JPH0586795B2 - - Google Patents

Info

Publication number
JPH0586795B2
JPH0586795B2 JP61080488A JP8048886A JPH0586795B2 JP H0586795 B2 JPH0586795 B2 JP H0586795B2 JP 61080488 A JP61080488 A JP 61080488A JP 8048886 A JP8048886 A JP 8048886A JP H0586795 B2 JPH0586795 B2 JP H0586795B2
Authority
JP
Japan
Prior art keywords
section
reaction
hydroxyphenethyl
iminothiazolidine
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61080488A
Other languages
Japanese (ja)
Other versions
JPS62238293A (en
Inventor
Junichi Ishizu
Makoto Kobayashi
Masami Shimazaki
Takehisa Oohashi
Kyoshi Watanabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP61080488A priority Critical patent/JPS62238293A/en
Publication of JPS62238293A publication Critical patent/JPS62238293A/en
Publication of JPH0586795B2 publication Critical patent/JPH0586795B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41NPRINTING PLATES OR FOILS; MATERIALS FOR SURFACES USED IN PRINTING MACHINES FOR PRINTING, INKING, DAMPING, OR THE LIKE; PREPARING SUCH SURFACES FOR USE AND CONSERVING THEM
    • B41N1/00Printing plates or foils; Materials therefor
    • B41N1/12Printing plates or foils; Materials therefor non-metallic other than stone, e.g. printing plates or foils comprising inorganic materials in an organic matrix
    • B41N1/14Lithographic printing foils

Landscapes

  • Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、式(): [Industrial application field] The present invention is based on the formula ():

【化】 であらわされるS−(−)−3−(β−ヒドロキシ
フエネチル)−2−イミノチアゾリジンまたはそ
の塩を有機溶剤中で塩素化試剤と反応させ、つい
でアルカリ処理することを特徴とする式():
[Chemical formula] S-(-)-3-(β-hydroxyphenethyl)-2-iminothiazolidine or its salt is reacted with a chlorinating reagent in an organic solvent, and then treated with an alkali. Expression():

〔従来の技術および発明が解決しようとする問題点〕[Problems to be solved by conventional technology and invention]

式()であらわされるS−(−)−6−フエニル
−2,3,5,6−テトラヒドロイミダゾ
〔2,1−b〕チアゾール(以下、レバミゾール
という)は動物駆虫剤または免疫増強剤として有
用である。従来よりレバミゾールは、その光学異
性体であるデキストラミゾールとの等量混合物で
あるラセミ体テトラミゾールを製造し(米国特許
第4107170号、同第3855234号および同第3274209
号各明細書参照)、それを光学割するという方法
(米国特許第3565907号、同第3579530号および英
国特許第8329869号各明細書参照)により製造さ
れることが知られている。これらの方法はラセミ
体スチレンオキサイドを出発原料とするか、また
はフエナシルハライドを出発原料として中間的に
():
S-(-)-6-phenyl-2,3,5,6-tetrahydroimidazo[2,1-b]thiazole (hereinafter referred to as levamisole) represented by the formula () is useful as an animal anthelmintic or immune enhancer. It is. Conventionally, levamisole has been produced as racemic tetramisole, which is a mixture of equal amounts with its optical isomer dextramisole (U.S. Pat. Nos. 4107170, 3855234 and 3274209).
It is known that it can be produced by a method of optically splitting it (see the specifications of U.S. Pat. No. 3,565,907, U.S. Pat. No. 3,579,530, and British Patent No. 8,329,869). These methods either use racemic styrene oxide as a starting material or use phenacyl halide as a starting material ():

【化】 であらわされるラセミ体(±)−3−(β−ヒドロ
キシフエネチル)−2−イミノチアゾリジンをえ、
この水酸塩を塩素置換したあとさらに閉環してえ
られるラセミ体テトラミゾールを種々の光学活性
酸との塩として光学分割するという製法である。
しかしながら、この製法では光学分割の際に特殊
な光学活性酸を提供とするため、その回収工程も
含めて工程が複雑になるという問題がある。 一方、光学分割を経ずに直接レバミゾールを製
造する方法も知られており、つぎのような製法が
開示されている。 (1) 光学活性なl−(−)−フエニルエチレンジア
ミンを出発物質とする製法(テトラヘドロンレ
ターズ(Tetrahedron Letters)、1467
(1967))。 (2) 光学活性なl−(−)−1−フエニルアジリジ
ンを出発物質とする製法(フランス特許第2224
−475号明細書参照)。 (3) フエナシルハライドおよび2−エタノールア
ミンを出発物質とし、途中で不斉還元を経る製
法(米国特許第4314066号および同第4166824号
各明細書参照)。 (1)の方法では、製造途中で副生成物として式
():
Racemic (±)-3-(β-hydroxyphenethyl)-2-iminothiazolidine represented by
This production method involves substituting this hydroxyl salt with chlorine and then ring-closing the resulting racemic tetramisole, which is optically resolved as a salt with various optically active acids.
However, since this production method requires a special optically active acid to be provided during optical resolution, there is a problem in that the steps including the recovery step are complicated. On the other hand, a method for directly producing levamisole without optical resolution is also known, and the following production method has been disclosed. (1) Production method using optically active l-(-)-phenylethylenediamine as a starting material (Tetrahedron Letters, 1467
(1967)). (2) Production method using optically active l-(-)-1-phenylaziridine as a starting material (French Patent No. 2224
-See specification No. 475). (3) A production method using phenacyl halide and 2-ethanolamine as starting materials and undergoing asymmetric reduction during the process (see the specifications of US Pat. No. 4,314,066 and US Pat. No. 4,166,824). In method (1), during production, the by-product is produced by the formula ():

【化】 であらわされるイソレバミゾールを生じるため目
的とするレバミゾールの収率が低くなるという問
題がある。(2)の方法では原料のl−(−)−フエニ
ルアジリジンの合成が容易でないため工業的な生
産方法とはいえない。(3)の方法では、不斉還元の
際の不斉性が劣るという問題がある。 このように、光学活性体を出発原料として行な
う方法で比較的安価に、しかも光学収率よくレバ
ミゾールのえられる方法は知られていない。 本発明者らは、レバミゾールの合成中間体とし
て用いうる式()であらわされる光学活性なS−
(−)−3−(β−ヒドロキシフエネチル)−2−イ
ミノチアゾリジンを高光学純度および高収率で取
得する方法をすでに確立している(特願昭61−
27084号)。そこで、さらにこの光学活性化合物
()を用いて高光学純度のレバミゾールを高収率
で容易に合成する方法について鋭意研究を重ねて
きた。 一般に不斉炭素原子に結合した水酸基をアミノ
基で置換するばあい、 (1) 水酸基を直接アミノ基で置換する方法、 (2) 間接的に、水酸基をハロゲン原子、スルホニ
ルオキシ基、硫酸エステル基またはリン酸エス
テル基などに置き換えたのち、さらにアミノ基
で置換する方法 が用いられる。(1)の方法は工業的には触媒存在下
に行なわれるばあいが多く、途中脱水素反応が起
り、アルデヒドまたはケトンを経てアミノ化が進
むと一般的にいわれており、したがつてラセミ化
しやすいことから光学純度を維持するという点か
らは有効な方法とはいい難い。したがつて(2)の方
法を用いるわけであるが、本発明が出発原料とす
る化合物()は同じ分子内にアミノ基とイミノ基
とを有する特殊なタイプのアルコールであり、そ
の光学純度をほとんんど損うことなくハロゲン置
換した例は知られていない。とくに工業的レベル
で考えたばあい塩素置換が有効であるが、そのよ
うな例ももちろん知られていない。ラセミ体の化
合物()の塩の塩素置換反応が知られている(米
国特許第4107170号および同第3679696号各明細書
参照)のみである。また式():
There is a problem in that the yield of the desired levamisole is low because isolebamisole represented by the following formula is produced. Method (2) cannot be said to be an industrial production method because it is not easy to synthesize l-(-)-phenylaziridine as a raw material. Method (3) has the problem of poor asymmetry during asymmetric reduction. As described above, there is no known method for obtaining levamisole at a relatively low cost and with good optical yield by using an optically active substance as a starting material. The present inventors have discovered an optically active S-
We have already established a method for obtaining (-)-3-(β-hydroxyphenethyl)-2-iminothiazolidine with high optical purity and high yield (Patent application 1983-
No. 27084). Therefore, we have continued to conduct intensive research on a method for easily synthesizing levamisole with high optical purity in high yield using this optically active compound (2). Generally, when replacing a hydroxyl group bonded to an asymmetric carbon atom with an amino group, there are two methods: (1) directly replacing the hydroxyl group with an amino group, (2) indirectly replacing the hydroxyl group with a halogen atom, sulfonyloxy group, or sulfuric acid ester group. Alternatively, a method of replacing with a phosphate group or the like and then further substituting with an amino group is used. Method (1) is often carried out industrially in the presence of a catalyst, and it is generally said that a dehydrogenation reaction occurs during the process, and amination proceeds via an aldehyde or ketone, thus causing racemization. Since this method is easy to use, it cannot be said to be an effective method from the viewpoint of maintaining optical purity. Therefore, method (2) is used, but the compound () used as the starting material of the present invention is a special type of alcohol that has an amino group and an imino group in the same molecule, and its optical purity is There are no known examples of halogen substitution with almost no damage. Particularly when considered on an industrial level, chlorine substitution is effective, but such an example is of course unknown. The only known reaction is a chlorination reaction of a salt of racemic compound (2) (see US Pat. No. 4,107,170 and US Pat. No. 3,679,696). Also formula ():

【化】 であらわされる化合物およびその塩をラセミ化を
伴わずに分子内のイミノ基で塩素の置換を行なう
と同時に閉環し、式()であらわされるレバミゾ
ールをえたという例も知られていない。 化合物()は塩素置換の対象となる水酸基が反
応性の高いベンジル位にあり、通常安定なベンジ
ルカチオンが形成されやすいためトラセミ化が起
こりやすい。それゆえ、いかにしてラセミ化を抑
えるかが重要なポイントであつた。また反応中心
がベンジル位であるために、フエニル基との共役
で安定化するという要因で生成し易い式():
There is also no known example in which levamisole represented by the formula () was obtained by simultaneously ring-closing the compound represented by the formula (I) and its salt without racemization by replacing chlorine with an imino group in the molecule. In compound (), the hydroxyl group to be replaced with chlorine is located at the highly reactive benzyl position, and a normally stable benzyl cation is likely to be formed, so torasemization is likely to occur. Therefore, how to suppress racemization was an important point. In addition, since the reaction center is at the benzyl position, it is stabilized by conjugation with the phenyl group, so it is easy to form the formula ():

〔問題点を解決するための方法〕[Method for solving problems]

本発明者らは、まず塩素置換工程に立体選択性
を持たせ、かつレバミゾールを安価に製造するこ
とを目指して塩素化試剤として塩化チオニルを用
いることに着目し、該試剤による化合物()およ
びその塩の水酸基の立体選択的塩素置換反応を追
求した。その結果、つぎに示す注目すべき事実を
見出し本発明を完成するに至つた。 すなわち化合物()のS−(−)−3−(β−ヒ
ドロキシフエネチル)−2−イミノチアゾリジン
と塩化チオニルとの反応は立体反転が優先して起
る塩素置換反応であり、とくに化合物()の塩酸
塩においてその傾向は顕著である。また本反応を
低極性の有機溶剤中で行なうことにより立体反転
が一層優先しておこること、すなわち最終目的物
のレバミゾールの光学収率を向上させることが可
能となつた。さらに本反応で有機塩素を併用すれ
ばかなりの反応時間の短縮が可能となり、有機溶
剤の選択によつては光学純度の向上が可能となつ
た。 第二段階の環化脱塩化水素化工程では、目的化
合物のレバミゾールがアルカリ条件下でラセミ化
しやすいといわれているにもかかわらず、強アル
カリ条件下に加熱を行なつてもほとんどラセミ化
を起さずに環化を行なえるという事実が見出され
た。 以下、本発明についてさらに詳細に説明する。 〔実施例〕 本発明は、式()であらわされる光学活性S−
(−)−3−(β−ヒドロキシフエネールエチル)−
2−イミノチアゾリジンまたはその塩を出発物質
として、 (1) その水酸基の塩素置換工程と (2) その塩素置換体の環化脱塩化水素工程 との2工程からなる式()であらわされるレバミ
ゾールを製造する方法に関する。 式()であらわされる(S)配置の化合物()は、
ハロゲン化フエナシルの微生物還元反応によりえ
られるスチレンクロルヒドリンを用いる方法(特
願昭61−27084号)によつて光学純度よく調製す
ることができる。 本発明の出発物質としては、化合物()または
その塩が用いられる。塩としては、塩酸塩、p−
トルエンスルホン酸塩、硫酸塩、過塩素酸塩など
が用いられるが、塩酸塩が好ましい。化合物()
の塩は、叙上の酸を含む有機溶剤中で化合物()
を処理することによりラセミ化を伴わずに容易に
取得することができる。 化合物()の水酸基の塩素置換工程における塩
素化試剤としては塩化チオニル、三塩化リン、五
塩化リン、オキシ塩化リン、塩化スルフリルなど
があげられるが、塩化チオニルが好ましい。 該塩素置換工程において、高い光学純度を維持
するためにま用いは有機溶剤の選択が重要な因子
である(比較例1参照)。有機溶剤としては、低
極性溶剤または炭素数が2以下のハロゲン化炭化
水素がレバミゾールを光学純度よくうるために好
ましい。低極性溶剤としては炭素数5〜12の炭化
水素が採用でき、好ましくはデカン、オクタン、
イソオクタン、ヘキサン、ペンタンなどの飽和炭
化水素類が選択できる。ハロゲン化炭化水素類と
しては四塩化炭素、塩化メチレンなどが好まし
い。また、該塩素置換工程に有機塩基をさらに共
存させることは反応速度を高め目的生成物の収率
を向上させる。塩化メチレンを溶剤とするばあい
には、有機塩基を共存させることにより光学純度
が向上する。 共存させる有機塩基としては、含窒素有機化合
物、たとえばピリジンまたはピコリン、ルチジ
ン、コリンなどの置換ピリジン類、キノリン類、
イミダゾールまたは置換イミダゾール類、インド
ール類、アニリンまたはその置換体があげられ
る。ピリジンもしくは置換ピリジン類、イミダゾ
ールまたはアニリンが好ましい。 塩素置換工程の反応温度は−40〜70℃、好まし
くは−20〜55℃である。塩素化試剤の使用量は出
発物質の化合物()またはその塩に対して1〜10
倍モル当量程度であればよく、好ましくは1〜7
倍モル当量、さらに好ましくは1〜5倍モル当量
である。 有機塩基の使用量は出発物質の化合物()また
はその塩に対して、0.01〜1.0倍モル当量であり、
好ましくは0.05〜0.2倍モル当量である。 塩素置換工程でえられた塩素化物の塩酸塩(化
合物())は、さらにアルカリ処理して環化脱塩
素化を行なうことにより目的物であるレバミゾー
ルを製造することができる。 用いるアルカリとしては、アンモニア水、アル
カリ金属もしくはアルカリ土類金属の水酸化物、
炭酸塩もしくは酢酸塩などの水溶液もしくはメタ
ノール溶液などが用いられるが、反応溶剤として
は有機溶剤系ではメタノール、イソプロパノール
などが好ましい。水溶液中での反応のばあいに
は、目的物を水とは混合しにくい有機溶剤によつ
て抽出分離することができる。また環化脱塩素化
工程を水と有機溶剤の二層系で行なうことも可能
であり、いわゆる相間移動触媒反応を採用でき
る。 アルカリの濃度としては0.1規定から10規定の
溶液の使用が可能であり、使用量はたとえば塩素
化物の塩酸塩(化合物())に対して1〜20モル
当量、好ましくは1〜10モル当量、さらに好まし
くは2〜5モル当量である。 この反応は室温下では10〜20時間行ないうる
が、50〜90℃に加熱すれば光学純度の低下もなく
反応時間を短縮することが可能である。このよう
にしてえられた光学純度の高いレバミゾールは、
必要なら再結晶して純品のレバミゾールを単離す
ることもできる。 つぎに製造例、実施例および比較例を用いて本
発明をさらに詳しく説明するが、本発明はもとよ
りこれらに限られるものではない。 なお、以下の実施例において化合物()の塩は
IR、1H−NMRおよび中和滴定により同定確認し
た。また総収率は重量分析によつた。光学純度は
純品の比旋光度との比較から求めた。また塩素化
成績体の塩は、IR、 1H−NMRにより同定確認
した。 一方、レバミゾールはカラムクロマトグラフイ
ーにより単離したものを1H−NMRにより同定確
認した。さらに、このように単離したものの比旋
光度を求め、その純品の比旋光度との比較から光
学純度を求めた。収率は、高速液体クロマトグラ
フイー(カラム:日本分光工業(株)製FINEPAK
SIL C18、移動相:0.1Mトリエチルアミン酢酸
塩水溶液:アセトニトリル=25:1、検出:UV
(λ=254nm))により求めた。 製造例 1 S−(−)−3−(β−ヒドロキシフエネチル)−
2−イミノチアゾリジンの製法 光学活性(S)−スチレンオキサイド(〔α〕25 D=+
22.3゜(C=1、クロロホルム)18.9g、エチレン
イミン20.4g、KOH0.22gおよび水158μを混
合し、撹拌しながら65℃で6時間反応させた。反
応後エチレンイミンを蒸留により回収し、β−(S)
−1−(β−ヒドロキシフエネチル)アジリジン
17.5gを含む粗反応生成物をえた。この粗反応生
成物の比旋光度は〔α〕25 D=+28.3゜(C=0.42、エ
タノール)であつた。 チオ尿素13.7gを水150mlに溶解し、氷冷下に
濃硫酸9.9mlを添加し、ついで叙上の粗反応生成
物を滴下し、30分間攪拌したのち、100℃で3時
間反応させた。反応終了後、濃アンモニア水によ
りPH9.0とし、クロロホルムで抽出した。溶媒を
留去し、えられた粗反応生成物をイソプロパノー
ルにより結晶化させ、15.5gのS−(−)−3−
(β−ヒドロキシフエネチル)−2−イミノチアゾ
リジンをえた。この化合物は融点が127〜129℃で
あり、比旋光度〔α〕25 D=+123゜(C=0.64、クロ
ロホルム)であつた。 実施例 1 S−(−)−3−(β−ヒドロキシフエネチル)−
2−イミノチアゾリジン塩酸塩の製造 製造例1でえたS−(−)−3−(β−ヒドロキ
シフエネチル)−2−イミノチアゾリジン4.71g
(21.2ミリモル、〔α〕25 D=+123゜(C=1.0、
CHCl3))のイソプロパノール溶液20ml中に、イ
ソプロパノールに塩化水素ガスを吹き込んで調製
した6.34規定の塩酸−イソプロパノール溶液15ml
を加え、室温で6時間反応させた。反応混合物を
濾過し、エーテル洗浄したのち、えられた固体を
40℃で減圧乾燥し、白色固体5.02g(総収率:92
%、〔α〕25 D=+70.3゜(C=1.0、MeOH)、光学純
度:93%e.e.)をえた。 イソプロパノール中から再結晶を行なつた。 実施例 2 S−(−)−3−(β−ヒドロキシフエネチル)−
2−イミノチアゾリジンの過塩素酸塩の製造 実施例1と同様にして、製造例1でえたS−
(−)−3−(β−ヒドロキシフエネチル)−2−イ
ミノチアゾリジンと過塩素酸塩とをメタノール中
で等モル量反応させ、イソプロパノール中から再
結晶を行なつた。総収率は75%、比旋光度は
〔α〕25 D=+59.7゜(C=1.20、MeOH)、光学純度は
96%e.eであつた。 実施例3〜18および比較例 実施例3〜5および比較例では溶媒2mlに実施
例1でえたS−(−)−3−(β−ヒドロキシフエ
ネチル)−2−イミノチアゾリジン塩酸塩1ミリ
モルを加え、塩化チオニル2ミリモルを攪拌下添
加し室温で反応させた。 実施例6〜13では溶媒2mlに有機塩基0.1ミリ
モルを加え、ついで塩化チオニルを添加したのち
実施例1でえた(S)−(−)−3−(β−ヒドロキシ
フエネチル)−2−イミノチアゾリジン塩酸塩を
加え反応させた。 実施例14〜18では溶媒2mlに実施例1でえた(S)
−(−)−3−(β−ヒドロキシフエネチル)−2−
イミノチアゾリジン塩酸塩を加え、ついで塩化チ
オニルを添加したのち、ただちに有機塩基を加え
反応させた。 いづれの実施例においても反応終了後、濾過、
減圧乾燥したのちメタノール中3倍モル当量の
NaOHで処理してレバミゾールをえた。結果を
第1表に示す。
The present inventors first focused on the use of thionyl chloride as a chlorination reagent with the aim of imparting stereoselectivity to the chlorination process and producing levamisole at low cost. We pursued stereoselective chlorination reactions of hydroxyl groups in salts. As a result, we discovered the following remarkable fact and completed the present invention. That is, the reaction between S-(-)-3-(β-hydroxyphenethyl)-2-iminothiazolidine of compound () and thionyl chloride is a chlorine substitution reaction in which stereoinversion occurs preferentially. This tendency is remarkable for the hydrochloride of ). Furthermore, by carrying out this reaction in a low polarity organic solvent, it became possible to more preferentially carry out stereoinversion, that is, to improve the optical yield of the final target product, levamisole. Furthermore, if organic chlorine is used in this reaction, the reaction time can be considerably shortened, and depending on the selection of the organic solvent, it is possible to improve the optical purity. In the second step, cyclization dehydrochlorination step, although it is said that the target compound levamisole is likely to racemize under alkaline conditions, racemization hardly occurs even when heated under strongly alkaline conditions. It was discovered that cyclization can be performed without The present invention will be explained in more detail below. [Example] The present invention provides an optically active S-
(-)-3-(β-hydroxyphenylethyl)-
Using 2-iminothiazolidine or a salt thereof as a starting material, levamisole represented by the formula () consists of two steps: (1) chlorination of the hydroxyl group and (2) cyclodehydrochlorination of the chlorine-substituted product. Relating to a method of manufacturing. The compound () with the (S) configuration represented by the formula () is
It can be prepared with high optical purity by a method using styrene chlorohydrin obtained by microbial reduction reaction of phenacyl halide (Japanese Patent Application No. 27084/1984). Compound () or a salt thereof is used as a starting material in the present invention. Salts include hydrochloride, p-
Toluenesulfonate, sulfate, perchlorate, etc. are used, but hydrochloride is preferred. Compound()
The salt of the compound () in an organic solvent containing the above acid
can be easily obtained without racemization by processing. Examples of the chlorination reagent in the chlorination step of the hydroxyl group of compound () include thionyl chloride, phosphorus trichloride, phosphorus pentachloride, phosphorus oxychloride, and sulfuryl chloride, with thionyl chloride being preferred. In the chlorination step, the selection of the organic solvent used is an important factor in maintaining high optical purity (see Comparative Example 1). As the organic solvent, a low polarity solvent or a halogenated hydrocarbon having 2 or less carbon atoms is preferable because levamisole can be obtained with good optical purity. Hydrocarbons having 5 to 12 carbon atoms can be used as the low polar solvent, preferably decane, octane,
Saturated hydrocarbons such as isooctane, hexane, and pentane can be selected. Preferred halogenated hydrocarbons include carbon tetrachloride and methylene chloride. Furthermore, the coexistence of an organic base in the chlorination step increases the reaction rate and improves the yield of the desired product. When methylene chloride is used as a solvent, optical purity is improved by coexisting an organic base. Examples of the organic base to coexist include nitrogen-containing organic compounds such as pyridine or substituted pyridines such as picoline, lutidine, and choline, quinolines,
Examples include imidazole or substituted imidazoles, indoles, aniline or substituted products thereof. Preference is given to pyridine or substituted pyridines, imidazole or aniline. The reaction temperature in the chlorination step is -40 to 70°C, preferably -20 to 55°C. The amount of chlorinating reagent used is 1 to 10% of the starting compound () or its salt.
It may be about twice the molar equivalent, preferably 1 to 7 times the molar equivalent.
It is twice the molar equivalent, more preferably 1 to 5 times the molar equivalent. The amount of the organic base used is 0.01 to 1.0 times the molar equivalent of the starting compound () or its salt,
Preferably it is 0.05 to 0.2 times the molar equivalent. The chlorinated hydrochloride (compound ()) obtained in the chlorination step can be further treated with an alkali to perform cyclodechlorination to produce the target product, levamisole. The alkalis used include ammonia water, alkali metal or alkaline earth metal hydroxides,
An aqueous solution or a methanol solution of carbonate or acetate is used, and as a reaction solvent, methanol, isopropanol, etc. are preferable as an organic solvent. In the case of a reaction in an aqueous solution, the target product can be extracted and separated using an organic solvent that is difficult to mix with water. It is also possible to carry out the cyclization and dechlorination step in a two-layer system of water and an organic solvent, and a so-called phase transfer catalytic reaction can be employed. It is possible to use a solution with an alkali concentration of 0.1N to 10N, and the amount used is, for example, 1 to 20 molar equivalents, preferably 1 to 10 molar equivalents, relative to the hydrochloride of the chloride (compound ()). More preferably, it is 2 to 5 molar equivalents. This reaction can be carried out for 10 to 20 hours at room temperature, but by heating to 50 to 90°C, the reaction time can be shortened without deteriorating the optical purity. Levamisole with high optical purity obtained in this way is
If necessary, pure levamisole can be isolated by recrystallization. Next, the present invention will be explained in more detail using production examples, examples, and comparative examples, but the present invention is not limited to these. In addition, in the following examples, the salt of compound () is
Identification was confirmed by IR, 1 H-NMR, and neutralization titration. The total yield was determined by gravimetric analysis. Optical purity was determined by comparison with the specific optical rotation of the pure product. In addition, the identity of the salt of the chlorinated product was confirmed by IR and 1 H-NMR. On the other hand, levamisole was isolated by column chromatography and its identity was confirmed by 1 H-NMR. Furthermore, the specific rotation of the product thus isolated was determined, and the optical purity was determined by comparing it with the specific rotation of the pure product. The yield is calculated using high-performance liquid chromatography (column: FINEPAK manufactured by JASCO Corporation).
SIL C18, mobile phase: 0.1M triethylamine acetate aqueous solution: acetonitrile = 25:1, detection: UV
(λ=254nm)). Production example 1 S-(-)-3-(β-hydroxyphenethyl)-
Production method of 2-iminothiazolidine Optically active (S)-styrene oxide ([α] 25 D = +
18.9 g of 22.3° (C=1, chloroform), 20.4 g of ethyleneimine, 0.22 g of KOH and 158 μm of water were mixed and reacted at 65° C. for 6 hours with stirring. After the reaction, ethyleneimine is recovered by distillation and β-(S)
-1-(β-hydroxyphenethyl)aziridine
A crude reaction product containing 17.5 g was obtained. The specific optical rotation of this crude reaction product was [α] 25 D =+28.3° (C=0.42, ethanol). 13.7 g of thiourea was dissolved in 150 ml of water, 9.9 ml of concentrated sulfuric acid was added under ice-cooling, and then the above crude reaction product was added dropwise, stirred for 30 minutes, and then reacted at 100°C for 3 hours. After the reaction was completed, the pH was adjusted to 9.0 with concentrated aqueous ammonia, and the mixture was extracted with chloroform. The solvent was distilled off, and the obtained crude reaction product was crystallized from isopropanol to give 15.5 g of S-(-)-3-
(β-hydroxyphenethyl)-2-iminothiazolidine was obtained. This compound had a melting point of 127-129°C and a specific optical rotation [α] 25 D =+123° (C = 0.64, chloroform). Example 1 S-(-)-3-(β-hydroxyphenethyl)-
Production of 2-iminothiazolidine hydrochloride 4.71 g of S-(-)-3-(β-hydroxyphenethyl)-2-iminothiazolidine obtained in Production Example 1
(21.2 mmol, [α] 25 D = +123° (C = 1.0,
15 ml of a 6.34N hydrochloric acid-isopropanol solution prepared by blowing hydrogen chloride gas into isopropanol into 20 ml of an isopropanol solution of CHCl 3 ))
was added and reacted at room temperature for 6 hours. After filtering the reaction mixture and washing with ether, the resulting solid was
Dry under reduced pressure at 40°C to obtain 5.02 g of white solid (total yield: 92
%, [α] 25 D = +70.3° (C = 1.0, MeOH), optical purity: 93%ee). Recrystallization was carried out from isopropanol. Example 2 S-(-)-3-(β-hydroxyphenethyl)-
Production of perchlorate of 2-iminothiazolidine S- obtained in Production Example 1 in the same manner as in Example 1
Equimolar amounts of (-)-3-(β-hydroxyphenethyl)-2-iminothiazolidine and perchlorate were reacted in methanol, and recrystallization was performed from isopropanol. The total yield was 75%, the specific optical rotation was [α] 25 D = +59.7° (C = 1.20, MeOH), and the optical purity was
It was 96%ee. Examples 3 to 18 and Comparative Examples In Examples 3 to 5 and Comparative Examples, 1 mmol of S-(-)-3-(β-hydroxyphenethyl)-2-iminothiazolidine hydrochloride obtained in Example 1 was added to 2 ml of solvent. was added, and 2 mmol of thionyl chloride was added with stirring, followed by reaction at room temperature. In Examples 6 to 13, 0.1 mmol of an organic base was added to 2 ml of solvent, and then thionyl chloride was added, and then the (S)-(-)-3-(β-hydroxyphenethyl)-2-imino compound obtained in Example 1 was prepared. Thiazolidine hydrochloride was added and reacted. In Examples 14 to 18, the (S) obtained in Example 1 was added to 2 ml of the solvent.
-(-)-3-(β-hydroxyphenethyl)-2-
Iminothiazolidine hydrochloride was added, then thionyl chloride was added, and an organic base was immediately added to react. In all Examples, after the completion of the reaction, filtration,
After drying under reduced pressure, 3 times molar equivalent of
Levamisole was obtained by treatment with NaOH. The results are shown in Table 1.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、高光学純度のレバミゾール
()を容易にかつ高収率で製造することができ
る。
According to the present invention, levamisole () with high optical purity can be easily produced in high yield.

Claims (1)

【特許請求の範囲】 1 式(): 【化】 であらわされるS−(−)−3−(β−ヒドロキシ
フエネチル)−2−イミノチアゾリジンまたはそ
の塩を有機溶剤中で塩素化試剤と反応させ、つい
でアルカリ処理することを特徴とする式(): 【化】 であらわされるS−(−)−6−フエニル −2,
3,5,6−テトラヒドロイミダゾ〔2,1−
b〕チアゾールの製法。 2 有機溶剤中での式()であらわされる化合物
と塩素化試剤との反応が有機塩基に存在下で行な
われる特許請求の範囲第1項記載の製法。 3 有機溶剤がハロゲン化物である特許請求の範
囲第1項または第2項記載の製法。 4 ハロゲン化物が四塩化炭素もしくは塩化メチ
レンである特許請求の範囲第3項記載の製法。 5 有機溶剤が炭素数5〜12の炭化水素類であ特
許請求の範囲第1項または第2項記載の製法。 6 炭化水素類が飽和炭化水素である特許請求の
範囲第5項記載の製法。 7 飽和炭化水素がn−ペンタン、n−ヘキサ
ン、n−オクタン、イソオクタンまたはn−デカ
ンである特許請求の範囲第6項記載の製法。 8 有機塩基がアミン類である特許請求の範囲第
2項記載の製法。 9 有機塩基が含窒素複素環化合物である特許請
求の範囲第2項または第8項記載の製法。 10 含窒素複素環化合物がピリジンもしくはそ
の誘導体またはイミダゾールもしくはその誘導体
である特許請求の範囲第9項記載の製法。 11 塩素化試剤が塩化チオニルである特許請求
の範囲第1項、第2項、第3項、第4項、第5
項、第6項、第7項、第8項、第9項または第1
0項記載の製法。 12 S−(−)−3−(β−ヒドロキシフエネチ
ル)−2−イミノチアゾリジンの塩が塩酸塩であ
る特許請求の範囲第1項、第2項、第3項、第4
項、第5項、第6項、第7項、第8項、第9項、
第10項または第11項記載の製法。 13 S−(−)−3−(β−ヒドロキシフエネチ
ル)−2−イミノチアゾリジンの塩が過塩素酸塩、
硫酸塩またはp−トルエンスルホン酸塩である特
許請求の範囲第1項、第2項、第3項、第4項、
第5項、第6項、第7項、第8項、第9項、第1
0項または第11項記載の製法。
[Claims] 1 Formula (): S-(-)-3-(β-hydroxyphenethyl)-2-iminothiazolidine or a salt thereof is treated with a chlorinating reagent in an organic solvent. Formula () characterized by reaction and then alkali treatment: S-(-)-6-phenyl-2,
3,5,6-tetrahydroimidazo[2,1-
b] Method for producing thiazole. 2. The manufacturing method according to claim 1, wherein the reaction between the compound represented by formula () and the chlorinating agent in an organic solvent is carried out in the presence of an organic base. 3. The manufacturing method according to claim 1 or 2, wherein the organic solvent is a halide. 4. The production method according to claim 3, wherein the halide is carbon tetrachloride or methylene chloride. 5. The method according to claim 1 or 2, wherein the organic solvent is a hydrocarbon having 5 to 12 carbon atoms. 6. The production method according to claim 5, wherein the hydrocarbons are saturated hydrocarbons. 7. The method according to claim 6, wherein the saturated hydrocarbon is n-pentane, n-hexane, n-octane, isooctane or n-decane. 8. The production method according to claim 2, wherein the organic base is an amine. 9. The production method according to claim 2 or 8, wherein the organic base is a nitrogen-containing heterocyclic compound. 10. The production method according to claim 9, wherein the nitrogen-containing heterocyclic compound is pyridine or a derivative thereof, or imidazole or a derivative thereof. 11 Claims 1, 2, 3, 4, and 5 in which the chlorination agent is thionyl chloride
Section 6, Section 7, Section 8, Section 9 or Section 1
The manufacturing method described in item 0. 12 Claims 1, 2, 3, and 4, wherein the salt of S-(-)-3-(β-hydroxyphenethyl)-2-iminothiazolidine is a hydrochloride.
Section, Section 5, Section 6, Section 7, Section 8, Section 9,
The manufacturing method according to item 10 or 11. 13 S-(-)-3-(β-hydroxyphenethyl)-2-iminothiazolidine salt is perchlorate,
Claims 1, 2, 3, 4, which are sulfates or p-toluenesulfonates;
Section 5, Section 6, Section 7, Section 8, Section 9, Section 1
The manufacturing method according to item 0 or item 11.
JP61080488A 1986-04-08 1986-04-08 Production of s-(-)-6-phenyl-2,3,5,6-tetrahydroimidazo(2,1-b)thiazole Granted JPS62238293A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61080488A JPS62238293A (en) 1986-04-08 1986-04-08 Production of s-(-)-6-phenyl-2,3,5,6-tetrahydroimidazo(2,1-b)thiazole

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61080488A JPS62238293A (en) 1986-04-08 1986-04-08 Production of s-(-)-6-phenyl-2,3,5,6-tetrahydroimidazo(2,1-b)thiazole

Publications (2)

Publication Number Publication Date
JPS62238293A JPS62238293A (en) 1987-10-19
JPH0586795B2 true JPH0586795B2 (en) 1993-12-14

Family

ID=13719679

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61080488A Granted JPS62238293A (en) 1986-04-08 1986-04-08 Production of s-(-)-6-phenyl-2,3,5,6-tetrahydroimidazo(2,1-b)thiazole

Country Status (1)

Country Link
JP (1) JPS62238293A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114315753B (en) * 2020-09-30 2023-11-21 烟台药物研究所 Compound, and synthetic method and application thereof

Also Published As

Publication number Publication date
JPS62238293A (en) 1987-10-19

Similar Documents

Publication Publication Date Title
KR100283066B1 (en) How to prepare biphenyl derivative
JPH0586795B2 (en)
EP0092117B1 (en) Process for producing chloronicotinic acid compounds
RU2228929C2 (en) Method for preparing (3s)-3-amino-3-pyridylpropionic acid and intermediate substance
JP2001521498A (en) Method for producing O- (3-amino-2-hydroxy-propyl) -hydroxymic acid halide
JP2000351776A (en) Production of optically active homocysteinethiolactone salt and its intermediate
JPS589103B2 (en) Process for producing intermediates useful for producing tetramisole and its acid addition salts
CN109293631B (en) Preparation method of 3-amino-N- (2, 6-dioxo-3-piperidyl) -phthalimide compound
CN111689970A (en) Tetrahydroimidazo [1,5-a ] quinoxaline-4 (5H) -one compound and preparation method thereof
US5760237A (en) Synthesis of l-azatyrosine using pseudoephedrine as a chiral auxiliary
JPS60190760A (en) Pyrrolidine derivative and its production
SU1217253A3 (en) Method of producing pyrbutyrol dihydrochloride
JPS6287577A (en) Optically active 3-methylbenzoxazine derivative and production thereof
JPS635037A (en) Production of 2,3-dichloro-1-propene
EP0120094B1 (en) Azetidinone compounds
JP5080050B2 (en) Method for producing optically active piperazine compound
FI76787B (en) FOERFARANDE FOER FRAMSTAELLNING AV 5- (CYAN ELLER KARBANYL) - / 3-4'-BIPYRIDIN / -6 (1H) -ON OCH IMINIUMSALT TILL ANVAENDNING SOM MELLANPRODUKT I FOERFARANDET.
JPS6024187B2 (en) Method for producing β-lactam derivatives
EP0791583B1 (en) Process for producing 3-(aminomethyl)-6-chloropyridines
WO1998025906A1 (en) Process for producing halogenated heteroaryl compounds
US6268503B1 (en) 2-phenylpyridine derivative and production method thereof
JPH09194461A (en) Production of 3-(aminomethyl)-6-chloropyridine
JPWO2020129877A1 (en) Isoquinoline sulfonyl chloride acid addition salt and its production method
SU1439101A1 (en) Method of producing 4-(1,3-dioxane-2-yl)guinaldine
JPS6058755B2 (en) 1,4-dihydro-4-oxonicotinic acids