JPH0587151B2 - - Google Patents

Info

Publication number
JPH0587151B2
JPH0587151B2 JP62019850A JP1985087A JPH0587151B2 JP H0587151 B2 JPH0587151 B2 JP H0587151B2 JP 62019850 A JP62019850 A JP 62019850A JP 1985087 A JP1985087 A JP 1985087A JP H0587151 B2 JPH0587151 B2 JP H0587151B2
Authority
JP
Japan
Prior art keywords
input
ttl
type semiconductor
section
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62019850A
Other languages
Japanese (ja)
Other versions
JPS63187659A (en
Inventor
Hiroyuki Yasuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP62019850A priority Critical patent/JPS63187659A/en
Publication of JPS63187659A publication Critical patent/JPS63187659A/en
Publication of JPH0587151B2 publication Critical patent/JPH0587151B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Logic Circuits (AREA)
  • Bipolar Integrated Circuits (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体集積回路(以下、ICという)
に関し、特に複数の電源を必要とし、かつTTL
入力回路を有する半導体集積回路に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to semiconductor integrated circuits (hereinafter referred to as IC).
In particular, those that require multiple power supplies and TTL
The present invention relates to a semiconductor integrated circuit having an input circuit.

〔従来の技術〕[Conventional technology]

従来の二電源すなわちTTL用電源とECL用電
源とを有するバイポーラICでは、正電圧のデジ
タル信号を取り扱うTTL部と負電圧を取り扱う
ECL部が混在している。このうちTTL部に関し
ては、入力端子に反射あるいはクロストークなど
による負電圧が印加されると回路が誤動作する恐
れがある。このため入力部あるいは出力部に負電
圧入力を防止するクランプダイオードが設けられ
ている。
In conventional bipolar ICs that have two power supplies, one for TTL and one for ECL, the TTL section handles positive voltage digital signals and the other handles negative voltage.
The ECL section is mixed. Regarding the TTL section, if a negative voltage is applied to the input terminal due to reflection or crosstalk, the circuit may malfunction. For this reason, a clamp diode is provided at the input or output section to prevent negative voltage input.

第3乃至第5図はかかる従来例を示すもので、
第3図は、TTL回路で処理された信号をECL回
路に印加することを可能にしたTTL−ECL変換
を行うTTL入力部を示す回路図である。入力端
子1からはTTL回路で処理された信号が加えら
れる。TTL用電源端子5と、ECL用電源端子3
との間に抵抗RとRNP入力トランジスタQ1のエ
ミツターコレクタ間が接続されており、この入力
トランジススタQ1のベースは入力端子1と共に
ダイオードD1,D2のカソードに接続されている。
ダイオードD2のアノードはECL用電源端子3に、
またダイオードD1のアノードは接地端子2に接
続されている。このダイオードD2は半導体集積
回路で寄生的に形成されるものである。
3 to 5 show such conventional examples,
FIG. 3 is a circuit diagram showing a TTL input section that performs TTL-ECL conversion that allows a signal processed by a TTL circuit to be applied to an ECL circuit. A signal processed by a TTL circuit is applied from input terminal 1. Power supply terminal 5 for TTL and power supply terminal 3 for ECL
A resistor R is connected between the emitter and collector of the RNP input transistor Q1 , and the base of the input transistor Q1 is connected together with the input terminal 1 to the cathodes of the diodes D1 and D2 .
The anode of diode D 2 is connected to ECL power supply terminal 3,
Further, the anode of the diode D 1 is connected to the ground terminal 2 . This diode D2 is formed parasitically in a semiconductor integrated circuit.

第4図は半導体に形成したTTL入力部の断面
図を示すものであり、P型半導体基板6上にn型
のエピタキシヤル層を形成し、このエピタキシヤ
ル層を貫通する酸化物の分離領域9によりエピタ
キシヤル層を複数のn型半導体部8に分離する。
入力クランプダイオード12がn型半導体部8の
1つにP型領域10を形成して構成する。これに
より、接地ライン2と入力端子1との間にクラン
プダイオードD1が構成される。半導体基板6に
はECL電源が与えられるので、入力端子1が接
続されるn型半導体部8とP型半導体基板6との
間に寄生ダイオードD2が等価的に構成される。
そしてP型基板6を最低電位に落とすための高濃
度P型半導体部15のとなりに他入出力のTTL
レベルの反転を防止するための高濃度n型半導体
16を拡散形成し、この高濃度pn型半導体部1
3が最低電位のECL電源端子に接続されている。
この部分は入力クランプ部をガードリングしてい
る。TTL入力トランジスタ14は他のn型半導
体部8をベースとし、その中に形成されたP型領
域10をエミツタ半導体基板6をコレクタとする
pnp型トランジスタQ1を構成している。
FIG. 4 shows a cross-sectional view of a TTL input section formed in a semiconductor, in which an n-type epitaxial layer is formed on a p-type semiconductor substrate 6, and an oxide isolation region 9 passes through this epitaxial layer. The epitaxial layer is separated into a plurality of n-type semiconductor portions 8 by the steps of FIG.
An input clamp diode 12 is formed by forming a P-type region 10 in one of the n-type semiconductor parts 8 . Thereby, a clamp diode D 1 is configured between the ground line 2 and the input terminal 1. Since ECL power is applied to the semiconductor substrate 6, a parasitic diode D2 is equivalently configured between the n-type semiconductor section 8 to which the input terminal 1 is connected and the P-type semiconductor substrate 6.
Next to the high-concentration P-type semiconductor section 15 for lowering the P-type substrate 6 to the lowest potential, other input/output TTLs are installed.
A high-concentration n-type semiconductor 16 is formed by diffusion to prevent level inversion, and this high-concentration pn-type semiconductor portion 1
3 is connected to the lowest potential ECL power supply terminal.
This part serves as a guard ring for the input clamp section. The TTL input transistor 14 has another n-type semiconductor part 8 as a base, a P-type region 10 formed therein as an emitter, and a semiconductor substrate 6 as a collector.
It constitutes a pnp transistor Q1 .

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述した従来の二電源すなわちTTL用電源と
ECL用電源とを有するICのTTL入力回路では、
数十mAの電流を引き出すと擬似ラツチアツプを
発生するという問題があつた。
The conventional two power supplies mentioned above, that is, the TTL power supply and
In the TTL input circuit of an IC that has an ECL power supply,
There was a problem in which pseudo latch-up occurred when a current of several tens of mA was drawn.

すなわち、入力端子1から電流を徐々に引き出
していくと、今まで、接地されているp型半導体
10よりn型半導体部8を通り高濃度n型半導体
部7を経由して入力端子1に流れ出していた電流
パスが、接地されている高濃度p型半導体部10
より、埋め込み層の高濃度n型半導体部7を通
り、さらにp型半導体基板6を通過して、高濃度
n型半導体16よりECL用電源端子3に流れ込
むパスにほとんど変わる。このため、今まで接地
端子2と入力端子1との間が約−0.75Vにクラン
プされていたが、−2.0V程度まではね飛んでしま
うことがあつた。
That is, when the current is gradually drawn out from the input terminal 1, it flows from the grounded p-type semiconductor 10 to the input terminal 1 through the n-type semiconductor section 8 and the high concentration n-type semiconductor section 7. The current path that was connected to the high concentration p-type semiconductor section 10 is grounded.
Therefore, the path almost changes to a path where it passes through the high concentration n-type semiconductor portion 7 of the buried layer, further passes through the p-type semiconductor substrate 6, and flows from the high concentration n-type semiconductor 16 to the ECL power supply terminal 3. For this reason, although the voltage between the grounding terminal 2 and the input terminal 1 has been clamped to about -0.75V, it sometimes jumps to about -2.0V.

等価回路を書けば第5図(第4図中にも記入し
てあるが)のように、接地端子2とECL用電源
端子3との間にトランジスタQ2,Q3がサイリス
タを形成する。入力端子1はトランジスタQ2
ベースになるから、ここから数十mAのオーダで
引き出すと接地端子2からECL用電源端子3に
向かつて数百mAの電流が流れ込むことがわか
る。
If an equivalent circuit is drawn, as shown in FIG. 5 (also shown in FIG. 4), transistors Q 2 and Q 3 form a thyristor between the ground terminal 2 and the ECL power supply terminal 3. Input terminal 1 becomes the base of transistor Q 2 , so if you draw tens of mA from here, you will see that several hundred mA of current flows from ground terminal 2 to ECL power supply terminal 3.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の目的は、上記の点に鑑みてなされたも
のであり、ECLとTTLの両方の電源を有する集
積回路のTTL−ECL変換する入力部において、
安定したクランプ能力を有し、また、入力電圧の
下げすぎによる他のTTL入出力の電位に反転を
起こさせないTTL入力回路を提供するものであ
る。
The object of the present invention has been made in view of the above points, and is an object of the present invention to provide an input section for TTL-ECL conversion of an integrated circuit having both ECL and TTL power supplies.
The present invention provides a TTL input circuit which has a stable clamping ability and which does not cause inversion of the potentials of other TTL input/outputs due to excessively lowering the input voltage.

本発明の半導体集積回路は、半導体基板とこの
半導体基板上に積層したエピタキシヤル層とこの
エピタキシヤル層を島領域に分離する分離領域と
を有し、更に、半導体基板の電位を保持するため
に半導体基板上に形成された同一導電型の半導体
とこの同一導電型半導体部に基板電位を与える手
段と、半導体基板上に形成された他導電型の半導
体領域と、この他導電型半導体基板に基板電位と
は異なる電位を与える手段とを有している。
The semiconductor integrated circuit of the present invention has a semiconductor substrate, an epitaxial layer laminated on the semiconductor substrate, and a separation region that separates the epitaxial layer into island regions, and further includes an isolation region for maintaining the potential of the semiconductor substrate. A semiconductor of the same conductivity type formed on a semiconductor substrate, a means for applying a substrate potential to the semiconductor portion of the same conductivity type, a semiconductor region of a different conductivity type formed on the semiconductor substrate, and a semiconductor region of the other conductivity type formed on the semiconductor substrate; and means for applying a potential different from the potential.

〔実施例〕〔Example〕

次に本発明の実施例について、図面を用いて説
明する。第1図は、本発明の一実施例による半導
体集積回路のTTL入力部の断面である。本実施
例は第4図に示した従来例の構造においてP型半
導体基板6を最低電位に落とすための高濃度P型
半導体部15と高濃度n型半導体部16とにそれ
ぞれ最低電位のECL電源3と接地2とを別々に
与えたものである。
Next, embodiments of the present invention will be described using the drawings. FIG. 1 is a cross section of a TTL input section of a semiconductor integrated circuit according to an embodiment of the present invention. In this embodiment, in the structure of the conventional example shown in FIG. 4, ECL power supplies of the lowest potential are applied to the highly doped P-type semiconductor region 15 and the highly doped N-type semiconductor region 16, respectively, in order to reduce the potential of the P-type semiconductor substrate 6 to the lowest potential. 3 and grounding 2 are given separately.

本実施例では、入力端子1のレベルを下げてい
くと接地端子2より、電流が注入され、接地端子
2と入力端子1との間は、ほぼダイオード1段分
約−0.75Vにクランプされる。一方P型基板6は
ECL間電源端子3に接続され、また高濃度n型
半導体部16は、接地端子2に接続されているた
め、従来のようにpnpnの寄生サイリスタは発生
しないことがわかる。さらに高濃度n型半導体部
16は、従来よりも高電位にバイアスされるが、
入力端子1の入力電位を低下させたとき接地端子
2より電流が注入される。したがつて、従来と同
様他のTTL入出力回路のn型半導体部8より電
流を引き込むことはないので、他の入出力回路の
誤動作は発生しない。
In this embodiment, when the level of input terminal 1 is lowered, current is injected from ground terminal 2, and the gap between ground terminal 2 and input terminal 1 is clamped to approximately -0.75V, which is approximately equal to one stage of diode. . On the other hand, the P-type substrate 6
It can be seen that since the high concentration n-type semiconductor portion 16 is connected to the ECL power supply terminal 3 and is connected to the ground terminal 2, a pnpn parasitic thyristor is not generated as in the conventional case. Furthermore, the high concentration n-type semiconductor section 16 is biased to a higher potential than before;
When the input potential of input terminal 1 is lowered, a current is injected from ground terminal 2. Therefore, as in the conventional case, no current is drawn from the n-type semiconductor portion 8 of other TTL input/output circuits, so that malfunctions of other input/output circuits do not occur.

〔実施例 2〕 第2図は、本発明の他の実施例の半導体集積回
路のTTL入力部の断面図である。本実施例では、
従来のTTL入力部に設けられているP型半導体
基板6を最低電位にするための高濃度P型半導体
部15と、TTLの負電圧側の反転を防止するた
めの高濃度n型半導体部16と絶縁物9により完
全に分離し高濃度P型半導体部15は、最低電位
のECL用電源3とし、一方高濃度n型半導体部
16は接地電位にする。
[Embodiment 2] FIG. 2 is a sectional view of a TTL input section of a semiconductor integrated circuit according to another embodiment of the present invention. In this example,
A high-concentration P-type semiconductor section 15 for bringing the P-type semiconductor substrate 6 provided in a conventional TTL input section to the lowest potential, and a high-concentration N-type semiconductor section 16 for preventing reversal on the negative voltage side of TTL. The highly doped P-type semiconductor section 15, which is completely separated by the insulator 9, is set to the lowest potential ECL power source 3, while the highly doped N-type semiconductor section 16 is set to the ground potential.

本実施例でも第1図に示した一実施例と同等な
特性を示す。
This example also exhibits the same characteristics as the example shown in FIG.

〔発明の効果〕 以上説明したように、本発明によれば、ECL
電源の最低電位に落とすための高濃度P型半導体
部と入力電圧がさがりすぎることにより起こる他
のTTL入出力レベルの反転を防止するための高
濃度n型半導体部をそれぞれ別電位すなわち、
ECL電源電位と接地電位にすることにより、
TTL入力部から十分な引き出し電流をとること
ができ、かつ他のTTL入出力の誤動作を防ぐこ
とができる。
[Effects of the Invention] As explained above, according to the present invention, ECL
The high-concentration P-type semiconductor part to lower the potential to the lowest potential of the power supply and the high-concentration N-type semiconductor part to prevent other TTL input/output levels from being reversed due to an excessive drop in the input voltage are placed at different potentials.
By setting the ECL power supply potential and ground potential,
Sufficient current can be drawn from the TTL input section, and malfunctions of other TTL inputs and outputs can be prevented.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例による半導体集積回
路のTTL入力部の断面図、第2図は本発明の他
の実施例による半導体集積回路のTTL入力部の
断面図、第3図はTTL入力部の回路図、第4図
は従来の半導体集積回路に係るTTL入力部の断
面図、第5図は従来の構成で発生する擬似ラツチ
アツプの等価回路図である。 1……入力端子、2……接地端子、3……
ECL用電源端子、4……内部回路、5……TLL
用電源端子、6……P型半導体基板、7……埋め
込み層、8……n型半導体部、9……アイツレー
シヨン部、10……P型半導体部、11……Al
配線、Q1……PNP入力トランジスタ、Q2,Q3
…寄生トランジスタ、D1,D2……ダイオード、
R……抵抗、12……入力クランプダイオード部
(第3図のD1,D2に相当する)、13……入力ク
ラウプダイオードをガードリングしているpn部、
14……TTL入力トランジスタ(第3図のQ1
相当する)、15……高濃度p型半導体部、16
……高濃度n型半導体部。
FIG. 1 is a cross-sectional view of a TTL input section of a semiconductor integrated circuit according to an embodiment of the present invention, FIG. 2 is a cross-sectional view of a TTL input section of a semiconductor integrated circuit according to another embodiment of the present invention, and FIG. 3 is a TTL input section of a semiconductor integrated circuit according to another embodiment of the present invention. FIG. 4 is a sectional view of a TTL input section of a conventional semiconductor integrated circuit, and FIG. 5 is an equivalent circuit diagram of a pseudo latch-up that occurs in the conventional configuration. 1...Input terminal, 2...Ground terminal, 3...
Power supply terminal for ECL, 4...Internal circuit, 5...TLL
6... P-type semiconductor substrate, 7... Buried layer, 8... N-type semiconductor part, 9... Izration part, 10... P-type semiconductor part, 11... Al
Wiring, Q 1 ... PNP input transistor, Q 2 , Q 3 ...
...parasitic transistor, D 1 , D 2 ... diode,
R...Resistor, 12...Input clamp diode section (corresponding to D1 and D2 in Fig. 3), 13...PN section guard ringing the input clamp diode,
14...TTL input transistor (corresponding to Q1 in Figure 3), 15...High concentration p-type semiconductor section, 16
...High concentration n-type semiconductor section.

Claims (1)

【特許請求の範囲】[Claims] 1 一導電型の半導体基板と、前記半導体基板上
に形成され分離領域によつて互いに分離された他
の導電型の第1、第2、第3の領域と、前記第1
の領域内に形成された前記一導電型の第4の領域
と、前記第3の領域内に形成された前記一導電型
の第5の領域とを有し、前記第1及び第3の領域
は入力端子に接続され、前記第5の領域は抵抗を
介してTTL端子に接続され、前記半導体基板は
EEL端子に接続され、前記第2の領域は前記第
1の領域と前記第2の領域に挟まれて存在し、前
記第2及び第4の領域は接地端子に接続されてい
ることを特徴とする半導体集積回路。
1 a semiconductor substrate of one conductivity type, first, second, and third regions of another conductivity type formed on the semiconductor substrate and separated from each other by a separation region;
the fourth region of the one conductivity type formed within the region; and the fifth region of the one conductivity type formed within the third region, the first and third regions is connected to an input terminal, the fifth region is connected to a TTL terminal via a resistor, and the semiconductor substrate is connected to an input terminal.
It is connected to an EEL terminal, the second region is sandwiched between the first region and the second region, and the second and fourth regions are connected to a ground terminal. semiconductor integrated circuits.
JP62019850A 1987-01-29 1987-01-29 Semiconductor integrated circuit Granted JPS63187659A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62019850A JPS63187659A (en) 1987-01-29 1987-01-29 Semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62019850A JPS63187659A (en) 1987-01-29 1987-01-29 Semiconductor integrated circuit

Publications (2)

Publication Number Publication Date
JPS63187659A JPS63187659A (en) 1988-08-03
JPH0587151B2 true JPH0587151B2 (en) 1993-12-15

Family

ID=12010723

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62019850A Granted JPS63187659A (en) 1987-01-29 1987-01-29 Semiconductor integrated circuit

Country Status (1)

Country Link
JP (1) JPS63187659A (en)

Also Published As

Publication number Publication date
JPS63187659A (en) 1988-08-03

Similar Documents

Publication Publication Date Title
US5646433A (en) Pad protection diode structure
US6215135B1 (en) Integrated circuit provided with ESD protection means
JPH09129741A (en) Semiconductor integrated circuit and manufacture thereof
KR100334381B1 (en) Integrated drover circuit for inductive load element
US4577211A (en) Integrated circuit and method for biasing an epitaxial layer
JPH0282533A (en) Bipolar transistor
US5608259A (en) Reverse current flow prevention in a diffused resistor
JP2980108B2 (en) Logic well protection for components including integrated MOS power transistors
JPH0587151B2 (en)
JP3158534B2 (en) Semiconductor integrated circuit
CA1289267C (en) Latchup and electrostatic discharge protection structure
JPH1074958A (en) Semiconductor integrated circuit and its manufacture
JP2557984B2 (en) Input protection circuit for semiconductor device
JPH0715010A (en) Protective circuit of semiconductor device
JPH11168181A (en) Protection circuit for static discharge, transistor having circuit thereof, and semiconductor element
JPS6230703B2 (en)
JPS60254651A (en) Input protection circuit for cmos circuit
JPH0750783B2 (en) Electrostatic protection circuit
US20060081938A1 (en) Integrated circuit tolerant to the locking phenomenon
JP3135363B2 (en) Semiconductor integrated circuit
JPH07104743B2 (en) Power supply circuit
JPH04330773A (en) Semiconductor device
JP3315310B2 (en) Semiconductor device
JPH05129530A (en) Semiconductor integrated circuit
JPS61276340A (en) Semiconductor integrated circuit device