JPH0586454B2 - - Google Patents

Info

Publication number
JPH0586454B2
JPH0586454B2 JP23040385A JP23040385A JPH0586454B2 JP H0586454 B2 JPH0586454 B2 JP H0586454B2 JP 23040385 A JP23040385 A JP 23040385A JP 23040385 A JP23040385 A JP 23040385A JP H0586454 B2 JPH0586454 B2 JP H0586454B2
Authority
JP
Japan
Prior art keywords
less
electrical steel
punching
punchability
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP23040385A
Other languages
Japanese (ja)
Other versions
JPS6289816A (en
Inventor
Shinichiro Katsu
Seiichi Sugisawa
Shigeki Hamamatsu
Shuji Nakai
Mamoru Toyoda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP23040385A priority Critical patent/JPS6289816A/en
Publication of JPS6289816A publication Critical patent/JPS6289816A/en
Publication of JPH0586454B2 publication Critical patent/JPH0586454B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

<産業上の利用分野> この発明は、優れた磁気特性を有する上、打抜
き性が極めて良好な電磁鋼板を製造する方法に関
するものである。 <背景技術> 一般に、電磁鋼板は各種変圧器、安定器、或い
は各種電動機等の鉄芯用材料として使用されてい
るが、近年、電気製品の小型・高性能化や省エネ
ルギー化等の観点から、磁気特性の一層優れた高
性能電磁鋼板に対する要望が高まつてきている。 一方、電磁鋼板には、変圧器や電動機の鉄芯に
成形される際に打抜き・積層の工程が施されるこ
とから、磁気特性に優れることはもちろん、良好
な打抜き性を備えていることも要求されている。 このため、従来、電磁鋼板の打抜き成形に当つ
ては、その表面にアクリル樹脂等の有機成分を主
体としたコーテイングを行うことで、電気絶縁性
の確保とともに打抜き加工のための潤滑性付与の
対策がとられていたが、電気製品の組立てに際し
積層された鉄芯を固定するために端部を溶接する
ことも行われることがあり、この場合には、溶接
中にコーテイング皮膜中の有機成分が蒸発してブ
ローホール等の溶接欠陥を発生しやすいので、必
然的にコーテイング膜厚が制限されてしまうと言
う問題があつた。 このようなことから、材料自体が優れた打抜き
性を有するような電磁鋼板の開発も強く望まれて
いたのである。 ところで、電磁鋼板の打抜き作業を続けている
と、打抜き金型が摩耗され、ポンチと、ダイスと
の間のクリアランスが次第に応がることとなつて
打抜き品の“かえり”が増大してくる。このた
め、前記“かえり”が或る値よりも大きくなると
型研磨を行う必要が生じる。従つて、電磁鋼板に
おいては、1回当りの型研磨においてより多く打
抜ける鋼板ほど打抜き性が良好であると評価され
ている。 即ち、電磁鋼板の打抜き性を向上させるには、
快削鋼にみられるように、析出物や介在物を多量
に含ませて打抜き時の鋼板の“ちぎれ性”を上げ
ることが有効とされている。 しかしながら、電磁鋼板の磁気特性を向上させ
るためには、C等の不純物元素を極力少なくする
とともに析出物や介在物等も抑えることが必要で
あるとされており、高級電磁鋼板ほど打抜き性が
劣化すると言う極めて厄介な問題が存在してい
た。 <問題点を解決するための手段> 本発明者等は、電磁鋼板の製造における上述の
如き問題点を解消し、優れた磁気特性と良好な打
抜き性とを兼備した電磁鋼板を提供すべく研究を
重ねた結果、以下に示す如き知見が得られたので
ある。即ち、 (a) 従来の電磁鋼板における常識よりもはるかに
多量のCを含有せしめた鋼を、通常の電磁鋼板
製造工程通りに熱間圧延し冷間圧延した後、こ
れに特定条件の焼鈍を施すと、鋼板素地中に粗
大グラフアイトが析出して、これが鋼板の“ち
ぎれ性”を向上するので打抜き性が格段に向上
すること、 (b) 上記のように粗大グラフアイトが析出すると
素地中の固溶Cが極めて少なくなり、しかも析
出したグラフアイトは粒成長性や磁壁の移動等
を妨げることがないので、素地をSiやAl等の
過電流損を下げるのに有効な元素を含んだフエ
ライト組織とすれば、従来の極低C系電磁鋼板
なみの磁気特性を有する電磁鋼板が得られるこ
と。 この発明は、上記知見に基づいてなされたもの
であり、 C:0.1〜1.0%(以下、成分割合を表わす%
は重量%とする)、 Si:3.5%以下 を含有し、かつ Ni:2.0%以下、 Al:1.0%以下、 Cu:1.0%以下 のうちの1種以上を含むとともに、残部がFe及
び不可避不純物から成る鋼を熱間圧延及び冷間圧
延し、その後600〜800℃で再結晶焼鈍してグラフ
アイトを析出させることによつて、優れた打抜き
性と磁気特性とを兼備した電磁鋼板を得る点、 に特徴を有するものである。 次いで、この発明の方法において素材鋼の成分
組成及び処理条件を前記の如くに数値限定した理
由を説明する。 A 素材鋼の成分組成 a C Cは所定の焼鈍によつて鋼板中に粗大グラフア
イトとして析出し、鋼板の打抜き性を向上させる
成分であるが、その含有量が0.1%未満では粗大
グラフアイトの析出が困難となつて十分な打抜き
性向上効果を確保できず、一方1.0%を越えて含
有させると熱間圧延が難かしくなることから、C
含有量は0.1〜1.0%と定めた。 b Si Siは電磁鋼板の磁気特性向上やグラフアイトの
析出促進に有効な成分であるが、その含有量が
3.5%を越えると鋼の加工性を劣化することから、
Si含有量は3.5%以下と定めた。なお、Siは極く
微量であつてもそれなりの効果を発揮するが、好
ましくは0.1%以上の含有量を確保するのが良い。 C Ni,Al,及びCu これらの成分もグラフアイトの析出促進に有効
な元素であり、極く微量の添加であつてもそれな
りの効果を発揮するので1種以上含有せしめられ
るものであるが、2.0%を越えるNi、1.0%を越え
るAl、そして1.0%を越えるCuを含有させてもグ
ラフアイト析出促進効果はそれほど顕著に向上せ
ず、経済的に好ましくないことから、Ni含有量
は2.0%以下と、Al含有量は1.0%以下と、そして
Cu含有量は1.0%以下とそれぞれ定めた。 B 再結晶焼鈍温度 この発明の方法において実施される再結晶焼鈍
は、電磁鋼板に必要な組織を確保するためのみな
らず、鋼板素地中にグラフアイトを析出させて打
抜き性の改善と固溶Cによる磁気特性劣化傾向の
防止とを図るためのものであるが、該焼鈍温度が
600℃未満であると、十分なグラフアイトの析出
が達成されずに満足できる磁気特性を安定して確
保することが困難となり、また焼鈍温度が800℃
を越えても同様であることから、再結晶焼鈍温度
は600〜800℃と定めた。 このように、前記成分系の場合には、グラフア
イト析出を兼ねた再結晶焼鈍温度として600〜800
℃が最も有効であるが、グラフアイトの析出を完
全化するためには成分に応じて均熱時間を調整す
るのが好ましい。 なお、この発明の方法で実施する熱間圧延及び
冷間圧延は通常の条件で十分であり、再結晶焼鈍
には箱焼鈍を採用するのが良い。 次に、この発明を実施例により比較例と対比し
ながら説明する。 <実施例> まず、常法(転炉溶製、造塊、分塊圧延)によ
つて第1表に示される如き成分組成の鋼スラブを
得た後、これに熱間圧延を施して2.3mm厚の熱延
コイルとし、次いでこれを酸洗してから、冷間圧
延により0.5mm厚の冷延コイルとした。 続いて、上記冷延コイルに更にグラフアイト析
出焼鈍を兼ねた再結晶焼鈍を施し、得られた電磁
鋼板についてその磁気特性並びに打抜き性を測定
<Industrial Application Field> The present invention relates to a method for producing an electrical steel sheet that has excellent magnetic properties and extremely good punchability. <Background technology> Generally, electromagnetic steel sheets are used as iron core materials for various transformers, ballasts, and various electric motors, but in recent years, from the viewpoints of downsizing, high performance, and energy saving of electrical products, There is an increasing demand for high-performance electrical steel sheets with even better magnetic properties. On the other hand, electromagnetic steel sheets undergo a punching and laminating process when being formed into the cores of transformers and electric motors, so they not only have excellent magnetic properties but also have good punchability. requested. For this reason, conventionally, when punching and forming electrical steel sheets, the surface is coated with an organic component such as acrylic resin to ensure electrical insulation and provide lubricity for the punching process. However, when assembling electrical products, the ends of the laminated iron cores are sometimes welded to secure them, and in this case, organic components in the coating film are removed during welding. Since it tends to evaporate and cause welding defects such as blowholes, there is a problem that the thickness of the coating film is inevitably limited. For this reason, there has been a strong desire to develop an electrical steel sheet whose material itself has excellent punchability. By the way, as the punching work of electromagnetic steel sheets continues, the punching die wears out, the clearance between the punch and the die gradually decreases, and the "burr" of the punched product increases. Therefore, when the "burr" becomes larger than a certain value, it becomes necessary to perform mold polishing. Therefore, in electromagnetic steel sheets, it is evaluated that a steel sheet that can be punched out more in one round of die polishing has better punching properties. In other words, to improve the punchability of electrical steel sheets,
As seen in free-cutting steel, it is said to be effective to increase the "tearability" of steel sheets during punching by including large amounts of precipitates and inclusions. However, in order to improve the magnetic properties of electrical steel sheets, it is necessary to reduce impurity elements such as C as much as possible, as well as suppress precipitates and inclusions, and the higher the quality of the electrical steel sheets, the worse the punching properties. There was an extremely troublesome problem. <Means for Solving the Problems> The present inventors have conducted research in order to solve the above-mentioned problems in the production of electrical steel sheets and to provide electrical steel sheets that have both excellent magnetic properties and good punchability. As a result of repeated efforts, the following findings were obtained. That is, (a) Steel containing a much larger amount of C than is commonly known in conventional electrical steel sheets is hot-rolled and cold-rolled in accordance with the normal electrical steel sheet manufacturing process, and then annealed under specific conditions. (b) When coarse graphite precipitates as described above, coarse graphite precipitates in the steel sheet substrate, and this improves the "tearability" of the steel sheet, resulting in a marked improvement in punchability. Since the amount of solid solute C is extremely small, and the precipitated graphite does not interfere with grain growth or movement of domain walls, the base material is made of silicon containing elements such as Si and Al that are effective in reducing overcurrent loss. If a ferrite structure is used, an electromagnetic steel sheet with magnetic properties comparable to conventional ultra-low C electromagnetic steel sheets can be obtained. This invention was made based on the above knowledge, and C: 0.1 to 1.0% (hereinafter, % representing the component ratio).
), Si: 3.5% or less, Ni: 2.0% or less, Al: 1.0% or less, Cu: 1.0% or less, and the balance is Fe and unavoidable impurities. An electrical steel sheet having both excellent punchability and magnetic properties can be obtained by hot rolling and cold rolling a steel made of It has the following characteristics. Next, the reason why the composition and treatment conditions of the steel material are numerically limited as described above in the method of the present invention will be explained. A Composition of material steel a C C is a component that precipitates as coarse graphite in the steel plate by prescribed annealing and improves the punchability of the steel plate, but if its content is less than 0.1%, coarse graphite will form. Precipitation becomes difficult and a sufficient effect of improving punching property cannot be secured, and on the other hand, if the content exceeds 1.0%, hot rolling becomes difficult.
The content was set at 0.1-1.0%. b Si Si is an effective component for improving the magnetic properties of electrical steel sheets and promoting the precipitation of graphite, but its content is
If it exceeds 3.5%, the workability of steel deteriorates, so
The Si content was set at 3.5% or less. Although Si exhibits a certain effect even in a very small amount, it is preferable to ensure a content of 0.1% or more. C Ni, Al, and Cu These components are also effective elements for promoting the precipitation of graphite, and even if added in a very small amount, they exhibit a certain effect, so one or more of them can be included. Even if more than 2.0% of Ni, more than 1.0% of Al, and more than 1.0% of Cu are contained, the effect of promoting graphite precipitation is not significantly improved, and this is not economically preferable, so the Ni content is 2.0%. and the Al content is 1.0% or less, and
The Cu content was set at 1.0% or less. B Recrystallization annealing temperature The recrystallization annealing carried out in the method of this invention is not only used to ensure the necessary structure for the electrical steel sheet, but also to improve punchability and solid solution C by precipitating graphite in the steel sheet matrix. This is to prevent the tendency of deterioration of magnetic properties due to
If the annealing temperature is less than 600℃, sufficient graphite precipitation will not be achieved and it will be difficult to stably secure satisfactory magnetic properties, and if the annealing temperature is 800℃.
Since the same result occurs even when the temperature exceeds 100°C, the recrystallization annealing temperature was set at 600 to 800°C. In this way, in the case of the above component system, the recrystallization annealing temperature that also serves as graphite precipitation is 600 to 800.
℃ is the most effective, but in order to complete the precipitation of graphite, it is preferable to adjust the soaking time depending on the components. Note that normal conditions are sufficient for hot rolling and cold rolling carried out in the method of the present invention, and box annealing is preferably employed for recrystallization annealing. Next, the present invention will be explained using examples and comparing with comparative examples. <Example> First, a steel slab having the composition shown in Table 1 was obtained by a conventional method (converter melting, ingot making, and blooming rolling), and then hot rolled to obtain 2.3 A hot-rolled coil with a thickness of mm was obtained, which was then pickled and then cold-rolled into a cold-rolled coil with a thickness of 0.5 mm. Next, the cold-rolled coil was further subjected to recrystallization annealing that also served as graphite precipitation annealing, and the magnetic properties and punchability of the obtained electrical steel sheet were measured.

【表】 (注) *印は、本発明の条件から外れて
いることを示す。
[Table] (Note) * indicates that the conditions are outside the conditions of the present invention.

【表】 した。 得られた結果を、処理条件とともに第3表に示
す。 なお、電磁鋼板の打抜き性評価は、一般的には
“かえり”が50μmになるまでの打抜き回数を測定
することで行われているが、それには莫大な試験
片が必要であり、また金型の段取りや測定等にも
多くの時間を要する。 ところが、第1図で示されるような“1回の打
抜き時のポンチストロークと打抜き荷重の変動関
係”を測定し、その結果を比較すると、電磁鋼板
の打抜き性を的確に評価できることが本発明者等
によつて見出された。 即ち、第1図において、矢印の範囲で示す剪断
ストローク(S)は、打抜き中に材料がその粘り
によつて剪断的に破断する部分に対応し、打抜き
破面上では剪断破面として現われる部分である。
従つて、この剪断ストロークが板厚に比べて少な
いほど材料は脆弱に打抜かれたこととなつて“か
えり”が小さくなるものであるから、前記剪断ス
トロークの比較、特に、式 剪断ストローク比=S/t×100(%) 〔但し、S:剪断ストローク、 t:板厚〕 で表わされる剪断ストローク比の比較により打抜
き性を的確に評価することができるのである。 従つて、ここでは「打抜き性」を「剪断ストロ
ーク」で表示した。 第2表に示される結果からも、本発明で規定す
る条件を満たす成分組成の鋼を本発明で規定する
条件通りに処理することにより、磁気特性並びに
打抜き性が共に優れた電磁鋼板を得られることが
明らかである。 また、第2図は、本発明の方法によつて製造さ
れた鋼板とC含有量以外はほぼ同一組成の従来鋼
(極低C鋼)から製造された鋼板について剪断ス
トローク比と剪断強さとの関係を比較してグラフ
化したものであるが、該第2図からも、本発明の
方法による鋼板は従来のものに比較して打抜き時
の“かえり”が小さく、また金型の摩耗も少ない
ことが窺え、打抜き性が顕著に改善された電磁鋼
板であることは一目瞭然である。なお、“かえり”
が50μmになるまでの実際の打抜き回数は、例え
ば比較例10のものは3万回程度であつたのに対し
て、本発明例1のものは40万回を越えていた。 ところで、第3図は、試験番号1で示された手
段によつて製造された電磁鋼板の断面を示す顕微
鏡写真図であるが、十分なグラフアイトの析出が
明瞭に認められ、打抜き性が改善された理由が良
く理解できる。なお、このときの素地中に固溶し
ているC量を測定したところ、その値は50ppm以
下となつていることが確認された。 <総括的な効果> 上述のように、この発明によれば、優れた磁気
特性を有することはもちろんのこと、同時に極め
て良好な打抜き性をも兼備した電磁鋼板を安定し
て製造することが可能となるなど、産業上有用な
効果がもたらされるのである。
【expressed. The results obtained are shown in Table 3 together with the processing conditions. The punchability of electrical steel sheets is generally evaluated by measuring the number of punches until the burr reaches 50 μm, but this requires a huge number of test pieces and requires a large amount of mold. It also takes a lot of time to set up and measure. However, the present inventor found that by measuring the "variation relationship between punch stroke and punching load during one punching process" as shown in Figure 1, and comparing the results, it is possible to accurately evaluate the punchability of electrical steel sheets. It was discovered by et al. That is, in FIG. 1, the shear stroke (S) indicated by the arrow corresponds to the part where the material breaks in a shear manner due to its viscosity during punching, and the part that appears as a shear fracture surface on the punching fracture surface. It is.
Therefore, the smaller this shear stroke is compared to the plate thickness, the more brittle the material is punched and the smaller the burr. Therefore, when comparing the shear strokes, in particular, the formula: Shear stroke ratio=S /t×100(%) [where S: shear stroke, t: plate thickness] By comparing the shear stroke ratio, punching performance can be accurately evaluated. Therefore, "punching property" is expressed here as "shearing stroke". From the results shown in Table 2, it is clear that by treating steel with a composition that satisfies the conditions specified in the present invention according to the conditions specified in the present invention, an electrical steel sheet with excellent magnetic properties and punchability can be obtained. That is clear. Furthermore, Figure 2 shows the relationship between the shear stroke ratio and the shear strength for a steel sheet manufactured by the method of the present invention and a steel sheet manufactured from a conventional steel (extremely low C steel) having almost the same composition except for the C content. This is a graph comparing the relationship, and as can be seen from Fig. 2, the steel plate produced by the method of the present invention has less burr during punching and less wear on the mold than the conventional one. It is obvious at a glance that this is an electrical steel sheet with markedly improved punchability. In addition, “return”
For example, the actual number of punching cycles until the diameter was 50 μm was approximately 30,000 times for Comparative Example 10, whereas it exceeded 400,000 times for Inventive Example 1. By the way, Fig. 3 is a microscopic photograph showing the cross section of the electrical steel sheet manufactured by the method shown in Test No. 1, and sufficient graphite precipitation was clearly observed, and the punching property was improved. I can understand why it was done. In addition, when the amount of C dissolved in the matrix at this time was measured, it was confirmed that the value was 50 ppm or less. <Overall Effects> As described above, according to the present invention, it is possible to stably produce an electrical steel sheet that not only has excellent magnetic properties but also has extremely good punchability. This brings about industrially useful effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、電磁鋼板の打抜き時におけるポンチ
ストロークと荷重との関係を示すグラフ、第2図
は、本発明材と従来材との剪断強さ及び剪断スト
ローク比を比較したグラフ、第3図は、実施例に
よつて得られた本発明電磁鋼板断面の顕微鏡組織
写真図である。
Figure 1 is a graph showing the relationship between punch stroke and load during punching of electrical steel sheets, Figure 2 is a graph comparing shear strength and shear stroke ratio between the inventive material and conventional material, and Figure 3 1 is a microscopic structure photograph of a cross section of an electrical steel sheet of the present invention obtained in an example.

Claims (1)

【特許請求の範囲】 1 重量割合にて、 C:0.1〜1.0%、Si:3.5%以下 を含有し、かつ Ni:2.0%以下、 Al:1.0%以下、 Cu:1.0%以下 のうちの1種以上をも含むとともに、残部がFe
及び不可避不純物から成る鋼を熱間圧延及び冷間
圧延し、その後600〜800℃で再結晶焼鈍すること
によつてグラフアイトを析出させることを特徴と
する、優れた打抜き性と磁気特性とを兼備した電
磁鋼板の製造方法。
[Claims] 1 Contains C: 0.1 to 1.0%, Si: 3.5% or less, and Ni: 2.0% or less, Al: 1.0% or less, Cu: 1.0% or less, in terms of weight percentage. Contains more than one species, and the remainder is Fe.
Excellent punchability and magnetic properties are obtained by hot-rolling and cold-rolling steel containing unavoidable impurities and then recrystallizing it at 600 to 800°C to precipitate graphite. A manufacturing method for electrical steel sheets.
JP23040385A 1985-10-16 1985-10-16 Manufacture of electrical steel sheet having superior suitability to blanking Granted JPS6289816A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23040385A JPS6289816A (en) 1985-10-16 1985-10-16 Manufacture of electrical steel sheet having superior suitability to blanking

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23040385A JPS6289816A (en) 1985-10-16 1985-10-16 Manufacture of electrical steel sheet having superior suitability to blanking

Publications (2)

Publication Number Publication Date
JPS6289816A JPS6289816A (en) 1987-04-24
JPH0586454B2 true JPH0586454B2 (en) 1993-12-13

Family

ID=16907333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23040385A Granted JPS6289816A (en) 1985-10-16 1985-10-16 Manufacture of electrical steel sheet having superior suitability to blanking

Country Status (1)

Country Link
JP (1) JPS6289816A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004050934A1 (en) 2002-12-05 2004-06-17 Jfe Steel Corporation Non-oriented magnetic steel sheet and method for production thereof

Also Published As

Publication number Publication date
JPS6289816A (en) 1987-04-24

Similar Documents

Publication Publication Date Title
WO2018179871A1 (en) Method for manufacturing non-oriented electromagnetic steel plate, method for manufacturing motor core, and motor core
JP5854182B2 (en) Method for producing non-oriented electrical steel sheet
JP5533958B2 (en) Non-oriented electrical steel sheet with low iron loss degradation by punching
WO2014129034A1 (en) Production method for semi-processed non-oriented electromagnetic steel sheet exhibiting superior magnetic properties
WO2018135414A1 (en) Non-oriented electromagnetic steel sheet and production method therefor
KR20000029327A (en) An electromagnetic steel sheet having superior formability and magnetic properties and a process for the production of the same
EP4001450A1 (en) 600mpa grade non-oriented electrical steel sheet and manufacturing method thereof
JP4319889B2 (en) Non-oriented electrical steel sheet with excellent all-round magnetic properties and method for producing the same
JP4358550B2 (en) Method for producing non-oriented electrical steel sheet with excellent rolling direction and perpendicular magnetic properties in the plate surface
JP2008127659A (en) Non-oriented electromagnetic steel sheet with less anisotropy
JP2509018B2 (en) Manufacturing method of non-oriented electrical steel sheet with high magnetic flux density and low iron loss
JP7350069B2 (en) Non-oriented electrical steel sheet and its manufacturing method
EP0398114B2 (en) Process for preparation of thin grain oriented electrical steel sheet having superior iron loss and high flux density
JP7445656B2 (en) Non-oriented electrical steel sheet and its manufacturing method
JP2023554123A (en) Non-oriented electrical steel sheet and its manufacturing method
JP4622162B2 (en) Non-oriented electrical steel sheet
JP3483265B2 (en) Method for producing non-oriented electrical steel sheet with high magnetic flux density and low iron loss
JPH0586454B2 (en)
JPS59157259A (en) Non-directional electrical sheet having low iron loss and excellent magnetic flux density and its production
JP4551110B2 (en) Method for producing non-oriented electrical steel sheet
JPH0657332A (en) Manufacture of non-oriented silicon steel sheet having high magnetic flux density and low iron loss
JP2001131717A (en) Low core loss nonoriented silicon steel sheet excellent in punchability
JP7492114B2 (en) Non-oriented electrical steel sheet
JPH0586453B2 (en)
JP4852804B2 (en) Non-oriented electrical steel sheet