall is uniform in the circumference according to the relationship between the portion of the hot air column having this inclination angle that collides with the molten metal surface and the amount of eccentricity from the center of the furnace, that is, the amount of arc deflection L and the radius R of the furnace. Although the sex changes, the relationship is shown in FIG. As can be seen from the figure, as the L / R increases, the furnace wall heat load in the deflection direction increases under the same arc heating conditions, and particularly when L / R exceeds 0.05, the increase becomes rapid.

【0009】これによりL/Rを0.05以下にするよ
うな導体配置をすることで、炉壁の熱負荷の均一性は、
ほぼアークが溶融金属面に対して垂直に発生した場合と
同様となり、導体を複雑に配置することなく安定した操
業が可能なアーク炉の操業方法を提供することができる
こととなる。
As a result, by arranging the conductors so that L / R is 0.05 or less, the uniformity of the heat load on the furnace wall is
As in the case where the arc is generated almost perpendicularly to the molten metal surface, it is possible to provide a method of operating an arc furnace that enables stable operation without arranging conductors in a complicated manner.

【0010】[0010]

【実施例】以下、本発明の実施例を添付の図面をもとに
詳しく説明する。図1は本発明を適用したアーク炉の断
面図、図2はアークに働く力の状態図、図3は導体配置
とアークの軌跡の計算例図、図4はアークの偏向量
(L)/炉内半径(R)と炉壁熱負荷の関係図である。
Embodiments of the present invention will now be described in detail with reference to the accompanying drawings. FIG. 1 is a cross-sectional view of an arc furnace to which the present invention is applied, FIG. 2 is a state diagram of forces acting on the arc, FIG. 3 is a calculation example diagram of conductor arrangement and arc locus, and FIG. 4 is deflection amount (L) of arc / It is a relationship diagram of a furnace inner radius (R) and a furnace wall heat load.

【0011】図1に示した直流アーク炉1は耐火物2と
水冷ボックス3とで覆われた炉本体4、その上部に配置
された炉蓋5からなり、炉蓋5の中心部から昇降自在な
上部電極6と炉底に設置された炉底電極7とに供給され
る直流電流により、直流アーク炉1内に装入されたスク
ラップ等の被溶融金属8と上部電極6の先端との間に形
成されるアーク9でもって被溶融金属8を溶解加熱す
る。図示外のトランス、サイリスタなどの炉用電気設備
より取り出された導体10を介して直流電流は流される
が、この時ビオ・サバールの法則に従い導体周辺には磁
界Bが発生することとなる(図2参照)。このため、ア
ーク9に後述するアーク偏向力Fが作用し、アークは斜
めに飛ぶこととなりアーク9に偏向量Lが発生する。こ
の偏向量Lは導体10の配置により決まる磁界Bの関係
で定まるものであり、本発明ではアークの偏向量Lと炉
内半径Rとの関係L/Rを0.05以下としている。
The DC arc furnace 1 shown in FIG. 1 comprises a furnace body 4 covered with a refractory 2 and a water-cooled box 3, and a furnace lid 5 arranged above the furnace body 4, which can be lifted and lowered from the center of the furnace lid 5. Between the molten metal 8 such as scrap charged in the DC arc furnace 1 and the tip of the upper electrode 6 by the DC current supplied to the upper electrode 6 and the furnace bottom electrode 7 installed on the furnace bottom. The metal 8 to be melted is melted and heated by the arc 9 formed on. A direct current is passed through the conductor 10 taken out of the electric equipment for the furnace such as a transformer or a thyristor (not shown), but at this time, a magnetic field B is generated around the conductor according to the Biot-Savart law (Fig. 2). Therefore, an arc deflection force F, which will be described later, acts on the arc 9, causing the arc to fly obliquely, and a deflection amount L is generated in the arc 9. The deflection amount L is determined by the relationship of the magnetic field B determined by the arrangement of the conductor 10. In the present invention, the relationship L / R between the arc deflection amount L and the furnace radius R is set to 0.05 or less.

【0012】直流アーク炉1内のアーク9発生領域に生
じる磁界Bの大きさはビオ・サバールの法則に従い容易
に求められ、図2のアークに働く力の状態図で示す如
く、その磁界B内を通過するアーク9に偏向力Fが働く
こととなる。アーク9は電流であり、磁界B内を電流つ
まりアーク9が流れるとフレミングの左手の法則に従い
ローレンツ力がアーク9に働き、これが偏向力Fとな
る。一方、アーク9は気体であり剛体ではないため、偏
向力Fに抗する力がないと飛び去ってしまうこととなる
が、アーク9が偏向力Fによりアーク発生源の上部電極
6の中心よりずれると、上部電極6を流れる電流がつく
る磁界B1により求心力F1が発生し、この求心力F1
と偏向力Fとが釣り合う状態でアーク9は状態を維持す
ることとなる。
The magnitude of the magnetic field B generated in the arc 9 generation region in the DC arc furnace 1 is easily determined according to the Biot-Savart law, and as shown in the state diagram of the force acting on the arc in FIG. The deflection force F acts on the arc 9 passing through. The arc 9 is an electric current, and when the electric current, that is, the arc 9 flows in the magnetic field B, the Lorentz force acts on the arc 9 according to Fleming's left-hand rule, and this becomes the deflection force F. On the other hand, since the arc 9 is a gas and not a rigid body, it will fly away if there is no force against the deflection force F, but the arc 9 is displaced from the center of the upper electrode 6 of the arc generation source by the deflection force F. Then, the centripetal force F1 is generated by the magnetic field B1 created by the current flowing through the upper electrode 6, and the centripetal force F1 is generated.
The arc 9 maintains the state in which the deflection force F is balanced with the deflection force F.

【0013】この釣り合う状態を上部電極6からの距離
d毎に計算すると、アーク9の軌跡11が求まることと
なる。図3にアーク9の偏向状態を軌跡11として求め
た計算例を示している。この軌跡11は導体10の配置
により変化することは言うまでもない。このようにアー
ク9の軌跡11より偏向量Lが求まるが、図4にアーク
9の偏向量Lによる炉本体4の炉壁熱負荷の変化度合い
をアーク9の偏向量Lと炉内半径Rとの関係L/Rを指
標として示している。
When this balanced state is calculated for each distance d from the upper electrode 6, the locus 11 of the arc 9 is obtained. FIG. 3 shows a calculation example in which the deflection state of the arc 9 is obtained as the locus 11. It goes without saying that the locus 11 changes depending on the arrangement of the conductor 10. In this way, the deflection amount L is obtained from the trajectory 11 of the arc 9, and the degree of change in the furnace wall heat load of the furnace body 4 due to the deflection amount L of the arc 9 is shown in FIG. 4 as the deflection amount L of the arc 9 and the radius R of the furnace. The relationship L / R is shown as an index.

【0014】これは発明者等が導体10の配置を変更
し、アーク9の偏向量Lを変化させて炉本体4の炉壁熱
負荷の変化度合いを試験した結果であるが、炉壁熱負荷
はL/Rが0.05までの範囲の時はそれ程変化はな
く、L/Rが0.05を越えると増加現象が大きくなる
ことが判る。炉壁熱負荷が大きくなることは、アーク9
の偏向状態が顕著になり、被溶融金属8の溶解が不均一
になり、熱効率を悪化するのみならず耐火物2、水冷ボ
ックス3の損耗にも悪影響を生ずることとなる。
This is the result of the inventors' testing the degree of change in the heat load on the furnace wall of the furnace body 4 by changing the arrangement of the conductors 10 and changing the deflection amount L of the arc 9. It is understood that there is not much change when L / R is in the range up to 0.05, and the increase phenomenon becomes large when L / R exceeds 0.05. Increasing the heat load on the furnace wall means that the arc 9
2 becomes prominent, the molten metal 8 becomes non-uniformly melted, which not only deteriorates the thermal efficiency but also adversely affects the wear of the refractory 2 and the water cooling box 3.

【0015】[0015]

【発明の効果】以上説明したように、本発明は炉内半径
Rとアークの偏向量Lとの関係をL/R=0.05以下
にすることでアークの偏向による加熱溶融の不均一、炉
壁の耐火物・水冷ボックスの局部損耗を是正することが
可能となり、また不必要に導体配置を複雑にすることな
く安定操業の可能な導体配置を設計する技術を確立した
ものである。従って、直流アーク炉の安定した操業性が
達成できるとともに、熱効率の向上、設備信頼性の向上
が図れ、更に合理的導体配置が可能となり、設備費用、
整備性の面でも貢献するものでその効果は極めて大き
い。
As described above, according to the present invention, by setting the relationship between the furnace radius R and the arc deflection amount L to be L / R = 0.05 or less, uneven heating and melting due to arc deflection, It is a technology that enables the local wear of refractory and water-cooled boxes on the furnace wall to be corrected, and has established a technique for designing a conductor arrangement that enables stable operation without unnecessarily complicating the conductor arrangement. Therefore, stable operability of the DC arc furnace can be achieved, thermal efficiency can be improved, equipment reliability can be improved, and more rational conductor arrangement can be achieved.
It also contributes to maintainability and its effect is extremely large.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を適用したアーク炉の断面図である。FIG. 1 is a sectional view of an arc furnace to which the present invention is applied.

【図2】アークに働く力の状態図である。FIG. 2 is a state diagram of a force acting on an arc.

【図3】導体配置とアークの軌跡の計算例図である。FIG. 3 is a diagram showing an example of calculation of conductor arrangement and arc locus.

【図4】アークの偏向量(L)/炉内半径(R)と炉壁
熱負荷の関係図である。
FIG. 4 is a diagram showing a relationship between an arc deflection amount (L) / furnace inner radius (R) and furnace wall heat load.

【符号の説明】[Explanation of symbols]

1 直流アーク炉 6 上部電極 7 炉底電極 9 アーク 10 導体 F 偏向力 F1 求心力 B 磁界 L アークの偏向量 R 炉内半径 1 DC arc furnace 6 Upper electrode 7 Furnace bottom electrode 9 Arc 10 Conductor F Deflection force F1 Centripetal force B Magnetic field L Arc deflection amount R Inner radius

───────────────────────────────────────────────────── フロントページの続き (72)発明者 後藤 公義 福岡県北九州市戸畑区大字中原46−59 日 鐵プラント設計株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor, Kimiyoshi Goto 46-59, Nakahara, Tobata-ku, Kitakyushu, Fukuoka Prefecture, Nippon Steel Plant Design Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 上部電極と炉底電極を有する直流アーク
炉の操業方法に於いて、炉内半径Rとアークの偏向量L
との関係をL/R=0.05以下にするようにしたこと
を特徴とする直流アーク炉の操業方法。
1. A method for operating a DC arc furnace having an upper electrode and a bottom electrode, wherein the inner radius R and the arc deflection amount L are used.
And L / R = 0.05 or less.
JP24968891A 1991-09-27 1991-09-27 Operating method for dc arc furnace Pending JPH0587467A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24968891A JPH0587467A (en) 1991-09-27 1991-09-27 Operating method for dc arc furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24968891A JPH0587467A (en) 1991-09-27 1991-09-27 Operating method for dc arc furnace

Publications (1)

Publication Number Publication Date
JPH0587467A true JPH0587467A (en) 1993-04-06

Family

ID=17196729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24968891A Pending JPH0587467A (en) 1991-09-27 1991-09-27 Operating method for dc arc furnace

Country Status (1)

Country Link
JP (1) JPH0587467A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63103594A (en) * 1986-10-20 1988-05-09 Nec Corp Key telephone set
JPS6452673A (en) * 1987-06-11 1989-02-28 Tam Ceramics Inc Temperature stable dielectric composition in high frequency and low frequency

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63103594A (en) * 1986-10-20 1988-05-09 Nec Corp Key telephone set
JPS6452673A (en) * 1987-06-11 1989-02-28 Tam Ceramics Inc Temperature stable dielectric composition in high frequency and low frequency

Similar Documents

Publication Publication Date Title
US3610795A (en) Apparatus for continuously melting of metal
JP2641140B2 (en) Method for melting scrap iron and electric furnace for carrying out the method
US5526374A (en) Direct current electric arc furnace
US3949151A (en) Arc furnaces
CA1263883A (en) Liquid cooled cover for electric arc furnace
US5410564A (en) Direct current electric furnace for melting metal
JPH04233191A (en) Dc arc furnace
MXPA02002533A (en) Copper cooling plate for metallurgical furnaces.
KR100255406B1 (en) Direct current arc furnace plant
JPS63259013A (en) Dc electric furnace for melting waste iron
JP3209845B2 (en) DC arc furnace
JPH0587467A (en) Operating method for dc arc furnace
JPH0341756B2 (en)
US4406008A (en) Three phase arc melting and reduction furnace
JP2656424B2 (en) Arc control method for continuous scrap charging type DC arc furnace.
RU2040864C1 (en) Direct current smelting furnace
JP5477228B2 (en) Ladle refining equipment for molten steel and ladle refining method for molten steel
US6137822A (en) Direct current arc furnace and a method for melting or heating raw material or molten material
US4238632A (en) Arc furnace for making steel from directly reduced iron
JPH06302398A (en) Electrode structure for plasma torch
JPH08233474A (en) Controlling method for arc of dc arc furnace with scrap preheating tower
JP2599331B2 (en) DC arc furnace
US20010043640A1 (en) Method and apparatus for heating materials
JP2841569B2 (en) DC arc / plasma furnace
JPH03199887A (en) Electronic beam melting furnace

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19961015