JPH058687B2 - - Google Patents

Info

Publication number
JPH058687B2
JPH058687B2 JP18821484A JP18821484A JPH058687B2 JP H058687 B2 JPH058687 B2 JP H058687B2 JP 18821484 A JP18821484 A JP 18821484A JP 18821484 A JP18821484 A JP 18821484A JP H058687 B2 JPH058687 B2 JP H058687B2
Authority
JP
Japan
Prior art keywords
drug
microspheres
phb
acid
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP18821484A
Other languages
Japanese (ja)
Other versions
JPS6165816A (en
Inventor
Sadahiro Nakano
Kazuhiko Juni
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP18821484A priority Critical patent/JPS6165816A/en
Publication of JPS6165816A publication Critical patent/JPS6165816A/en
Publication of JPH058687B2 publication Critical patent/JPH058687B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、生体内における生理活性物質の放出
速度が制御された顆粒状に調製された徐放性製
剤、より詳しくはポリヒドロキシ酪酸を主材料と
し、これに添加物を加えて生理活性物質の放出速
度を制御した顆粒状に調製された徐放性製剤に関
する。 (従来の技術) 最近の制ガン療法では制ガン薬をガン患部周辺
のみに分布させ、正常細胞個所への副作用を防止
し、同時に樹脂などの高分子賦形剤を用いて薬効
の持続を考慮した投与方法や剤形の研究が盛んに
おこなわれている。 患部周辺のみに長時間にわたつて継続的に有効
濃度の薬物を供給する、いわゆる徐放性局部投与
方法として、例えば制ガン薬をカプセル中に入れ
たり、または錠剤ないしペレツト状に成形した製
剤を、ガン患部の局部周辺に埋め込む方法や、制
ガン薬をコアセルベイシヨンにより重合物被膜で
マイクロカプセル化、または重合物を溶媒に溶解
し、これに薬を溶解または懸濁させた後マイクロ
スフイアに調製したものを、局部周辺の筋肉内な
いしは血管内に注入し、局部周辺の血管の、マイ
クロカプセルまたはマイクロスフイアで塞栓して
閉栓された局部血管のみに薬剤が侵出するのを利
用する方法などが挙げられる。 従来、重合物の被膜やマトリツクスを用いて微
小球に賦形したものには、エチルセルローズやワ
ツクスを用いて製剤したもの(特開昭54−
163808)や、無毒の生体内分解性高分子であるポ
リ乳酸などを用いてマイクロカプセルまたはマイ
クロスフイアに製剤したもの(特開昭54−55717、
特開昭59−33214)などが知られている。 しかしながら、ポリ乳酸はガラス転移温度が低
く、溶融粘度が高いなどの物性上の制約があり、
この生体内分解性高分子材料では均一なマイクロ
カプセル化された微小球は得られがたいとされて
いる。特に薬物粒子の形状が不均一の場合は完全
にカプセル化されていない粒子もあり、従つてポ
リ乳酸によりマイクロカプセル化された製剤を患
部に投与した場合、投与初期の薬物放出速度が非
常に速くて長期間に亘つての徐放性が得られず、
常に一定濃度で薬物が供給される徐放効果は得ら
れ難い。 上記のように、微小球の被膜やマトリツクスと
して用いる生体内分解性高分子によつて、微小球
の製剤には種々の問題があり、さらに製剤された
微小球の薬理作用を好ましい状態とするために適
切な工夫がなされなければならない。 (発明が解決しようとする問題点) 最近、ポリヒドロキシ酪酸(以下、PHBとい
う)が、発酵法により商業生産ベースで製造され
るようになり、比較的安価に入手できるようにな
つた。 PHBは、ポリグリコール酸、ポリ乳酸と同様
に生体内分解性高分子の一つであるが、下記構造 により示されるようにポリプロピレンに類似した
ポリマーであり、その物性は、古くからよく知ら
れているポリグリコール酸やポリ乳酸の物性とは
異なり、l−ポリ乳酸にくらべ融点は若干低い
(mp175℃)程度で近似しているものの、ガラス
転位温度が低く、また極端に分子量が高く(平均
分子量500000)、その上脆い。そのため、生体内
分解性を有するポリマーであるにもかかわらず、
ポリ乳酸、ポリグリコール酸などとくらべ成形上
問題があり、医用ポリマー材料として殆んど使用
されていない現状である。 本発明者らは、このような生体内分解性を有す
るPHBの、徐放性製剤としての使用について鋭
意検討し、PHBのみをマトリツクスとして制ガ
ン剤を含有するマイクロスフイアでは、製剤がう
まくいかず、また得られたマトリツクスの徐放速
度が極めて低いことがわかつた。 すなわち、本発明の目的は、従来、医用ポリマ
ーとしてあまりかえりみられなかつたPHBをマ
トリツクスとして薬物効果が必要な期間中は、常
に必要な活性濃度が維持可能な、放出速度を制御
できる徐放性製剤を提供することである。 (問題を解決するための手段) 本発明は、生体内分解性高分子であるポリヒド
ロキシ酪酸をマトリツクスとして用い、注射用ま
たは埋込に用いるマイクロスフイア構造の徐放性
製剤を提供するものであり、この徐放性製剤の製
造に際して、生体内で消化されうる脂溶性添加物
をPHB100重量部に対して40〜100重量部添加し
て、これをPHBと均一に固化析出せしめ、かつ
顆粒状に調製することにより薬物の放出速度を制
御した徐放性製剤である。 従つて、本発明の顆粒状に調製された徐放性製
剤とは、PHBまたはその共重合体に添加された
脂溶性添加物がマトリツクスとなり、徐放される
薬物と均質に分散した粒径10乃至500μを有する
マイクロスフイア構造の製剤である。 このようにマイクロスフイアのマトリツクスと
して脂溶性添加物を加えることにより、PHBを
主材料とするマイクロスフイアの製造が可能であ
り、投与後の一定時間経過後の活性成分の放出速
度の低下を防止し、所望の放出速度に制御でき
る。 本発明に用いられる放出速度制御用添加物は、
有機溶剤を用いたPHB溶液から得られる公知の
マイクロスフイアの製造時に添加されるものであ
り、従つて、添加物はこの有機溶剤に溶け、しか
も生体内で消化される脂溶性のものでなければな
らない。これらの添加物としては植物油、水素添
加植物油、カカオ脂、中鎖(C8乃至C22)脂肪族
のトリグリセリド、低級(C6以下)脂肪族のト
リグリセリド、プロピレングリコールのジ脂肪酸
エステル、中鎖または高級(C8以上)脂肪酸の
アルキルエステル、乳酸のアルキルエステル、芳
香族モノカルボン酸のアルキルエステル、芳香族
ジカルボン酸のジアルキルエステル、脂肪族ジカ
ルボン酸のジアルキルエステル、高級アルコール
などがあげられる。特に脂肪酸エステル類が好ま
しい添加物である。 添加物の使用量は、その種類および薬物の種
類、投与形態にもとづく放出速度量で適宜決めら
れるが、通常、PHB100重量部に対して40〜100
重量部である。40重量部未満では徐放効果に乏し
く、100重量部を越えると均一なマイクロスフイ
アを得るための賦形が困難となる。 本発明の徐放性製剤の調製は、常法に従い、例
えば以下のようにして得られる。すなわちPHB
及び添加物を塩化メチレンなどの有機溶剤に完全
に溶解してこれに薬物を溶解または懸濁し、これ
をゼンチンなどの保護コロイドの存在する水性媒
体中に攪拌下に滴下懸濁させ、次いで溶剤を蒸発
除去して得られる顆粒状のマイクロスフイアを水
性媒体から過分離すればよい。 本発明に用いられる薬物は、従来より徐放性が
望まれる薬物として知られている薬物なら全てに
適用可能であるが、特にその作用の時間依存性の
大きな制ガン薬などに適用すれば効果が大きく、
そのほか、インシユリン、プロスタグランジン
類、局所麻酔薬、などにも使用できる。これらの
薬物は、通常、マイクロスフイア100重量部に対
して、10〜50重量部を含有させる。薬物の量が多
ければ添加物の使用は少なくてよい。 本発明に用いるポリヒドロキシ酪酸とは、ポリ
(3−ヒドロキシ酪酸)であつて、前記構造で示
されるものである。その分子量は20万〜100万の
ものが好ましい。 ポリヒドロキシ酪酸の使用量は、得られるマイ
クロスフイア100重量部に対し、30〜90重量部、
好ましくは50〜80重量部用いる。とくに30重量部
未満では所望の強度および均一なマイクロスフイ
アは得にくい。 (作用、及び発明の効果) PHB、添加物、及び薬物よりなる本発明の徐
放性製剤は、注射用または埋込み用として使用で
きるマイクロスフイア構造の徐放性製剤であり、
添加物の種類とその使用割合を適宜選択すること
により、薬物の放出速度が制御でき、したがつて
その一定の濃度を維持できる。また生体内の酵素
によつてPHB、添加物ともに加水分解されて無
害物質となるため、体外に取り出す必要もなく、
体内に残留もしない。 (実施例) 以下、実施例および試験例により本発明を説明
する。 実施例 1 ポリ(3−ヒドロキシ酪酸)0.9gほ塩化メチ
レン40mlに攪拌しながら溶解した後、イソプロピ
ルミリステート(IPM)0.6gを溶かし、さらに
ドキソルビシン塩酸塩0.3gを加えた溶液を得た。 別に、酸処理のゼラチン(宮城化学(株)製、ゼリ
ー強度250ブルーム)2gを、198gの水に加え50
℃で加温溶解して1%水溶液を調製した。 500mlビーカー中に該ゼラチン水溶液を移しこ
れに該塩化メチレン溶液を加え5cmの櫂型攪拌羽
根を用いて500rpmで5分間攪拌乳化したのち、
外部より徐々に加熱しながら塩化メチレンを蒸発
させ、約60分を要して内温が50℃になり、塩化メ
チレン臭が完全に消失したことを確認してマイク
ロスフイア化を終えた。上層の若干の凝縮物を除
去したのち過および温水で水洗した。その後、
減圧下で風乾して粒子径150〜250μの白色球状の
マイクロスフイア1.6g(収率89%)を得た。 得られたマイクロスフイアは溶剤抽出を行つて
ドキソルビシンを完全に単離し、290nmにおける
吸光度における吸光度測定による定量分析の結果
マイクロスフイア中のドキソルビシンの含有量は
15.0%であつた。また、マイクロスフイア中の
PHBは0.85g、IPMは0.5gであることが確認さ
れた。 試験例 実施例1で得られたドキソルビシン15.0%含有
のマイクロスフイア100mgを50mlの生理食塩水に
入れ、各測定時に直接1〜3mlをサンプリングし
て、290nmにおける吸光度を測定した。同時に上
記実施例と全く同じ条件下で、添加剤IPMを加
えなかつた場合得られたマイクロスフイアの生理
食塩水中の290nmにおける吸光度も比較試験とし
て測定し、得られたこれらの吸光度により計算し
て、第1表のような経過時間と放出率との関係を
得た。
(Field of Industrial Application) The present invention relates to a sustained-release preparation prepared in the form of granules with a controlled release rate of physiologically active substances in vivo, more specifically, polyhydroxybutyric acid is the main material, and additives are added to the sustained-release preparation. The present invention relates to a sustained release preparation prepared in the form of granules in which the release rate of a physiologically active substance is controlled by adding (Conventional technology) In recent anticancer therapy, anticancer drugs are distributed only around the cancerous area to prevent side effects on normal cells, and at the same time, polymeric excipients such as resins are used to maintain drug efficacy. Research on the administration methods and dosage forms is being actively conducted. As a so-called sustained-release local administration method that continuously supplies a drug at an effective concentration only to the affected area over a long period of time, for example, anticancer drugs are placed in capsules or prepared in the form of tablets or pellets. , a method of implanting the anticancer drug locally around the cancer-affected area, a method of microencapsulating the anticancer drug with a polymer film using coacervation, or a method of dissolving the polymer in a solvent and dissolving or suspending the drug in this and then placing it in a microsphere. The drug is injected into the muscles or blood vessels around the local area, and the drug leaks out only into the local blood vessels that have been embolized with microcapsules or microspheres. Examples include methods to do so. Conventionally, microspheres formed using polymer coatings or matrices have been formulated using ethyl cellulose or wax (Japanese Patent Application Laid-Open No. 1989-1999).
163808), and those formulated into microcapsules or microspheres using polylactic acid, a non-toxic biodegradable polymer (Japanese Patent Application Laid-Open No. 54-55717,
Japanese Patent Application Laid-Open No. 59-33214) is known. However, polylactic acid has physical property limitations such as a low glass transition temperature and high melt viscosity.
It is said that it is difficult to obtain uniform microencapsulated microspheres using this biodegradable polymer material. Particularly when the shape of the drug particles is non-uniform, some particles may not be completely encapsulated. Therefore, when a preparation microencapsulated with polylactic acid is administered to the affected area, the drug release rate at the initial stage of administration is very fast. It is not possible to obtain sustained release over a long period of time,
It is difficult to obtain a sustained release effect in which the drug is always supplied at a constant concentration. As mentioned above, there are various problems in the preparation of microspheres due to the biodegradable polymers used as the coating and matrix of the microspheres. Appropriate measures must be taken to (Problems to be Solved by the Invention) Recently, polyhydroxybutyric acid (hereinafter referred to as PHB) has been produced on a commercial production basis by a fermentation method, and has become available at a relatively low cost. PHB is a biodegradable polymer like polyglycolic acid and polylactic acid, but it has the following structure. As shown by , it is a polymer similar to polypropylene, and its physical properties are different from those of polyglycolic acid and polylactic acid, which have been well known for a long time, and its melting point is slightly lower than that of l-polylactic acid (mp 175 ° C). Although similar in degree, it has a low glass transition temperature, an extremely high molecular weight (average molecular weight 500,000), and is brittle. Therefore, despite being a biodegradable polymer,
It has problems in molding compared to polylactic acid, polyglycolic acid, etc., and is currently hardly used as a medical polymer material. The present inventors have diligently studied the use of such biodegradable PHB as a sustained release preparation, and found that the preparation did not work well with microspheres containing an anticancer drug using only PHB as a matrix. It was also found that the sustained release rate of the obtained matrix was extremely low. That is, the object of the present invention is to provide a sustained-release preparation that uses PHB, which has not been widely used as a medical polymer, as a matrix and that can maintain the required active concentration and control the release rate during the period when the drug effect is required. The goal is to provide the following. (Means for Solving the Problems) The present invention provides a microsphere-structure sustained release preparation for injection or implantation using polyhydroxybutyric acid, which is a biodegradable polymer, as a matrix. When producing this sustained-release preparation, 40 to 100 parts by weight of a fat-soluble additive that can be digested in the body is added to 100 parts by weight of PHB, and this is uniformly solidified and precipitated with PHB, and is made into granules. This is a sustained-release preparation in which the release rate of the drug is controlled by preparing the drug. Therefore, the sustained release preparation prepared in the form of granules of the present invention means that the fat-soluble additive added to PHB or its copolymer serves as a matrix, and the drug to be sustained release is homogeneously dispersed in the particle size 10. It is a preparation with a microsphere structure having a size of 500μ to 500μ. By adding fat-soluble additives to the microsphere matrix in this way, it is possible to produce microspheres whose main material is PHB, thereby reducing the release rate of the active ingredient after a certain period of time after administration. release rate can be controlled to the desired rate. The release rate controlling additive used in the present invention is:
It is added during the production of known microspheres obtained from a PHB solution using an organic solvent. Therefore, the additive must be soluble in this organic solvent and must be fat-soluble and digested in vivo. Must be. These additives include vegetable oils, hydrogenated vegetable oils, cocoa butter, medium chain (C 8 to C 22 ) aliphatic triglycerides, lower (C 6 or less) aliphatic triglycerides, difatty acid esters of propylene glycol, medium chain or Examples include alkyl esters of higher ( C8 or higher) fatty acids, alkyl esters of lactic acid, alkyl esters of aromatic monocarboxylic acids, dialkyl esters of aromatic dicarboxylic acids, dialkyl esters of aliphatic dicarboxylic acids, and higher alcohols. Particularly preferred additives are fatty acid esters. The amount of additive used is determined appropriately depending on the release rate based on the type of additive, the type of drug, and the dosage form, but it is usually 40 to 100 parts by weight per 100 parts by weight of PHB.
Parts by weight. If it is less than 40 parts by weight, the sustained release effect will be poor, and if it exceeds 100 parts by weight, it will be difficult to shape it to obtain uniform microspheres. The sustained release preparation of the present invention can be prepared according to a conventional method, for example, as follows. i.e. PHB
and additives are completely dissolved in an organic solvent such as methylene chloride, the drug is dissolved or suspended therein, and this is dropped into an aqueous medium containing a protective colloid such as Zentin and suspended under stirring, and then the solvent is removed. The granular microspheres obtained by evaporation may be separated from the aqueous medium. The drug used in the present invention can be applied to all drugs that are conventionally known as drugs for which sustained release is desired, but it is particularly effective when applied to anticancer drugs whose action is highly time-dependent. is large,
In addition, it can be used for insulin, prostaglandins, local anesthetics, etc. These drugs are usually contained in an amount of 10 to 50 parts by weight per 100 parts by weight of the microspheres. The higher the amount of drug, the less additives need to be used. The polyhydroxybutyric acid used in the present invention is poly(3-hydroxybutyric acid) and is represented by the above structure. Its molecular weight is preferably 200,000 to 1,000,000. The amount of polyhydroxybutyric acid used is 30 to 90 parts by weight per 100 parts by weight of the microspheres obtained.
Preferably, 50 to 80 parts by weight are used. In particular, if it is less than 30 parts by weight, it is difficult to obtain the desired strength and uniform microspheres. (Action and Effect of the Invention) The sustained release preparation of the present invention comprising PHB, an additive, and a drug is a sustained release preparation with a microsphere structure that can be used for injection or implantation,
By appropriately selecting the types of additives and their usage ratios, the release rate of the drug can be controlled and, therefore, its constant concentration can be maintained. In addition, both PHB and additives are hydrolyzed by enzymes in the body and become harmless substances, so there is no need to take them out of the body.
It does not remain in the body. (Example) The present invention will be explained below with reference to Examples and Test Examples. Example 1 After dissolving 0.9 g of poly(3-hydroxybutyric acid) in 40 ml of methylene dichloride with stirring, a solution was obtained in which 0.6 g of isopropyl myristate (IPM) was dissolved and further 0.3 g of doxorubicin hydrochloride was added. Separately, add 2 g of acid-treated gelatin (manufactured by Miyagi Chemical Co., Ltd., Jelly Strength 250 Bloom) to 198 g of water and add 50 g of gelatin to 198 g of water.
A 1% aqueous solution was prepared by heating and dissolving at °C. The gelatin aqueous solution was transferred to a 500 ml beaker, the methylene chloride solution was added thereto, and the mixture was emulsified by stirring at 500 rpm for 5 minutes using a 5 cm paddle-shaped stirring blade.
The methylene chloride was evaporated while gradually heating from the outside, and it took about 60 minutes to reach an internal temperature of 50°C, and microsphere formation was completed when it was confirmed that the methylene chloride odor had completely disappeared. After removing some condensate from the upper layer, it was filtered and washed with warm water. after that,
The mixture was air-dried under reduced pressure to obtain 1.6 g of white spherical microspheres (yield: 89%) with a particle size of 150 to 250 μm. The obtained microspheres were subjected to solvent extraction to completely isolate doxorubicin, and as a result of quantitative analysis by absorbance measurement at 290 nm, the content of doxorubicin in the microspheres was determined.
It was 15.0%. Also, in the microsphere
It was confirmed that PHB was 0.85g and IPM was 0.5g. Test Example 100 mg of the microspheres containing 15.0% doxorubicin obtained in Example 1 were placed in 50 ml of physiological saline, 1 to 3 ml was directly sampled at each measurement time, and the absorbance at 290 nm was measured. At the same time, under exactly the same conditions as in the above example, the absorbance at 290 nm of the microspheres in physiological saline obtained without adding the additive IPM was also measured as a comparative test, and calculated based on these absorbances. , the relationship between elapsed time and release rate as shown in Table 1 was obtained.

【表】 第1表の結果より明らかなように、添加物なし
で調整したPHBマイクロスフイア製剤の放出速
度は極度に小さいのに対し、本発明によるマイク
ロスフイアは良好な徐放性を示し、5時間で約40
%、120時間で全量が放出された。
[Table] As is clear from the results in Table 1, the release rate of the PHB microsphere preparation prepared without additives is extremely low, whereas the microspheres according to the present invention exhibit good sustained release properties. , about 40 in 5 hours
%, the entire amount was released in 120 hours.

Claims (1)

【特許請求の範囲】 1 ポリヒドロキシ酪酸を主材料とした生体内分
解性重合物、ポリヒドロキシ酪酸を溶解する有機
溶剤に溶け、しかも生体内で消化されうる脂溶性
の添加物をポリヒドロキシ酪酸100重量部に対し
て40〜100重量部、および薬物よりなる顆粒状に
調製された徐放性製剤。 2 脂溶性の添加物が脂肪酸エステルである特許
請求の範囲第1項記載の製剤。 3 薬物が制ガン薬である特許請求の範囲第1項
記載の製剤。
[Scope of Claims] 1 A biodegradable polymer mainly composed of polyhydroxybutyric acid, a fat-soluble additive that is soluble in an organic solvent that dissolves polyhydroxybutyric acid and can be digested in vivo, is polyhydroxybutyric acid 100. A sustained release preparation prepared in the form of granules consisting of 40 to 100 parts by weight and a drug. 2. The preparation according to claim 1, wherein the fat-soluble additive is a fatty acid ester. 3. The preparation according to claim 1, wherein the drug is an anticancer drug.
JP18821484A 1984-09-10 1984-09-10 Granular slow-releasing preparation Granted JPS6165816A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18821484A JPS6165816A (en) 1984-09-10 1984-09-10 Granular slow-releasing preparation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18821484A JPS6165816A (en) 1984-09-10 1984-09-10 Granular slow-releasing preparation

Publications (2)

Publication Number Publication Date
JPS6165816A JPS6165816A (en) 1986-04-04
JPH058687B2 true JPH058687B2 (en) 1993-02-02

Family

ID=16219763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18821484A Granted JPS6165816A (en) 1984-09-10 1984-09-10 Granular slow-releasing preparation

Country Status (1)

Country Link
JP (1) JPS6165816A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0725689B2 (en) * 1986-10-07 1995-03-22 中外製薬株式会社 Sustained-release preparation containing granulocyte colony-stimulating factor

Also Published As

Publication number Publication date
JPS6165816A (en) 1986-04-04

Similar Documents

Publication Publication Date Title
Uyen et al. Fabrication of alginate microspheres for drug delivery: A review
US5417982A (en) Controlled release of drugs or hormones in biodegradable polymer microspheres
KR0167078B1 (en) Sustained release oral drug dosage form
TWI284048B (en) Compressed microparticles for dry injection
Tamada et al. The development of polyanhydrides for drug delivery applications
Parent et al. PLGA in situ implants formed by phase inversion: Critical physicochemical parameters to modulate drug release
JP3449253B2 (en) Manufacturing method of hard capsule
JPH10502673A (en) Formulations and methods for providing sustained local anesthesia
KR100535319B1 (en) Drug composition with controlled drug release rate
JPH11511763A (en) How to provide safe local anesthesia
JPH05178740A (en) Sustained release composition and preparation thereof
JP7437074B2 (en) Long-acting preparation containing rivastigmine and its manufacturing method
KR20030051687A (en) Biodegradable microparticles for controlled release administration, with purified amylopectin-based starch of reduced molecular weight
JP2009506100A (en) Formulation
JPS6163613A (en) Sustained release preparation
US20030161881A1 (en) Solid dose micro implant
EP1458352A1 (en) Solid dose micro implant
JPH058687B2 (en)
GB1573459A (en) Absorbable polymer drug compositions
NZ223228A (en) Lactone derivatives as carriers in controlled and delayed release oral pharmaceutical compositions
CN100400032C (en) Method for preparing oil soluble medicine slow releade micro ball
CN113786393A (en) Rivaroxaban microsphere and preparation method and application thereof
JPH09208488A (en) Treating agent for cerebrovascular dementia
XIAOHUA Controlled release alginate-based microparticulate systems for drug delivery and chemoembolization
AU770226B2 (en) Methods for providing safe local anaesthesia