JPH0587111B2 - - Google Patents

Info

Publication number
JPH0587111B2
JPH0587111B2 JP63220796A JP22079688A JPH0587111B2 JP H0587111 B2 JPH0587111 B2 JP H0587111B2 JP 63220796 A JP63220796 A JP 63220796A JP 22079688 A JP22079688 A JP 22079688A JP H0587111 B2 JPH0587111 B2 JP H0587111B2
Authority
JP
Japan
Prior art keywords
oil
reaction
treatment
heavy
hydrogenation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63220796A
Other languages
Japanese (ja)
Other versions
JPH0269594A (en
Inventor
Toshio Sato
Akio Nishijima
Juji Yoshimura
Hiromichi Shimada
Nobuyuki Matsubayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP22079688A priority Critical patent/JPH0269594A/en
Publication of JPH0269594A publication Critical patent/JPH0269594A/en
Publication of JPH0587111B2 publication Critical patent/JPH0587111B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔発明の技術分野〕 本発明は、石炭液化油などの重質炭化水素を原
料として水素化処理を行ない、より軽量なナフサ
など軽質留分を効率よく得る方法に関するもので
ある。 〔従来技術及びその問題点〕 近年、エネルギー問題、特に化石燃料の枯渇化
にともなつて重中質油などの炭化水素を原料とす
る水素化精製反応に関する研究が精力的に行なわ
れている。特に、石炭、オイルシエール、オイル
サンドなどから得られる芳香族環を多く含有す
る、重質油を効率よく軽質化することについて
は、新燃料の用途拡大という見地からも、新しい
技術開発が強く望まれている。 このような軽質化技術としては、従来、水素化
分解や、接触分解(FCC)が知られているが、
芳香族留分が多い重質炭化水素の軽質化反応は困
難であることが知られている。 石炭液化プロセスなどで得られる芳香族成分が
多い軽油及び灯油留分は、セタン価あるいは煙点
が低いため、その用途開発にあたつては、芳香環
の水素化を行なうこと、あるいはこれを軽質化
し、ガソリン留分を得ることが好ましいと考えら
れる。これらの留分の改質、精製反応を行い、芳
香環の水素化反応を行なつたり、芳香環の開裂を
伴う分解反応を行い、ガソリンなどの軽質留分を
得るためには水素化処理反応を用いることが必要
である。このためにアルミナ、ゼオライトなど酸
性を有する固体酸触媒の使用が有効であると考え
られている。しかしながら、固体酸触媒をこれら
留分の改質反応に直接利用した場合、これらの留
分は多環芳香族および窒素含有化合物に富むた
め、触媒反応が阻害されること、さらには、触媒
上への炭素質が急激に析出し、触媒活性が急速に
低下することが明らかにされている。そこで、水
素化活性の高い触媒を用い、芳香環の水素化およ
び脱窒素等の水素化精製反応を行つたり、さらに
は分解活性の高いゼオライト系触媒を用いて水素
化分解反応を行い、芳香環を開裂させ、軽質化を
行う2段水素化処理反応を用いることが有効と考
えられる。 一方、本発明者らの研究によれば、比較的重質
な留分は二段水素化処理によつても軽質化が困難
であることがわかつた。 〔発明の課題〕 そこで、本発明は、重質炭化水素類を水素化処
理により、効率よく改質あるいは軽質化する方法
を提供することをその課題とする。 〔課題を解決するための手段〕 本発明者らは、前記課題を解決するために、
種々研究を重ねた結果、重質炭化水素類の水素化
処理による効率的な軽質化を妨げている原因とし
ては、水素化反応過程および第2段の水素化分解
反応において、塩基性窒素含有化合物などのヘテ
ロ化合物により触媒が容易に被毒されることにあ
ると着想した。そこで、本発明者らは、あらかじ
め脱ヘテロ化合物処理を行つた重質炭化水素を常
法により水素化精製処理した結果、効率よく水素
化、脱窒素反応が進むことがわかつた。さらに、
水素化処理後、水素化活性金属を担持させた固体
酸触媒の存在下で水素化分解処理を行つたとこ
ろ、重質炭化水素は効率よく軽質化されることを
見出し、本発明を完成するに至つた。 即ち、本発明によれば、あらかじめ脱ヘテロ化
合物処理した重質炭化水素を水素化処理する軽質
化方法及びあらかじめ脱ヘテロ化合物処理した重
質炭化水素を水素化精製処理した後、水素化活性
金属を担持した固体酸触媒の存在下で水素化分解
処理することを特徴とする重質炭化水素の軽質化
方法が提供される。 本発明における重質炭化水素としては、沸点
250℃以上の成分を20重量%以上含むものが用い
られる。このようなものとしては、石炭液化油、
石油系重質油、オイルサンド油、オイルシエール
油等から得られた重質及び軽質留分等がある。 本発明においては、先ず、重質炭化水素を脱ヘ
テロ化合物処理する。この処理は、酸洗浄によつ
て、あるいは酸洗浄と塩基洗浄によつて達成する
ことができる。酸洗浄は、硫酸や塩酸等の鉱酸を
用いて行うことができる。また、塩基洗浄は、水
酸化ナトリウム、水酸化カリウム等のアルカリを
用いて行うことができる。これら酸洗浄や塩基洗
浄後には、水洗及び脱水を行つて、水素化処理原
料としての重質炭化水素を得る。本発明では、脱
ヘテロ化合物処理により、重質炭化水素中の塩基
性あるいは酸性ヘテロ原子(窒素および酸素)の
含量を重質換算で5%以上、好ましくは20%以上
除去する。 本発明の第1段の水素化処理は、常法によつて
行うことができる。例えば、アルミナ担体に、ニ
ツケルとモリブデンあるいはコバルトとモリブデ
ンを担持した触媒を用い、反応温度:350〜400
℃、水素圧力:15〜20Mpa、反応時間:1〜2h
の条件下で水素化処理を行う。本発明では、
MMRにより測定された水素化精製反応前後での
芳香族炭素分率(fa)を0.1以上、好ましくは0.2
以上減少させるように行う。 本発明の第2段の水素化分解処理は、水素化活
性金属を担持した固体酸触媒を用いて行う。固体
酸としては、ゼオライトや、ゼオライトとアルミ
ナとの混合物等が用いられる。この場合、ゼオラ
イトとしては、Y型、モルデナイト型、ZSM型
等のものが用いられる。また、この固体酸に担持
させる金属としては、コバルト、モリブデン、ニ
ツケル、タングステン等があり、好ましくは、ニ
ツケルとモリブデンの組合せ、あるいはコバルト
とモリブデンの組合せが用いられる。反応条件と
しては、反応温度:300〜440℃、好ましくは400
〜425℃、水素圧:3〜20MPa、好ましくは5〜
15MPa、反応時間:20〜240分、好ましくは60〜
120分の条件が用いられる。 〔実施例〕 次に本発明を実施例によりさらに詳細に説明す
る。 原料油として、石炭液化油からの重質留分
(548℃以上の成分:21重量%、窒素成分:0.67重
量%、酸素成分:2.3重量%)を用いた。 また、原料油として石炭液化油からの軽質留分
(沸点200〜350℃、窒素成分:0.36重量%、酸素
成分:1.2重量%)を用いた。 これらの原料油を用いて以下の処理を行つた。 (脱ヘテロ化合物処理) 原料油100gを、0.1N塩酸、0.1N水酸化ナトリ
ウム及び蒸留水の各々200ml入つた分液漏斗のそ
れぞれに入れ、10分間激しく振とうした後、放置
し、水層と油層が分離するのを待ち、油層を分液
した。この操作をいずれも3回繰返した。また、
別に、原料油を、前記の塩酸処理と水酸化ナトリ
ウム処理とを組合せて処理した。このようにして
処理された原料油をロータリーエバポレーター及
び無水硫酸ナトリウムを用いて油層中の水分を除
去した。前記のようにして処理された原料油中の
窒素含量を次表に示す。
[Technical Field of the Invention] The present invention relates to a method for efficiently obtaining lighter light fractions such as naphtha by hydrotreating heavy hydrocarbons such as coal liquefied oil as a raw material. [Prior Art and its Problems] In recent years, with energy issues, especially with the depletion of fossil fuels, research on hydrorefining reactions using hydrocarbons such as heavy and medium oils as raw materials has been actively conducted. In particular, from the perspective of expanding the uses of new fuels, there is a strong need for the development of new technologies to efficiently lighten heavy oils containing many aromatic rings obtained from coal, oil shale, oil sands, etc. It is rare. Hydrocracking and catalytic cracking (FCC) are conventionally known as such lightening technologies.
It is known that the lightening reaction of heavy hydrocarbons containing a large amount of aromatic fractions is difficult. Light oil and kerosene fractions, which are rich in aromatic components and are obtained through coal liquefaction processes, have low cetane numbers or smoke points. It is considered preferable to obtain a gasoline fraction. These fractions are subjected to reforming and purification reactions, hydrogenation reactions of aromatic rings, and cracking reactions that involve the cleavage of aromatic rings. Hydrotreating reactions are used to obtain light fractions such as gasoline. It is necessary to use For this purpose, it is considered effective to use a solid acid catalyst having acidity such as alumina or zeolite. However, when solid acid catalysts are used directly in the reforming reaction of these fractions, the catalytic reaction is inhibited because these fractions are rich in polycyclic aromatics and nitrogen-containing compounds, and furthermore, they may not be deposited on the catalyst. It has been revealed that carbonaceous substances rapidly precipitate and the catalytic activity rapidly decreases. Therefore, we use catalysts with high hydrogenation activity to perform hydrorefining reactions such as hydrogenation of aromatic rings and denitrification, and also perform hydrogenolysis reactions using zeolite-based catalysts with high cracking activity. It is considered effective to use a two-stage hydrotreating reaction in which the ring is opened and lightened. On the other hand, according to research conducted by the present inventors, it has been found that it is difficult to lighten relatively heavy fractions even by two-stage hydrogenation treatment. [Problem of the Invention] Therefore, an object of the present invention is to provide a method for efficiently reforming or lightening heavy hydrocarbons by hydrotreating them. [Means for Solving the Problems] In order to solve the above problems, the present inventors
As a result of various studies, we have found that one of the reasons that prevents efficient lightening of heavy hydrocarbons by hydrotreating is that basic nitrogen-containing compounds are present in the hydrogenation reaction process and the second stage hydrocracking reaction. The idea was that the catalyst was easily poisoned by hetero compounds such as. Therefore, the present inventors have found that as a result of hydrorefining heavy hydrocarbons that have been previously subjected to deheterocompound treatment using a conventional method, hydrogenation and denitrification reactions proceed efficiently. moreover,
After hydrotreating, it was discovered that heavy hydrocarbons were efficiently lightened by carrying out hydrocracking treatment in the presence of a solid acid catalyst supporting a hydrogenation-active metal, and this led to the completion of the present invention. I've reached it. That is, according to the present invention, there is provided a lightening method in which heavy hydrocarbons that have been previously treated to remove heterocompounds are hydrotreated, and after the heavy hydrocarbons that have been previously treated to remove heterogeneous compounds are hydrorefined, hydrogenation-active metals are added. A method for lightening heavy hydrocarbons is provided, which comprises hydrocracking treatment in the presence of a supported solid acid catalyst. In the present invention, heavy hydrocarbons include boiling point
A material containing 20% by weight or more of components having a temperature of 250°C or higher is used. These include coal liquefied oil,
There are heavy and light fractions obtained from petroleum heavy oil, oil sand oil, oil shale oil, etc. In the present invention, first, heavy hydrocarbons are subjected to a dehetero compound treatment. This treatment can be accomplished by acid washing or by acid washing and base washing. Acid cleaning can be performed using a mineral acid such as sulfuric acid or hydrochloric acid. Moreover, base washing can be performed using an alkali such as sodium hydroxide or potassium hydroxide. After these acid washings and base washings, water washing and dehydration are performed to obtain heavy hydrocarbons as raw materials for hydrogenation treatment. In the present invention, the content of basic or acidic heteroatoms (nitrogen and oxygen) in heavy hydrocarbons is removed by 5% or more, preferably 20% or more in terms of weight, by the deheterocompound treatment. The first stage hydrogenation treatment of the present invention can be carried out by a conventional method. For example, using a catalyst in which nickel and molybdenum or cobalt and molybdenum are supported on an alumina support, the reaction temperature is 350 to 400.
°C, hydrogen pressure: 15~20Mpa, reaction time: 1~2h
Hydrotreating is carried out under the following conditions. In the present invention,
The aromatic carbon fraction (fa) before and after the hydrorefining reaction measured by MMR is 0.1 or more, preferably 0.2
Do this so as to reduce the amount by more than 100%. The second-stage hydrocracking treatment of the present invention is carried out using a solid acid catalyst supporting a hydrogenation-active metal. As the solid acid, zeolite, a mixture of zeolite and alumina, etc. are used. In this case, the zeolite used is Y type, mordenite type, ZSM type, etc. The metal supported on the solid acid includes cobalt, molybdenum, nickel, tungsten, etc., and preferably a combination of nickel and molybdenum or a combination of cobalt and molybdenum is used. Reaction conditions include reaction temperature: 300 to 440°C, preferably 400°C.
~425℃, hydrogen pressure: 3~20MPa, preferably 5~
15MPa, reaction time: 20~240 minutes, preferably 60~
A 120 minute condition is used. [Example] Next, the present invention will be explained in more detail with reference to Examples. As the raw material oil, a heavy fraction from coal liquefied oil (components above 548°C: 21% by weight, nitrogen component: 0.67% by weight, oxygen component: 2.3% by weight) was used. In addition, a light distillate from coal liquefied oil (boiling point: 200 to 350°C, nitrogen component: 0.36% by weight, oxygen component: 1.2% by weight) was used as the raw material oil. The following treatments were performed using these raw material oils. (Deheterocompound removal treatment) 100 g of the raw oil was placed in a separatory funnel containing 200 ml each of 0.1N hydrochloric acid, 0.1N sodium hydroxide, and distilled water, and after shaking vigorously for 10 minutes, it was left to stand to separate the aqueous layer. After waiting for the oil layer to separate, the oil layer was separated. This operation was repeated three times. Also,
Separately, the feedstock oil was treated with a combination of the hydrochloric acid treatment and sodium hydroxide treatment described above. The water in the oil layer of the raw oil thus treated was removed using a rotary evaporator and anhydrous sodium sulfate. The nitrogen content in the raw oil treated as described above is shown in the following table.

〔触媒〕〔catalyst〕

アルミナ担体にNi:2.3重量%及びMo:12重
量%を担持させた触媒 〔反応条件〕 反応温度:375℃ 水素圧:14.7MPa 反応時間 :2時間 次に、第1段の水素化精製反応によつて得られ
た生成油の性状を表−2に示す。faはNMR測定
によつて得られた芳香族炭素分率を示しており、
重質成分および軽質成分の出発原料のfa値はそれ
ぞれ0.79および0.61である。
Catalyst with Ni: 2.3% by weight and Mo: 12% by weight supported on an alumina carrier [Reaction conditions] Reaction temperature: 375°C Hydrogen pressure: 14.7MPa Reaction time: 2 hours Next, in the first stage hydrorefining reaction The properties of the resulting oil are shown in Table 2. fa indicates the aromatic carbon fraction obtained by NMR measurement,
The fa values of the starting materials for heavy and light components are 0.79 and 0.61, respectively.

〔触媒〕〔catalyst〕

アルミナ担体にNi:1.7重量%及びMo:8.0重
量%を担持した触媒 〔反応条件〕 反応温度:425℃ 水素圧:14.7MPa 反応時間:2時間 次に、前記第1段及び第2段の各水素化処理に
よつて得られたそれぞれの生成油の性状を次表に
示す。 なお、軽質留分(試料油No.1〜No.4)について
の軽質化率は次式で表わされる。 L=A−B/A×100(%) A:試料油中の沸点200℃以上の成分の容量% B:生成油中の沸点200℃以上の成分の容量% また、重質留分(試料油No.5〜No.8)について
の軽質化率(H)は次式で表わされる。 H=C−D/C×100(%) C:試料油中の沸点548℃以上の成分の容量% D:生成油中の沸点548℃以上の成分の容量%
Catalyst with Ni: 1.7% by weight and Mo: 8.0% by weight supported on an alumina carrier [Reaction conditions] Reaction temperature: 425°C Hydrogen pressure: 14.7MPa Reaction time: 2 hours Next, each of the first stage and second stage The properties of each product oil obtained by hydrotreating are shown in the table below. Note that the lightening rate for the light fractions (sample oils No. 1 to No. 4) is expressed by the following formula. L=A-B/A×100 (%) A: Volume % of components with a boiling point of 200°C or higher in the sample oil B: Volume % of components with a boiling point of 200°C or higher in the produced oil In addition, the heavy fraction (sample The lightening rate (H) for oils No. 5 to No. 8) is expressed by the following formula. H=CD/C×100 (%) C: Volume % of components with a boiling point of 548°C or higher in the sample oil D: Volume % of components with a boiling point of 548°C or higher in the produced oil

【表】 実施例 2 原料油としてオイルサンド油からの重質留分
(窒素含量:0.38wt%)、オイルシエール油からの
重質留分(窒素含量:0.99wt%)及び石油からの
重質留分(窒素含量:0.18wt%)をそれぞれ用い
て、これを前記と同様に酸洗浄してヘテロ化合物
を除去し、次いで、実施例1と同様にして、第1
段及び第2段の水素化処理を行つた。その結果を
表−4に示す。 また、比較のために酸洗浄を施さないでそのま
ま2段の水素化処理を行つた結果もあわせて示
す。
[Table] Example 2 Heavy distillate from oil sand oil (nitrogen content: 0.38 wt%), heavy distillate from oil sand oil (nitrogen content: 0.99 wt%), and heavy distillate from petroleum as feedstock oils Using each fraction (nitrogen content: 0.18 wt%), it was washed with acid in the same manner as above to remove hetero compounds, and then, in the same manner as in Example 1, the first
Stage and second stage hydrogenation treatments were carried out. The results are shown in Table 4. For comparison, the results of two-stage hydrogenation treatment without acid washing are also shown.

〔発明の効果〕〔Effect of the invention〕

以上から明らかな通り、本発明によれば、芳香
族性に富み、窒素化合物などのヘテロ原子を多く
含む重質炭化水素類から、付加価値の高い芳香環
が水素化された炭化水素および軽質な炭化水素類
を効率よく製造することができる。 即ち、本発明では脱ヘテロ化合物処理により触
媒被毒成分である塩基性化合物を除去することに
より、水素化精製反応で芳香環の水素化反応およ
び脱窒素反応が進行し、生成物の性状が改質され
る。また、脱ヘテロ化合物処理、水素化反応に引
続いて第2段の水素化分解反応を行なえば軽質化
反応を効率よく進行させることができる。
As is clear from the above, according to the present invention, from heavy hydrocarbons that are rich in aromaticity and contain many heteroatoms such as nitrogen compounds, to hydrocarbons in which aromatic rings with high added value are hydrogenated and light Hydrocarbons can be efficiently produced. That is, in the present invention, by removing basic compounds that are catalyst poisoning components through the deheterocompound treatment, the hydrogenation reaction and denitrification reaction of aromatic rings proceed in the hydrorefining reaction, and the properties of the product are improved. questioned. Furthermore, if the second stage hydrogenolysis reaction is performed subsequent to the deheterocompound treatment and the hydrogenation reaction, the lightening reaction can proceed efficiently.

Claims (1)

【特許請求の範囲】[Claims] 1 あらかじめ脱ヘテロ化合物処理した重質炭化
水素を水素化精製処理した後、水素化活性金属を
担持した固体酸触媒の存在下で水素化分解処理す
ることを特徴とする重質炭化水素の軽質化方法。
1. Lightening of heavy hydrocarbons, which is characterized by subjecting heavy hydrocarbons that have been previously treated to remove heterocompounds to hydrorefining treatment, and then subjecting them to hydrocracking treatment in the presence of a solid acid catalyst supporting a hydrogenation-active metal. Method.
JP22079688A 1988-09-03 1988-09-03 Method for forming heavy hydrocarbon into more volatile component Granted JPH0269594A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22079688A JPH0269594A (en) 1988-09-03 1988-09-03 Method for forming heavy hydrocarbon into more volatile component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22079688A JPH0269594A (en) 1988-09-03 1988-09-03 Method for forming heavy hydrocarbon into more volatile component

Publications (2)

Publication Number Publication Date
JPH0269594A JPH0269594A (en) 1990-03-08
JPH0587111B2 true JPH0587111B2 (en) 1993-12-15

Family

ID=16756702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22079688A Granted JPH0269594A (en) 1988-09-03 1988-09-03 Method for forming heavy hydrocarbon into more volatile component

Country Status (1)

Country Link
JP (1) JPH0269594A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2463235B1 (en) * 2009-08-07 2014-10-08 Tokuyama Dental Corporation Method for producing silica-zirconia composite particles each coated with silica layer

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4849801A (en) * 1971-10-27 1973-07-13
JPS4938081A (en) * 1972-08-25 1974-04-09
JPS56122890A (en) * 1980-02-01 1981-09-26 Suntech Method of raising quality of liquefied coal
JPS5759987A (en) * 1980-09-29 1982-04-10 Kobe Steel Ltd Hydrogenation and liquefaction of brown coal

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4849801A (en) * 1971-10-27 1973-07-13
JPS4938081A (en) * 1972-08-25 1974-04-09
JPS56122890A (en) * 1980-02-01 1981-09-26 Suntech Method of raising quality of liquefied coal
JPS5759987A (en) * 1980-09-29 1982-04-10 Kobe Steel Ltd Hydrogenation and liquefaction of brown coal

Also Published As

Publication number Publication date
JPH0269594A (en) 1990-03-08

Similar Documents

Publication Publication Date Title
KR0136264B1 (en) Method of treatment of heavy hydrocarbon oil
KR100309488B1 (en) How to manufacture high viscosity oils and intermediate distillates with high viscosity index from heavy petroleum fractions
CA1311435C (en) Process for the hydrogenation of hydrocarbon oils
JP2000109857A (en) Unification process for hydrogen treating and hydrocracking
JPH0631335B2 (en) Contact dewaxing method
GB2127843A (en) Solvent refining of coal
JP2008127542A (en) Method for producing high octane value gasoline substrate
JP2890060B2 (en) Manufacturing method of lubricating base oil
JP2003027071A (en) Method for simultaneous hydrotreatment of two stock oils
JPS60219295A (en) Hydrogenation of heavy hydrocarbon oil
JP5491912B2 (en) Method for producing kerosene oil base and alkylbenzenes
JP6772382B2 (en) Method for producing hexadecahydropyrene
CA2154313C (en) Process for producing a hydrowax
JPH10510001A (en) Centralized rationalization process to increase the aromatics content in the reformate produced from the C-lower 9-upper + aromatic-containing charge
JPH0587111B2 (en)
JP5457808B2 (en) Method for producing monocyclic aromatic hydrocarbons
JPH0753968A (en) Hydrotreatment of heavy hydrocarbon oil
JP2980436B2 (en) Treatment method for heavy hydrocarbon oil
JP2004504477A (en) How to upgrade hydrocarbons
US3575844A (en) Hydrocracking process
JPH02153992A (en) Method for hydrocracking of hydrocarbon stock
JP3502499B2 (en) Hydrocracking method for heavy oils
JPH05230473A (en) Treatment of heavy hydrocarbon oil
JPS58108295A (en) Manufacture of hydrocarbon oil distillate
JPH05239472A (en) Method of processing heavy hydrocarbon oil

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term