JPH0586180B2 - - Google Patents

Info

Publication number
JPH0586180B2
JPH0586180B2 JP11239484A JP11239484A JPH0586180B2 JP H0586180 B2 JPH0586180 B2 JP H0586180B2 JP 11239484 A JP11239484 A JP 11239484A JP 11239484 A JP11239484 A JP 11239484A JP H0586180 B2 JPH0586180 B2 JP H0586180B2
Authority
JP
Japan
Prior art keywords
enzyme
immobilized
passage
bioreactor
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP11239484A
Other languages
Japanese (ja)
Other versions
JPS60256375A (en
Inventor
Hidefumi Saito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP11239484A priority Critical patent/JPS60256375A/en
Publication of JPS60256375A publication Critical patent/JPS60256375A/en
Publication of JPH0586180B2 publication Critical patent/JPH0586180B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Description

【発明の詳細な説明】 (イ) 産業上の利用分野 本発明は、酵素や微生物の触媒作用を利用し
て、種々の化学反応を促進する場合に好適に使用
できるバイオリアクタに関するものである。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a bioreactor that can be suitably used to promote various chemical reactions by utilizing the catalytic action of enzymes and microorganisms.

(ロ) 従来の技術 従来のバイオリアクタは、タンク状の容器の中
に、酵素または微生物を固定化したカラム等を充
填しておき、この容器内に反応させるべき溶液を
導入して前記酵素に順次接触させ得るようにした
ものが一般的である。ところが、このような構成
のものは、酵素が触媒作用をなすのに最も適した
温度を確保するために、処理すべき溶液全体の温
度をコントロールしなければならないが、酵素が
働く際の熱等の影響を受けるため最適温度を維持
するのはきわめて難かしい。そのため、酵素が高
温になつてその活性が悪化したり、温度条件が不
当に変動して生成物の品質にばらつきが生じると
いう不都合を招き易い。
(b) Conventional technology In a conventional bioreactor, a tank-shaped container is filled with a column or the like in which enzymes or microorganisms are immobilized, and a solution to be reacted is introduced into the container to react with the enzyme. Generally, they are designed so that they can be brought into contact in sequence. However, with this type of structure, the temperature of the entire solution to be treated must be controlled in order to ensure the most suitable temperature for the enzyme to perform its catalytic action, but the temperature of the entire solution to be treated must be controlled. It is extremely difficult to maintain the optimum temperature because of the influence of Therefore, the enzyme is likely to be exposed to high temperatures, which deteriorates its activity, or the temperature conditions may be unduly varied, resulting in variations in the quality of the product.

(ハ) 目的 本発明は、このような事情に着目してなされた
もので、反応流体と接触し得る位置に固定化され
た酵素等の温度条件を簡単かつ確実に制御するこ
とが可能であり、該酵素等の機能を十分にかつ安
定した状態で発揮させることができるバイオリア
クタを提供することを目的とする。
(c) Purpose The present invention has been made in view of the above circumstances, and it is possible to easily and reliably control the temperature conditions of an enzyme, etc. immobilized at a position where it can come into contact with a reaction fluid. An object of the present invention is to provide a bioreactor that can fully and stably exhibit the functions of the enzyme, etc.

(ニ) 構成 本発明は、かかる目的を達成するために、第1
の通路に反応流体を流通させるとともに該通路に
隣接する第2の通路に熱媒体を流し得るように構
成した熱交換器と、この熱交換器の第1の通路に
設けた熱交換用のプレートフインに固定化した酵
素又は微生物とを具備してなるものにしたことを
特徴とする。
(d) Configuration In order to achieve the above object, the present invention has the following features:
A heat exchanger configured to allow a reaction fluid to flow through a passageway and a heat medium to flow through a second passageway adjacent to the passageway, and a heat exchange plate provided in a first passageway of the heat exchanger. It is characterized by comprising an enzyme or a microorganism immobilized on the fins.

(チ) 実施例 以下、本発明の一実施例を図面を参照して説明
する。
(H) Embodiment Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

第1図は、本発明に係るバイオリアクタの全体
を示す斜視図である。このバイオリアクタは、熱
交換器1と、この熱交換器1のプレートフイン2
に固定化した酵素3とを具備してなる。詳述すれ
ば、熱交換器1は、アルミニウム製の仕切板4
と、プレートフイン2,6とを交互に積層固着し
てなるプレートフイン形のもので、例えば、偶数
段目に形成された一側面に開口する第1の通路7
に反応流体たる適宜な溶液Aを流通させるととも
に、寄数段目に形成され他側面に開口する第2の
通路8に熱媒体Bを流し得るようになつている。
プレートフイン2,6は例えば第2図に示すよう
に、一枚の薄板にプレス加工を施すことによつて
作られたもので、その上面2a,6aと下面2
b,6bとを前記仕切板4にロー付または拡散接
合により接合させている。なお、前記第1の通路
7に介設されるプレートフイン2の表面部2cに
は、多孔質陽極酸化皮膜処理(アノダイズ処理)
を施すことによつて、規則正しい多数の微小孔9
を形成してある。そして、これらの微小孔9内に
酵素3を吸着させ固定化している。多孔質陽極酸
化皮膜処理を施す場合、リン酸等を電解液として
使用しており、それによつて前記各微小孔9の径
dを、例えば、100nm程度のものにしている。
FIG. 1 is a perspective view showing the entire bioreactor according to the present invention. This bioreactor includes a heat exchanger 1 and plate fins 2 of this heat exchanger 1.
and the enzyme 3 immobilized on the. To be more specific, the heat exchanger 1 includes a partition plate 4 made of aluminum.
and plate fins 2 and 6 are alternately laminated and fixed, for example, a first passage 7 opening on one side formed in an even numbered stage.
A suitable solution A serving as a reaction fluid is allowed to flow through the second channel 8, and a heat medium B can be caused to flow through a second passage 8 formed at the decimal stage and opening on the other side.
For example, as shown in FIG. 2, the plate fins 2, 6 are made by pressing a single thin plate, and have upper surfaces 2a, 6a and lower surfaces 2.
b, 6b are joined to the partition plate 4 by brazing or diffusion bonding. Note that the surface portion 2c of the plate fin 2 interposed in the first passage 7 is subjected to a porous anodic oxide coating treatment (anodization treatment).
By applying a large number of regular micropores 9
has been formed. The enzyme 3 is adsorbed and immobilized within these micropores 9. When performing porous anodic oxide film treatment, phosphoric acid or the like is used as an electrolytic solution, thereby making the diameter d of each of the micropores 9, for example, about 100 nm.

このような構成のものであれば、第1の通路7
を流通する溶液Aが、該通路7中のプレートフイ
ン2に固定化した酵素3に接触することになる。
そのため、溶液Aの種類および促進すべき反応に
対応する酵素3を選択して前記プレートフイン2
に固定化しておけば、バイオリアクタとしての機
能が発揮されるものである。しかも、このもの
は、第2の通路8を流れる熱媒体Bの熱的影響を
最も受け易いプレートフイン2に酵素3を固定化
している。そのため、酵素3自体の温度条件を最
適な値に維持することが容易であり、酵素3の触
媒用を最大限に引き出すことが可能となる。具体
的には、酵素3が働く際の熱は、直接プレートフ
イン2を介して熱媒体B側へ取り出すことができ
るため、高温では活性が悪化する酵素3でも容易
に活動を引き出すことができる。また、酵素3の
働く温度条件により生成物の品質が変化する場合
でも、一定温度の熱媒体Bを第2の通路8に流通
させておきさえすれば、品質の安定化を図ること
ができる。また、必要なら、酵素3の活動温度
を、前記熱媒体Bの温度コントロールにより変化
させるようなことも、簡単かつ確実に行なうこと
ができる。
With such a configuration, the first passage 7
The solution A flowing through the passage 7 comes into contact with the enzyme 3 immobilized on the plate fin 2 in the passage 7.
Therefore, the enzyme 3 corresponding to the type of solution A and the reaction to be promoted is selected and the plate fin 2 is
If it is immobilized, it will function as a bioreactor. Furthermore, in this case, the enzyme 3 is immobilized on the plate fin 2, which is most susceptible to the thermal influence of the heat medium B flowing through the second passage 8. Therefore, it is easy to maintain the temperature conditions of the enzyme 3 itself at an optimal value, and it is possible to maximize the catalytic function of the enzyme 3. Specifically, the heat generated when the enzyme 3 works can be taken out directly to the heat medium B side through the plate fins 2, so that even the enzyme 3, whose activity deteriorates at high temperatures, can be easily activated. Further, even if the quality of the product changes depending on the temperature conditions under which the enzyme 3 operates, the quality can be stabilized as long as the heat medium B at a constant temperature is allowed to flow through the second passage 8. Furthermore, if necessary, the activity temperature of the enzyme 3 can be easily and reliably changed by controlling the temperature of the heat medium B.

なお、プレートフインに固定化するものは、酵
素に限らず、微生物であつてもよい。
Note that what is immobilized on the plate fins is not limited to enzymes, but may also be microorganisms.

また、酵素等をプレートフインに固定化する方
法も、前記のものに限られないのは勿論であり、
例えば、プレートフインの表面に高分子材料を接
着または溶着させ、これら高分子のすきまに酵素
等を固定化するようにしてもよい。
Furthermore, it goes without saying that the method for immobilizing enzymes etc. on plate fins is not limited to the above method.
For example, a polymeric material may be adhered or welded to the surface of the plate fin, and enzymes or the like may be immobilized in the gaps between these polymers.

さらに、熱交換器内における反応流体および熱
媒体の流れ方向は、パラレルフローでもクロスフ
ローでも、また、反応流体を折り返し流すように
してもよい。
Furthermore, the flow direction of the reaction fluid and the heat medium in the heat exchanger may be parallel flow or cross flow, or the reaction fluid may be flowed in turns.

(ヘ) 効果 本発明は、以上のような構成であるから、反応
流体と接触し得る位置に固定化された酵素等の温
度条件を簡単かつ確実に制御することが可能であ
り、該酵素等の機能を十分にかつ安定した状態で
発揮させることができるバイオリアクタを提供で
きるものである。
(f) Effect Since the present invention has the above-described configuration, it is possible to easily and reliably control the temperature conditions of the enzyme, etc. immobilized at a position where it can come into contact with the reaction fluid, and the temperature conditions of the enzyme, etc. It is possible to provide a bioreactor that can fully and stably exhibit its functions.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の一実施例を示し、第1図は斜視
図、第2図は分解した斜視図、第3図はプレート
フインの表面部分を示す拡大断面図である。 1……熱交換器、2……プレートフイン、3…
…酵素、7……第1の通路、8……第2の通路、
A……反応流体(溶液)、B……熱媒体。
The drawings show an embodiment of the present invention; FIG. 1 is a perspective view, FIG. 2 is an exploded perspective view, and FIG. 3 is an enlarged sectional view showing a surface portion of a plate fin. 1...Heat exchanger, 2...Plate fin, 3...
...enzyme, 7...first passage, 8...second passage,
A...Reaction fluid (solution), B...Heating medium.

Claims (1)

【特許請求の範囲】 1 第1の通路に反応流体を流通させるとともに
該通路に隣接する第2の通路に熱媒体を流し得る
ように構成した熱交換器と、この熱交換器の第1
の通路に設けた熱交換用のプレートフインに固定
化した酵素又は微生物とを具備してなることを特
徴とするバイオリアクタ。 2 酵素又は微生物が、多孔質陽極酸化皮膜処理
を施したプレートフインの表面部に直接固定化さ
れていることを特徴とする特許請求の範囲第1項
記載のバイオリアクタ。 3 酵素又は微生物が、プレートフインの表面に
付着させた高分子材料に吸着固定させてあること
を特徴とする特許請求の範囲第1項記載のバイオ
リアクタ。
[Scope of Claims] 1. A heat exchanger configured to allow a reaction fluid to flow through a first passage and a heat medium to flow through a second passage adjacent to the passage;
1. A bioreactor comprising enzymes or microorganisms immobilized on plate fins for heat exchange provided in the passages of the bioreactor. 2. The bioreactor according to claim 1, wherein enzymes or microorganisms are directly immobilized on the surface of plate fins treated with a porous anodic oxide film. 3. The bioreactor according to claim 1, wherein the enzyme or microorganism is adsorbed and immobilized on a polymeric material attached to the surface of the plate fin.
JP11239484A 1984-05-31 1984-05-31 Bioreactor Granted JPS60256375A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11239484A JPS60256375A (en) 1984-05-31 1984-05-31 Bioreactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11239484A JPS60256375A (en) 1984-05-31 1984-05-31 Bioreactor

Publications (2)

Publication Number Publication Date
JPS60256375A JPS60256375A (en) 1985-12-18
JPH0586180B2 true JPH0586180B2 (en) 1993-12-10

Family

ID=14585563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11239484A Granted JPS60256375A (en) 1984-05-31 1984-05-31 Bioreactor

Country Status (1)

Country Link
JP (1) JPS60256375A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4937196A (en) * 1989-08-18 1990-06-26 Brunswick Corporation Membrane bioreactor system
CA2115360A1 (en) * 1992-07-01 1994-01-20 Keiichi Katoh Heating/cooling apparatus made of ceramics
AU665657B2 (en) * 1992-07-01 1996-01-11 Keiichi Katoh Ceramic device for heating or cooling
EP1320712B1 (en) * 2000-07-28 2006-10-11 Honda Giken Kogyo Kabushiki Kaisha Multi-purpose microchannel micro-component
JP5383272B2 (en) * 2009-03-26 2014-01-08 富士フイルム株式会社 Cell culture membrane

Also Published As

Publication number Publication date
JPS60256375A (en) 1985-12-18

Similar Documents

Publication Publication Date Title
Wohlgemuth et al. Microscale technology and biocatalytic processes: opportunities and challenges for synthesis
US4902624A (en) Temperature cycling cuvette
KR100450818B1 (en) Multi chamber PCR chip
EP1180395A3 (en) Reactor for carrying out a strongly thermic reaction
Verpoorte Microfluidic chips for clinical and forensic analysis
Žnidaršič‐Plazl The promises and the challenges of biotransformations in microflow
Schilke et al. A novel enzymatic microreactor with Aspergillus oryzae β‐galactosidase immobilized on silicon dioxide nanosprings
EP1045038A1 (en) Rapid heat block thermocycler
US4948728A (en) Monolith reactor containing a plurality of flow passages and method for carrying out biological reactions
CN110741240A (en) Molecular manipulation and detection by temperature control
JPS56124395A (en) Stabilized coenzyme aqueous solution
DE3675593D1 (en) CATALYST FIXED BED ASSEMBLY USING HONEYCOMB-BODY.
JPH0586180B2 (en)
ES8802259A1 (en) Determination of clinical parameters by enzyme immunoprocess.
Ardao et al. In vitro multienzymatic reaction systems for biosynthesis
US4292409A (en) Flow reactor for enzymatic reactions in which the enzyme is immobilized on a solid matrix having a planar surface
Matosevic et al. Design and characterization of a prototype enzyme microreactor: quantification of immobilized transketolase kinetics
JP2000048832A (en) Separator for solid polymer fuel cell
ATE32437T1 (en) METHOD AND REACTOR FOR CARRYING OUT AN ENDOTHERMAL REACTION.
Valikhani et al. Enzyme Immobilization in Wall-Coated Flow Microreactors
Grano et al. Production of low‐lactose milk by means of nonisothermal bioreactors
KR102346671B1 (en) Foldable microdevice for long-term storage of reagent
El-Masry et al. Isothermal and non-isothermal characterization of catalytic nylon membranes chemically grafted: dependence on the grafting percentage
Michaud et al. Wall‐Immobilized Biocatalyst vs. Packed Bed in Miniaturized Continuous Reactors: Performances and Scale‐Up
De Maio et al. Influence of the immobilisation process on the activity of β-galactosidase bound to nylon membranes grafted with glycidyl methacrylate: Part 2. Non-isothermal behaviour