JPH0586387B2 - - Google Patents

Info

Publication number
JPH0586387B2
JPH0586387B2 JP22109384A JP22109384A JPH0586387B2 JP H0586387 B2 JPH0586387 B2 JP H0586387B2 JP 22109384 A JP22109384 A JP 22109384A JP 22109384 A JP22109384 A JP 22109384A JP H0586387 B2 JPH0586387 B2 JP H0586387B2
Authority
JP
Japan
Prior art keywords
formula
nitrite
alkyl group
lower alkyl
sulfite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP22109384A
Other languages
Japanese (ja)
Other versions
JPS61100570A (en
Inventor
Katsuyuki Morimoto
Toshiaki Sato
Eiichi Ooya
Susumu Yamamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Chemical Corp
Original Assignee
Nissan Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Chemical Corp filed Critical Nissan Chemical Corp
Priority to JP22109384A priority Critical patent/JPS61100570A/en
Publication of JPS61100570A publication Critical patent/JPS61100570A/en
Publication of JPH0586387B2 publication Critical patent/JPH0586387B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は4−カルボキシ−5−ハロゲノピラゾ
ール誘導体の製法に関する。 4−カルボキシ−5−ハロゲノピラゾール誘導
体は医薬、農薬等の中間体として有用である。例
えば、特開昭59−122488号公報、ヨーロツパ特許
公開87780号公報等に4−カルボキシ−5−ハロ
ゲノピラゾール誘導体の中間体としての使用例が
記載されている。 従来の技術 4−カルボキシ−5−ハロゲノピラゾール誘導
体を得るには従来以下のような方法が知られてい
る。 即ち4−カルボキシ−5−ヒドロキシピラゾー
ル誘導体をオキシ塩化燐等と加熱反応させること
によりハロゲン化して4−カルボキシ−5−ハロ
ゲノピラゾール誘導体を得る。
INDUSTRIAL APPLICATION FIELD The present invention relates to a method for producing 4-carboxy-5-halogenopyrazole derivatives. 4-Carboxy-5-halogenopyrazole derivatives are useful as intermediates for pharmaceuticals, agricultural chemicals, and the like. For example, examples of the use of 4-carboxy-5-halogenopyrazole derivatives as intermediates are described in JP-A-59-122488 and European Patent Publication No. 87780. Prior Art The following methods are conventionally known for obtaining 4-carboxy-5-halogenopyrazole derivatives. That is, a 4-carboxy-5-hydroxypyrazole derivative is halogenated by heating and reacting with phosphorus oxychloride or the like to obtain a 4-carboxy-5-halogenopyrazole derivative.

【化】 〔式中AおよびBはそれぞれ独立して水素原子
または低級アルキル基を示す。Rは低級アルキル
基を示す。Xは塩素原子または臭素原子を示す。〕 特開昭59−122488号公報記載 発明が解決しようとする問題点 本方法の問題点として以下のような点があげら
れる。 (1) エステルの加水分解に由来する4−カルボン
酸ピラゾールが多量に副生するためさらにエス
テル化工程を必要とする。 (2) 反応試剤として多量のオキシ塩化燐またはオ
キシ臭化燐を使用するため、反応終了後過剰の
オキシ塩化燐またはオキシ臭化燐を除去処理す
る必要がある。経済的に不利なだけでなく、廃
液中の燐分処理が必要となり必ずしも工業的に
は有利とはいえない。 (3) 長時間、高温の反応条件を必要とする。 問題点を解決するための手段及び発明の態様 本発明者らは、原料に5−アミノ−4−カルボ
キシピラゾールを用い、塩酸または臭化水素酸の
存在下、亜硝酸塩、無機ニトロソ化合物、三二酸
化窒素、或いは一酸化窒素から選ばれた亜硝酸供
給源を用いてジアゾ化し、次いで二酸化イオウま
たは亜硫酸塩の存在下分解させることにより目的
とする4−カルボキシ−5−ハロゲノピラゾール
誘導体を得る方法を見出した。本発明の方法は5
−アミノ−4−カルボキシピラゾール誘導体を亜
硝酸供給源を用いてジアゾ化するジアゾ化工程、
生成したジアゾニウム塩を二酸化イオウまたは亜
硫酸塩の存在下分解し4−カルボキシ−5−ハロ
ゲノピラゾール誘導体を得る分解工程からなる。
embedded image [In the formula, A and B each independently represent a hydrogen atom or a lower alkyl group. R represents a lower alkyl group. X represents a chlorine atom or a bromine atom. ] Problems to be solved by the invention described in JP-A-59-122488 Problems with this method include the following. (1) Since a large amount of 4-carboxylic acid pyrazole derived from ester hydrolysis is produced as a by-product, an additional esterification step is required. (2) Since a large amount of phosphorus oxychloride or phosphorus oxybromide is used as a reaction reagent, it is necessary to remove excess phosphorus oxychloride or phosphorus oxybromide after the reaction is completed. Not only is it economically disadvantageous, but it also requires treatment of phosphorus in the waste liquid, which is not necessarily advantageous from an industrial perspective. (3) Requires long and high temperature reaction conditions. Means for Solving the Problems and Aspects of the Invention The present inventors used 5-amino-4-carboxypyrazole as a raw material, and in the presence of hydrochloric acid or hydrobromic acid, nitrite, inorganic nitroso compound, sesquioxide Found a method to obtain the desired 4-carboxy-5-halogenopyrazole derivative by diazotization using a nitrite source selected from nitrogen or nitric oxide, and then decomposition in the presence of sulfur dioxide or sulfite. Ta. The method of the present invention is 5
- a diazotization step of diazotizing the amino-4-carboxypyrazole derivative using a nitrous acid source;
It consists of a decomposition step in which the generated diazonium salt is decomposed in the presence of sulfur dioxide or sulfite to obtain a 4-carboxy-5-halogenopyrazole derivative.

【化】 〔式中AおよびBはそれぞれ独立して水素原子
または低級アルキル基を示す。Rは低級アルキル
基を示す。Xは塩素原子または臭素原子を示す。〕 ジアゾ化工程で用いられる塩酸または臭化水素
酸は原料のアミノピラゾール()に対して2〜
20モル当量、好ましくは3〜8モル当量用いる。 ジアゾ化工程で用いられる亜硝酸供給源とし
て、亜硝酸塩としては、亜硝酸ナトリウム、亜硝
酸カリウム、亜硝酸カルシウムなど、無機ニトロ
ソ化合物としてはニトロシル硫酸、塩化ニトロシ
ルなどを用いることができる。 亜硝酸供給源としては、原料のアミノピラゾー
ル()に対して1〜2モル当量、好ましくは1
〜1.3当量用いる。 ジアゾ化工程の反応は−50〜50℃、好ましくは
−5〜20℃の温度範囲で行う。 また、反応終了後過剰の亜硝酸が残つている場
合には尿素等により分解して取り除くことができ
る。 分解工程では、触媒として二酸化イオウまたは
亜硫酸塩の存在下ジアゾニウム塩の分解を行う。
通常ジアゾニウム塩の分解の触媒としては塩化銅
等銅系触媒を用いるのが一般的であり比較的收率
もよい。また稀に鉄、ニツケル、マンガン、コバ
ルト系の触媒を用いる例も報告されている。 本発明の方法においては、このジアゾニウム塩
の分解の触媒として二酸化イオウまたは亜硫酸塩
を用いる点に特徴があるが、ジアゾニウム塩の分
解の触媒に二酸化イオウまたは亜硫酸塩を用いた
例は、本発明者らの知る限るでは今までに知られ
ていない。 この二酸化イオウまたは亜硫酸塩を触媒に用い
た場合、通常用いられる銅系触媒等に比べても高
い收率で目的とする4−カルボキシ−5−ハロゲ
ノピラゾール誘導体が得られることを見出し本発
明を完成させた。 この分解工程の触媒として用いられる二酸化イ
オウまたは亜硫酸塩は原料アミノピラゾール誘導
体()に対して0.1〜100wt%、好ましくは10〜
40wt%用いる。 分解工程の反応は−50〜50℃、好ましくは−5
〜30℃の温度範囲で行う。 分解反応では、不活性溶媒として、四塩化炭
素、ジクロルエタン等のハロゲン化アルキル誘導
体、ベンゼン、トルエン、クロルベンゼン等のベ
ンゼン誘導体、ヘキサン、ヘプタン等の脂肪族炭
化水素等を用いることもできる。 反応操作順序は一般のジアゾ化反応およびジア
ゾニウム塩の分解反応で知られている種々の方法
で行うことができる。例えば二酸化イオウまたは
亜硫酸塩、有機溶媒をいれた反応器中に調整した
ジアゾニウム塩の溶液を滴下していく方法、調整
したジアゾニウム塩の溶液中に二酸化イオウまた
は亜硫酸塩を添加し分解する方法或いはアミノピ
ラゾール誘導体()、塩酸または臭化水素酸、
二酸化イオウまたは亜硫酸塩、有機溶媒をいれた
反応器中に亜硝酸ナトリウム等の亜硝酸供給源を
添加しジアゾ化工程と分解工程を同時に行う方法
等種々の順序の組合せがありうる。 反応後有機層を分離し、溶媒を留去した後常圧
または減圧蒸溜することにより目的物の4−カル
ボキシ−5−ハロゲノピラゾール誘導体()を
得ることができる。 発明の効果 本発明の利点として以下のような点が列挙でき
る。 (1) 2−ヒドロキシル体()をオキシハロゲン
化燐と処理させる方法に比して、穏和な条件で
短時間に高收率で、目的とする4−カルボキシ
−5−ハロゲノピラゾール誘導体()が得ら
れる。 (2) 通常ジアゾニウム塩の分解に用いる銅塩を用
いずに二酸化イオウまたは亜硫酸塩で高收率で
分解できるので、廃水中に環境上好ましくない
銅等の重金属の混入の恐れがない。また、オキ
シハロゲン化燐に由来する燐分の廃水中への混
入の恐れもなく、環境上好ましい。 実施例 以下に本発明の具体的実施例を示すが、本発明
の要旨を越えない限り本発明は以下の実施例に限
定されるものではない。 実施例 1 5−クロル−1−メチルピラゾール−4−カル
ボン酸エチルの製造 5−アミノ−1−メチルピラゾール−4−カル
ボン酸エチル200gを35%塩酸1000mlに溶かし、
13℃に冷却した。次ぎに純度97%の亜硝酸ナトリ
ウム106.3gを水220mlに溶かし、温度を15℃以下
に保ちながら加えた。10分間10℃にて攪拌後尿素
20gを加え、更に10分間攪拌した。この溶液を四
塩化炭素1000mlに亜硫酸56gを吸収させた溶液に
5℃にて滴下した。窒素ガスの発生がなくなるま
で室温で攪拌した後水1000mlを加え有機層を分離
した。水層に四塩化炭素500mlを加え抽出操作を
行つた後有機層を前の有機層と合わせ、水洗後無
水硫酸ナトリウムで脱水し、溶媒留去して粗製の
5−クロル−1−メチルピラゾール−4−カルボ
ン酸エチル213.8gを得た。この粗物を蒸溜して純
粋な目的物207.9gを得た。 沸点104〜110℃/3mmHg 收率93% 実施例 2 5−クロル−1−メチルピラゾール−4−カル
ボン酸メチルの製造 上記実施例1に準じて合成した。融点70〜71℃ 実施例 3 5−クロル−1,3−ジメチルピラゾール−4
−カルボン酸エチルの製造 上記実施例1に準じて合成した。 沸点129℃/5mmHg 融点 40〜42℃ 実施例 4 5−ブロム−1−メチルピラゾール−4−カル
ボン酸エチルの製造 5−アミノ−1−メチルピラゾール−4−カル
ボン酸エチル10gを35%塩酸50mlに溶かし、13℃
に冷却した。次ぎに純度97%の亜硝酸ナトリウム
5.5gを水11mlに溶かし、温度を15℃以下に保ちな
がら加えた。10分間10℃にて攪拌後尿素1gを加
え、更に10分間攪拌した。この溶液を47%臭化水
素酸110ml、四塩化炭素50ml、亜硫酸2gを加えた
溶液に5℃にて滴下した。窒素ガスの発生がなく
なるまで室温で攪拌した後水500mlを加え、有機
層を分離した。水洗後無水硫酸ナトリウムで脱水
し、溶媒留去して粗製の5−ブロム−1−メチル
ピラゾール−4−カルボン酸エチル11.0gを得た。
この粗物を蒸溜して目的物7.0gを得た。 沸点120℃/3mmHg 融点39〜42℃ 收率50.7% 実施例 5 5−クロル−1−メチルピラゾール−4−カル
ボン酸エチルの製造(別法) 5−アミノ−1−メチルピラゾール−4−カル
ボン酸エチル10gを用い実施例1に準じてジアゾ
ニウム塩溶液を調製し、5℃にて亜硫酸4gを吹
き込んだ。窒素ガスの発生がなくなつた後、室温
で1時間攪拌し、水200ml及びクロロホルム100ml
を加えて抽出操作を行つた。有機層を分離し水洗
後無水硫酸ナトリウムで脱水し、溶媒留去して粗
製の5−クロル−1−メチルピラゾール−4−カ
ルボン酸エチル11.6gを得た。この粗物を蒸溜し
て目的物9.9gを得た。 沸点104〜110℃/3mmHg 收率88% 実施例 6 5−クロル−1−メチルピラゾール−4−カル
ボン酸エチルの製造(別法) 実施例1の亜硝酸ナトリウムの代わりに塩化ニ
トロシル6.3gを用い、5−アミノ−1−メチルピ
ラゾール−4−カルボン酸エチル10gから実施例
1に準じてジアゾニウム塩溶液を調製した。この
ジアゾニウム塩溶液を実施例5に準じて分解し、
目的物9.6gを得た。 沸点104〜110℃/3mmHg 收率86.1% 次ぎに実施例1に準じて原料に5−アミノ−1
−メチルピラゾール−4−カルボン酸エチル10g
を用い、各種条件に変更して行い、5−クロル−
1−メチルピラゾール−4−カルボン酸エチルを
得た結果を以下実施例7〜13として参考例ととも
に示す。
embedded image [In the formula, A and B each independently represent a hydrogen atom or a lower alkyl group. R represents a lower alkyl group. X represents a chlorine atom or a bromine atom. ] The hydrochloric acid or hydrobromic acid used in the diazotization step is
20 molar equivalents are used, preferably 3 to 8 molar equivalents. As a nitrite source used in the diazotization step, nitrites such as sodium nitrite, potassium nitrite, and calcium nitrite can be used, and inorganic nitroso compounds such as nitrosyl sulfate and nitrosyl chloride can be used. As a nitrous acid source, 1 to 2 molar equivalents, preferably 1 to 2 molar equivalents, preferably 1
~1.3 equivalents are used. The reaction in the diazotization step is carried out at a temperature range of -50 to 50°C, preferably -5 to 20°C. Furthermore, if excess nitrous acid remains after the reaction is completed, it can be decomposed and removed with urea or the like. In the decomposition step, the diazonium salt is decomposed in the presence of sulfur dioxide or sulfite as a catalyst.
Generally, a copper-based catalyst such as copper chloride is used as a catalyst for the decomposition of diazonium salts, and the yield is relatively good. In addition, rare cases have been reported in which catalysts based on iron, nickel, manganese, or cobalt are used. The method of the present invention is characterized in that sulfur dioxide or sulfite is used as a catalyst for the decomposition of the diazonium salt. As far as we know, this has not been known until now. The present invention was completed by discovering that when sulfur dioxide or sulfite is used as a catalyst, the desired 4-carboxy-5-halogenopyrazole derivative can be obtained at a higher yield than the commonly used copper-based catalysts. I let it happen. Sulfur dioxide or sulfite used as a catalyst in this decomposition step is 0.1 to 100 wt%, preferably 10 to 100 wt%, based on the raw material aminopyrazole derivative ().
Use 40wt%. The reaction in the decomposition step is -50 to 50°C, preferably -5
Perform at a temperature range of ~30°C. In the decomposition reaction, halogenated alkyl derivatives such as carbon tetrachloride and dichloroethane, benzene derivatives such as benzene, toluene and chlorobenzene, and aliphatic hydrocarbons such as hexane and heptane can also be used as inert solvents. The reaction sequence can be carried out by various methods known for general diazotization reactions and decomposition reactions of diazonium salts. For example, a method in which a prepared solution of diazonium salt is dropped into a reactor containing sulfur dioxide or sulfite and an organic solvent, a method in which sulfur dioxide or sulfite is added to a prepared solution of diazonium salt and decomposed, or amino Pyrazole derivatives (), hydrochloric or hydrobromic acid,
Various order combinations may be used, such as a method in which a nitrous acid source such as sodium nitrite is added to a reactor containing sulfur dioxide or sulfite and an organic solvent, and the diazotization step and the decomposition step are carried out simultaneously. After the reaction, the organic layer is separated, the solvent is distilled off, and the mixture is distilled under normal pressure or reduced pressure to obtain the desired 4-carboxy-5-halogenopyrazole derivative (). Effects of the Invention The following points can be enumerated as advantages of the present invention. (1) Compared to the method of treating the 2-hydroxyl compound () with phosphorus oxyhalide, the desired 4-carboxy-5-halogenopyrazole derivative () can be produced in a short time and in high yield under mild conditions. can get. (2) Since diazonium salts can be decomposed in high yield with sulfur dioxide or sulfite without using copper salts, which are normally used to decompose diazonium salts, there is no risk of contamination of environmentally undesirable heavy metals such as copper into wastewater. Furthermore, there is no fear that phosphorus derived from phosphorus oxyhalide will be mixed into wastewater, which is environmentally preferable. Examples Specific examples of the present invention are shown below, but the present invention is not limited to the following examples unless the gist of the present invention is exceeded. Example 1 Production of ethyl 5-chloro-1-methylpyrazole-4-carboxylate 200 g of ethyl 5-amino-1-methylpyrazole-4-carboxylate was dissolved in 1000 ml of 35% hydrochloric acid.
Cooled to 13°C. Next, 106.3 g of sodium nitrite with a purity of 97% was dissolved in 220 ml of water and added while keeping the temperature below 15°C. Urea after stirring at 10℃ for 10 minutes
20g was added and stirred for an additional 10 minutes. This solution was added dropwise at 5°C to a solution in which 56 g of sulfite was absorbed into 1000 ml of carbon tetrachloride. After stirring at room temperature until no nitrogen gas was generated, 1000 ml of water was added and the organic layer was separated. After adding 500 ml of carbon tetrachloride to the aqueous layer and performing an extraction operation, the organic layer was combined with the previous organic layer, washed with water, dehydrated with anhydrous sodium sulfate, and the solvent was distilled off to obtain crude 5-chloro-1-methylpyrazole- 213.8 g of ethyl 4-carboxylate was obtained. This crude product was distilled to obtain 207.9 g of pure target product. Boiling point: 104-110°C/3 mmHg Yield: 93% Example 2 Production of methyl 5-chloro-1-methylpyrazole-4-carboxylate Synthesis was performed according to Example 1 above. Melting point 70-71°C Example 3 5-chloro-1,3-dimethylpyrazole-4
-Production of ethyl carboxylate Synthesis was performed according to Example 1 above. Boiling point 129℃/5mmHg Melting point 40-42℃ Example 4 Production of ethyl 5-bromo-1-methylpyrazole-4-carboxylate 10g of ethyl 5-amino-1-methylpyrazole-4-carboxylate was dissolved in 50ml of 35% hydrochloric acid. Melt at 13℃
It was cooled to Next, 97% purity sodium nitrite
5.5g was dissolved in 11ml of water and added while keeping the temperature below 15°C. After stirring for 10 minutes at 10°C, 1 g of urea was added, and the mixture was further stirred for 10 minutes. This solution was added dropwise at 5°C to a solution containing 110 ml of 47% hydrobromic acid, 50 ml of carbon tetrachloride, and 2 g of sulfite. After stirring at room temperature until no nitrogen gas was generated, 500 ml of water was added and the organic layer was separated. After washing with water, it was dried over anhydrous sodium sulfate, and the solvent was distilled off to obtain 11.0 g of crude ethyl 5-bromo-1-methylpyrazole-4-carboxylate.
This crude material was distilled to obtain 7.0 g of the target product. Boiling point 120℃/3mmHg Melting point 39-42℃ Yield 50.7% Example 5 Production of ethyl 5-chloro-1-methylpyrazole-4-carboxylate (alternative method) 5-amino-1-methylpyrazole-4-carboxylic acid A diazonium salt solution was prepared according to Example 1 using 10 g of ethyl, and 4 g of sulfite was blown into the solution at 5°C. After no nitrogen gas is generated, stir at room temperature for 1 hour, then add 200 ml of water and 100 ml of chloroform.
was added to perform the extraction operation. The organic layer was separated, washed with water, dried over anhydrous sodium sulfate, and the solvent was distilled off to obtain 11.6 g of crude ethyl 5-chloro-1-methylpyrazole-4-carboxylate. This crude product was distilled to obtain 9.9 g of the target product. Boiling point: 104-110°C/3 mmHg Yield: 88% Example 6 Production of ethyl 5-chloro-1-methylpyrazole-4-carboxylate (alternative method) Using 6.3 g of nitrosyl chloride in place of sodium nitrite in Example 1 A diazonium salt solution was prepared according to Example 1 from 10 g of ethyl 5-amino-1-methylpyrazole-4-carboxylate. This diazonium salt solution was decomposed according to Example 5,
9.6g of the target product was obtained. Boiling point 104-110℃/3mmHg Yield 86.1% Next, 5-amino-1 was added to the raw material according to Example 1.
-ethyl pyrazole-4-carboxylate 10g
5-chlor-
The results of obtaining ethyl 1-methylpyrazole-4-carboxylate are shown below as Examples 7 to 13 together with reference examples.

【表】 副生物は下記の構造式を有する。【table】 The by-product has the following structural formula.

【式】【formula】

Claims (1)

【特許請求の範囲】 1 一般式() 【式】 〔式中AおよびBはそれぞれ独立して水素原子
または低級アルキル基を示す。Rは低級アルキル
基を示す。〕 で表されるアミノピラゾール誘導体を塩酸または
臭化水素酸の存在下、亜硝酸塩、無機ニトロン化
合物、三二酸化窒素、或いは一酸化窒素から選ば
れた亜硝酸供給源を用いてジアゾ化し、次いで二
酸化イオウまたは亜硫酸塩の存在下分解させるこ
とを特徴とする次式() 【式】 〔式中AおよびBはそれぞれ独立して水素原子
または低級アルキル基を示す。Rは低級アルキル
基を示す。Xは塩素原子または臭素原子を示す。〕 で表される4−カルボキシ−5−ハロゲノピラゾ
ール誘導体の製法。
[Claims] 1 General formula () [Formula] [In the formula, A and B each independently represent a hydrogen atom or a lower alkyl group. R represents a lower alkyl group. ] The aminopyrazole derivative represented by is diazotized using a nitrite source selected from nitrite, an inorganic nitrone compound, nitrogen sesquioxide, or nitrogen monoxide in the presence of hydrochloric acid or hydrobromic acid, and then diazotized with a nitrite source selected from nitrite, an inorganic nitrone compound, nitrogen sesquioxide, or nitrogen monoxide. The following formula () is characterized in that it is decomposed in the presence of sulfur or sulfite. [Formula] [In the formula, A and B each independently represent a hydrogen atom or a lower alkyl group. R represents a lower alkyl group. X represents a chlorine atom or a bromine atom. ] A method for producing a 4-carboxy-5-halogenopyrazole derivative represented by:
JP22109384A 1984-10-19 1984-10-19 Preparation of pyrazole derivative Granted JPS61100570A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22109384A JPS61100570A (en) 1984-10-19 1984-10-19 Preparation of pyrazole derivative

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22109384A JPS61100570A (en) 1984-10-19 1984-10-19 Preparation of pyrazole derivative

Publications (2)

Publication Number Publication Date
JPS61100570A JPS61100570A (en) 1986-05-19
JPH0586387B2 true JPH0586387B2 (en) 1993-12-10

Family

ID=16761378

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22109384A Granted JPS61100570A (en) 1984-10-19 1984-10-19 Preparation of pyrazole derivative

Country Status (1)

Country Link
JP (1) JPS61100570A (en)

Also Published As

Publication number Publication date
JPS61100570A (en) 1986-05-19

Similar Documents

Publication Publication Date Title
US5416235A (en) Preparation of substituted aryl compounds
CA2641542C (en) Improved process for producing nitroisourea derivatives
JP3009515B2 (en) Method for producing 3-methylpyrazole
EA001630B1 (en) Method for producing n-substituted 3-hydroxypyrazoles
JPH0586387B2 (en)
EP0646566B1 (en) Process for the preparation of acid chloride compounds
JPH03135983A (en) Preparation of 1,1-dioxo-7-substituted cephem
US6147215A (en) Process for producing 1-chlorocarbonyl-4-piperidinopiperidine or hydrochloride thereof
US4876387A (en) Process for preparing 2,4,5-trifluorobenzoic acid
CA2289176C (en) Producing z-isomer of acid salt of 2-aminothiazole derivative
EP0923540B1 (en) Synthesis of a hydrazone beta-keto ester by the reaction with a diazo ester
JPS5931509B2 (en) Method for producing 3-hydroxy-3-methylphthalide or its nuclear substituted product
KR100759640B1 (en) Process for producing penicillanic acid compound
JP3261190B2 (en) Method for producing 2-hydroxy-3,5-dinitropyridines
EP0005280B1 (en) A process for the reduction of carboxylic acid halides to corresponding aldehydes
KR100322237B1 (en) Process for preparing α-ketocarboxylic acid derivatives
JP4427988B2 (en) Method for producing biaryl compound
JP2582889B2 (en) Production method of high-purity aminosulfenyl chloride
KR100749163B1 (en) Method for producing derivatives of 7?-methoxyoxacephem
JP3998075B2 (en) Demethylation of podophyllotoxin
JP3242253B2 (en) Method for producing azoalkane derivatives
JP2000086637A (en) Pyrazole compound and its production
MX2008010140A (en) Improved method for producing nitroisourea derivative
EP2349980A2 (en) Methods for producing aminonitrobenzoic acids
JPH08198842A (en) Production of disulfide derivative

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term