JPH0586092B2 - - Google Patents

Info

Publication number
JPH0586092B2
JPH0586092B2 JP10059084A JP10059084A JPH0586092B2 JP H0586092 B2 JPH0586092 B2 JP H0586092B2 JP 10059084 A JP10059084 A JP 10059084A JP 10059084 A JP10059084 A JP 10059084A JP H0586092 B2 JPH0586092 B2 JP H0586092B2
Authority
JP
Japan
Prior art keywords
signal
delay element
element array
output
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP10059084A
Other languages
Japanese (ja)
Other versions
JPS60245322A (en
Inventor
Hideaki Matsue
Takehiro Murase
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP10059084A priority Critical patent/JPS60245322A/en
Publication of JPS60245322A publication Critical patent/JPS60245322A/en
Publication of JPH0586092B2 publication Critical patent/JPH0586092B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03012Arrangements for removing intersymbol interference operating in the time domain
    • H04L25/03019Arrangements for removing intersymbol interference operating in the time domain adaptive, i.e. capable of adjustment during data reception
    • H04L25/03038Arrangements for removing intersymbol interference operating in the time domain adaptive, i.e. capable of adjustment during data reception with a non-recursive structure

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Complex Calculations (AREA)
  • Filters That Use Time-Delay Elements (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(技術分野) 本発明はトランスバーサルフイルタを用いた自
動波形等化等、交さ偏波干渉補償装置のタツプ重
み制御回路等の誤差信号相関検出回路に関するも
のである。 (背景技術) 受信信号として23=8値信号を例にとり従来回
路を説明する。8値信号は通常64QAM通信方式
に用いられる信号である。つまり64QAM信号は
8値の振幅を持つ信号が同相と直交にそれぞれ配
置されるため8×8=64値の状態を有する信号で
ある。 第7図に64QAM通信方式の受信系の基本構成
例を示す。100は受信アンテナ、101は受信機
で、ここではRF帯からIF帯への周波数変換機能
が主である。102は復調器で、ここでは8値の
振幅レベルを有する信号が復調される。通常は直
交検波器が用いられる。103はA/D変換器で
あり、復調信号を識別再生するためのものであ
る。104は例えば波形等化器であり、フエージ
ング等により生じる波形歪を低減するためのもの
で、トランスバーサルフイルタが用いられる。な
お、この図では通常の伝送系の例を示したから1
04は波形等化器としたが、交差偏波干渉補償機
能を具備する通信系の場合には、104は波形等
化器の代わりに干渉補償器で置換してもよい。1
05は識別再生されたデータ列の出力点である。 第8図はトランスバーサルフイルタ回路の具体
的構成例を示す。これはフイルタ部1040と制
御回路1041より成る。フイルタ部1040は
7段の遅延素子1040−aと、各々の遅延素子
に対応して設ける乗算器1040−bと、各乗算
器の出力を加算する加算器1040−cにより構
成される。1個の遅延素子はクロツク周期に相当
する時間だけ入力信号を遅延させるものである。
制御回路1041は乗算器に加える制御信号C-3
〜C3を生成するものである。 本発明はこの制御回路の新規な構成に係るもの
である。 第1図に示すように8値信号に対して4ビツト
以上のA/D変換器を用いて検波信号の識別再生
を行う。なお、この図は自然符号配置を用いた場
合の例であり、A/D変換器からは8値の信号点
を上から2進数で数えた結果が出力される。すな
わち、最上位の信号をビツト(1,1,1)に識
別し、最下位の信号をビツト(0,0,0)に識
別する例である。もちろん、符号配置を例えばグ
レー符号配置等に変えれば信号点と識別ビツトの
関係は異なるが、その場合にも本発明は当然に適
用できる。第1図に示すように、自然符号配置の
場合には、識別ビツトのうち、最上位ビツトは入
力範囲を2等分するよう識別した結果であり(こ
れをPath1の識別と呼ぶ)、上位2ビツト目はさ
らに2等分、すなわち全体を4等分するよう識別
した結果であり(これをPath2の識別と呼ぶ)、
上位3ビツト目はさらに2等分、すなわち全体を
8等分するよう識別した結果であり、また上位4
ビツト目は全体を16等分するよう識別した結果で
ある。すなわち上位4ビツト目の識別レベルは、
送信した信号の信号点位置である(これはPath4
の識別と呼ぶ。)。従つて上位3ビツトが受信信号
の識別結果を表す。例えば自然符号配置の場合、
最も上のレベルの信号点は(1,1,1)と、上
から5番目の信号点は(0,1,1)と、また最
も下の信号点は(0,0,0)と識別される。ま
たPath4の値は送信した信号点をしきい値とし受
信信号の変移方向を示している。すなわち受信振
幅が信号点付近に相当する場合が最も雑音余裕が
大きく望ましいので、送信時には当然そのような
レベルで送信するのであるが、受信側には伝送中
の符号間干渉等によつて受信振幅が信号点の上か
下かのどちらかにずれるのが普通である。従つて
Path4の値は符号間干渉の方向を表しているとい
える。つまり、受信信号が送信信号に比べて正の
方向に変移すればPath4=1、負の方向に変移す
ればPath4=0となる。従来、トランスバーサル
フイルタを用いた波形自動等化器、交さ偏波干渉
補償器について、そのタツプ重み回路を制御する
タツプ重み制御回路には、特に高速領域において
はZF(Zero−Forcing)法が用いられていた。第
8図で示したトランスバーサルフイルタ用制御回
路1041について、ZF法に対応する具体的な
構成を第2図に示す。ここでは、信号の極性を表
わすPath1の信号1と符号間干渉の方向を表わす
Path4の信号2の2ビツトを入力信号とし、
各々、クロツク周期遅延回路3,4,5,6,
7,8,9,10,を通しそれぞれ異なる周期間
において相関をとる排他的論理和回路11,1
2,13,14,15,16,17,その出力M
組(第2図ではM=5の場合を示す)に対し、所
要ビツト分、積分する積分回路18,19,2
0,21,22,23,24により構成されてい
た。無線信号伝送では、送受信機構成上の理由か
ら、送信側での変調器入力信号は両極性にするこ
とがほとんどである。従つて、受信側でも復調器
出力(A/D変換器入力)は両極性となる。例え
ば第1図では、上から4番目と5番目の信号点の
間の一点鎖線で図示したレベルがゼロレベルで、
それより大きいほうが正、小さいほうが負とな
る。従つて、Path1が信号の極性を表すのであ
る。ZF法では信号の極性を表す信号(Path1)と
符号間干渉の方向を表す信号(Path4)、という
いわば誤差の方向を表す信号のみを用いて制御
し、誤差の絶対量を表す信号を用いていないか
ら、この出力信号は8値信号の符号間干渉量によ
らず一定であるため、符号間干渉量の大きい場
合、すなわち、歪量の大きい場合に対し、制御の
収束性が悪く、装置全体としての特性を劣化させ
る原因であつた。 (発明の課題) 本発明は以上の欠点を解決するため、誤差信号
について方向のみならず、その絶対量も問題に
し、しかもデイジタル論理回路だけを用いてその
量に応じて重み付けをしたタツプ重み制御信号を
得る回路を提供するものである。 (発明の構成および作用) 本発明の一実施例をトランスバーサル形自動等
化器の制御法であるZF法に適用した場合につい
て説明する。 第3図は64QAM用7タツプトランスバーサル
フイルタの制御回路を示したもものである。遅延
素子29〜36は第2図に示す従来回路の遅延素
子3〜10と同一である。排他的論理和回路45
〜51は従来回路の11〜17と同一である。積
分器52〜58は後述のように本発明の特徴を反
映して従来の積分器18〜24とは異なつてい
る。またここには遅延素子37〜44までが新た
に設けられている。これは入力点27,28から
入力される信号(後述のようにPath5′、Path6′)
と入力点26から入力される信号(Path4)との
時間を合わせるためである。第4図に示すように
8値信号(64QAMの復調信号)を6ビツトの
A/D変換器でデイジタル化する。一般的に2n
信号の場合には(n+2)ビツト以上の精度を有
するA/D変換器を用いる。その結果、Path1か
らPath4までは第1図と同様である。Path4と
Path5の排他的論理和をとつた結果(Path5′とす
る)とPath4とPath6の排他的論理和をとつた結
果(Path6′とする)について第5図に示すように
Path5′とPath6′の2ビツトで符号間干渉量を4段
階に評価できる。つまり受信信号が送信信号に近
いほど符号間干渉は小さく、送信信号から離れる
ほど大きくなるといえるが、第4図から明らかな
ように、Path5′とPath5′がともに1となる状態が
送信信号の信号点に最も近く、これらがともに0
となる状態が信号点から最も遠くなるから、
Path5′とPath6′により符号間干渉の大きさが表わ
せることになるからである。第5図はこの点を明
確にしたものである。一般に、符号間干渉量の検
出ビツトがA(A:整数)のとき2A段階に評価可
能である。 本発明ではタツプの制御に用いる信号として、
信号の極性を表すPath1の信号と、符号間干渉の
方向を表すPath4の信号と、符号間干渉の量を表
すPath5′とPath6′の信号を用いる。Path1の信号
は入力点25から、Path4の信号は入力点26か
ら、Path5′とPath6′の信号は各々入力点27,2
8から入力される。Path1の信号とPath4の信号
についての処理は従来例と同一であり、排他的論
理和回路45〜51の出力が積分器を構成するア
ツプダウンカウンタのカウント方向(つまりアツ
プ方向かダウン方向か)を与える。本発明では
Path5′とPath6′の信号によりアツプダカウンウン
タのカウント量、つまり積分時定数を変化させる
ことによりタツプ重み制御信号を得る。具体的に
は、4段階の符号間干渉量に応じてアツプダウン
カウンタの段数も4段階に可変するものである。
すなわち符号間干渉量が最小の場合(Path5′=
Path6′=1)はカウンタの段数を最も大きくして
制御速度は遅くてもいいから高精度の制御を行
い、符号間干渉量が最大の場合(Path5′=
Path6′=0)はカウンタの段数を最も小さくして
高速の制御を可能とさせたものである。以上の動
作を実行するためのカウンタの具体的構成例を第
6図に示す。たとえば8191ビツトつまり(213
1)ビツト分積分する場合には13段のカウンタが
必要である。AND回路70〜73とインバータ
74〜77から成る段数制御部を除いて公知のア
ツプダウンカウンタそのものである。入力点62
はカウント方向指定信号入力点であり、第3図で
の排他的論理和回路45等の出力信号が入力され
る。59はカウントパルスたるクロツクパス入力
点、60はPath5′信号入力点、61はPath6′信号
入力点である。符号間干渉量が最小のとき、つま
りPath5′=Path6′=1の時はゲート70がオンに
なるからT−フリツプフロツプ63から69まで
が動作し、カウンタ段数は最大となる。また逆に
Path5′=Path6′=0のときはゲート73がオンに
なるから、T−フリツプフロツプ66から69ま
でが動作するのでカウンタ段数は最小となる。以
上のようにして符号間干渉量に応じて段数を可変
にできる。そしてタツプ重み制御信号の必要な精
度に応じて、カウンタの最上位段から任意にKビ
ツトとり出すことによりKビツト精度を有するタ
ツプ重み制御信号を得ることができる。以上のよ
うな構成とすることにより、符号間干渉量が大き
い場合、積分器の積分時間を短かくし、符号間干
渉量が小さい場合、積分器の積分時間を長くする
よう、自動的に積分器の時定数を切替えることに
より、制御の精度および収束性を向上可能とな
る。 以上はZF法に適用した場合であるが、トラン
スバーサル等化器の制御アルゴリズムは入力又は
出力の信号多値レベルと出力の誤差信号をかけ合
わせて積分することが主体であり、信号のレベ
ル、出力の誤差信号の大きさをみて、カウンタ入
力の桁位置を選択することは表1に示す全てのア
ルゴリズムに適用できることは明白である。
(Technical Field) The present invention relates to an error signal correlation detection circuit such as a tap weight control circuit of a cross-polarization interference compensation device, such as automatic waveform equalization using a transversal filter. (Background Art) A conventional circuit will be explained using a 2 3 =8-value signal as an example of a received signal. The 8-value signal is a signal normally used in the 64QAM communication system. In other words, the 64QAM signal is a signal having a state of 8×8=64 values because signals with 8-value amplitudes are arranged in-phase and orthogonally. FIG. 7 shows an example of the basic configuration of a receiving system for the 64QAM communication system. 100 is a receiving antenna, and 101 is a receiver, whose main function here is to convert the frequency from the RF band to the IF band. A demodulator 102 demodulates a signal having eight amplitude levels. Usually a quadrature detector is used. 103 is an A/D converter for identifying and reproducing demodulated signals. A waveform equalizer 104 is used to reduce waveform distortion caused by fading and the like, and a transversal filter is used. Note that this figure shows an example of a normal transmission system, so 1
Although 04 is a waveform equalizer, in the case of a communication system equipped with a cross-polarization interference compensation function, 104 may be replaced with an interference compensator instead of the waveform equalizer. 1
05 is the output point of the identified and reproduced data string. FIG. 8 shows a specific example of the configuration of the transversal filter circuit. This consists of a filter section 1040 and a control circuit 1041. The filter section 1040 includes seven stages of delay elements 1040-a, multipliers 1040-b provided corresponding to each delay element, and an adder 1040-c that adds the outputs of each multiplier. One delay element delays the input signal by a time corresponding to a clock period.
The control circuit 1041 applies a control signal C -3 to the multiplier.
~C 3 is produced. The present invention relates to a novel configuration of this control circuit. As shown in FIG. 1, a 4-bit or more A/D converter is used to identify and reproduce the detected signal for the 8-value signal. Note that this figure is an example when natural code arrangement is used, and the A/D converter outputs the result of counting the 8-value signal points from the top in binary numbers. That is, this is an example in which the most significant signal is identified as bits (1, 1, 1), and the least significant signal is identified as bits (0, 0, 0). Of course, if the code arrangement is changed to, for example, a Gray code arrangement, the relationship between signal points and identification bits will be different, but the present invention is naturally applicable to that case as well. As shown in Figure 1, in the case of natural code arrangement, the most significant bit of the identification bits is the result of identification to divide the input range into two (this is called identification of Path1), and the top two The bit number is the result of further dividing the whole into two equal parts, that is, dividing the whole into four equal parts (this is called identification of Path2),
The upper 3rd bit is the result of further dividing the whole into 2 equal parts, that is, the result of dividing the whole into 8 equal parts, and the upper 4
The bit number is the result of dividing the whole into 16 equal parts. In other words, the identification level of the upper 4th bit is
This is the signal point position of the transmitted signal (this is Path4
It is called identification. ). Therefore, the upper three bits represent the identification result of the received signal. For example, in the case of natural code arrangement,
The highest level signal point is identified as (1, 1, 1), the fifth signal point from the top as (0, 1, 1), and the lowest signal point as (0, 0, 0). be done. Furthermore, the value of Path4 indicates the direction of change of the received signal with the transmitted signal point as the threshold value. In other words, it is desirable to have the highest noise margin when the received amplitude corresponds to the vicinity of the signal point, so it is natural to transmit at such a level when transmitting, but the receiving side may be affected by the received amplitude due to intersymbol interference during transmission, etc. It is normal for the signal point to shift either above or below the signal point. Accordingly
It can be said that the value of Path4 represents the direction of intersymbol interference. That is, if the received signal changes in the positive direction compared to the transmitted signal, Path4=1, and if it changes in the negative direction, Path4=0. Conventionally, for waveform automatic equalizers and cross-polarization interference compensators using transversal filters, the ZF (Zero-Forcing) method has been used in tap weight control circuits that control the tap weight circuits, especially in high-speed regions. It was used. Regarding the transversal filter control circuit 1041 shown in FIG. 8, a specific configuration corresponding to the ZF method is shown in FIG. Here, signal 1 of Path1 represents the polarity of the signal, and signal 1 represents the direction of intersymbol interference.
Take 2 bits of signal 2 of Path4 as the input signal,
clock period delay circuits 3, 4, 5, 6, respectively.
7, 8, 9, 10, and exclusive OR circuits 11 and 1 that take correlations in different cycle periods, respectively.
2, 13, 14, 15, 16, 17, its output M
Integrating circuits 18, 19, 2 for integrating the required bits for the set (FIG. 2 shows the case where M=5)
It was composed of 0, 21, 22, 23, and 24. In wireless signal transmission, the modulator input signal on the transmitting side is almost always bipolar due to the configuration of the transceiver. Therefore, even on the receiving side, the demodulator output (A/D converter input) becomes bipolar. For example, in Figure 1, the level indicated by the dashed line between the fourth and fifth signal points from the top is zero level,
A value larger than that is positive, and a value smaller than that is negative. Therefore, Path1 represents the polarity of the signal. In the ZF method, control is performed using only the signal representing the polarity of the signal (Path 1) and the signal representing the direction of intersymbol interference (Path 4), which represent the direction of error, and the signal representing the absolute amount of error. Therefore, this output signal is constant regardless of the amount of intersymbol interference of the 8-level signal, so when the amount of intersymbol interference is large, that is, when the amount of distortion is large, control convergence is poor and the entire device This was a cause of deterioration of the characteristics of the product. (Problem to be solved by the invention) In order to solve the above-mentioned drawbacks, the present invention takes into account not only the direction but also the absolute amount of the error signal, and tap weight control that weights the error signal according to the amount using only a digital logic circuit. It provides a circuit for obtaining signals. (Structure and operation of the invention) A case will be described in which an embodiment of the invention is applied to the ZF method, which is a control method for a transversal automatic equalizer. Figure 3 shows a control circuit for a 64QAM 7-tap transversal filter. Delay elements 29-36 are the same as delay elements 3-10 of the conventional circuit shown in FIG. Exclusive OR circuit 45
51 are the same as 11 to 17 of the conventional circuit. Integrators 52-58 are different from conventional integrators 18-24 to reflect the features of the present invention, as will be described later. Further, delay elements 37 to 44 are newly provided here. This is the signal input from input points 27 and 28 (Path5' and Path6' as described later)
This is to match the time of the signal inputted from the input point 26 (Path 4). As shown in FIG. 4, the 8-value signal (64QAM demodulated signal) is digitized by a 6-bit A/D converter. Generally, in the case of a 2n value signal, an A/D converter having an accuracy of (n+2) bits or more is used. As a result, Path1 to Path4 are the same as in FIG. Path4 and
As shown in Figure 5, the results of the exclusive OR of Path5 (referred to as Path5') and the results of the exclusive OR of Path4 and Path6 (referred to as Path6')
The amount of intersymbol interference can be evaluated in four stages using the two bits Path5' and Path6'. In other words, it can be said that the closer the received signal is to the transmitted signal, the smaller the intersymbol interference is, and the farther away from the transmitted signal, the larger the intersymbol interference becomes. closest to the point, both of which are 0
Since the state where is the farthest from the signal point,
This is because Path5' and Path6' can represent the magnitude of intersymbol interference. Figure 5 clarifies this point. Generally, when the detection bit of the amount of intersymbol interference is A (A: an integer), it can be evaluated in 2 A stages. In the present invention, as a signal used for controlling the tap,
A Path1 signal representing the polarity of the signal, a Path4 signal representing the direction of intersymbol interference, and Path5' and Path6' signals representing the amount of intersymbol interference are used. The signal of Path1 comes from the input point 25, the signal of Path4 comes from the input point 26, and the signals of Path5' and Path6' come from the input points 27 and 2, respectively.
It is input from 8. The processing of the Path1 signal and the Path4 signal is the same as in the conventional example, and the outputs of the exclusive OR circuits 45 to 51 determine the counting direction (in other words, up direction or down direction) of the up/down counter that constitutes the integrator. give. In the present invention
A tap weight control signal is obtained by changing the count amount of the upda counter, that is, the integration time constant, using the signals of Path5' and Path6'. Specifically, the number of stages of the up-down counter is also variable in four stages according to the amount of intersymbol interference in four stages.
In other words, when the amount of intersymbol interference is minimum (Path5′=
Path6' = 1) is the case where the number of counter stages is the largest, the control speed can be slow, so high-precision control is performed, and the amount of intersymbol interference is the maximum (Path5' =
Path6'=0) has the smallest number of counter stages to enable high-speed control. FIG. 6 shows a specific configuration example of a counter for executing the above operations. For example, 8191 bits or (2 13
1) A 13-stage counter is required for bit-by-bit integration. Except for the stage number control section consisting of AND circuits 70-73 and inverters 74-77, this is the same as a known up-down counter. Input point 62
is a count direction designation signal input point, into which the output signal of the exclusive OR circuit 45 etc. in FIG. 3 is input. 59 is a clock path input point which is a count pulse, 60 is a Path5' signal input point, and 61 is a Path6' signal input point. When the amount of intersymbol interference is minimum, that is, when Path5'=Path6'=1, gate 70 is turned on, so T-flip-flops 63 to 69 operate, and the number of counter stages becomes maximum. And vice versa
Since the gate 73 is turned on when Path5'=Path6'=0, the T-flip-flops 66 to 69 operate, so that the number of counter stages is minimized. As described above, the number of stages can be made variable according to the amount of intersymbol interference. Then, by arbitrarily extracting K bits from the highest stage of the counter according to the required accuracy of the tap weight control signal, a tap weight control signal having K bit accuracy can be obtained. With the above configuration, the integrator automatically shortens the integration time of the integrator when the amount of intersymbol interference is large, and lengthens the integration time of the integrator when the amount of intersymbol interference is small. By switching the time constant of , control accuracy and convergence can be improved. The above is a case where the ZF method is applied, but the control algorithm of the transversal equalizer mainly integrates the multi-value level of the input or output signal and the output error signal. It is clear that selecting the digit position of the counter input by looking at the magnitude of the output error signal can be applied to all the algorithms shown in Table 1.

【表】 (発明の効果) 以上述べたように、本誤差信号相関検出回路
は、符号間干渉量に応じ、その量が大きいときは
制御の収束を速くするため、〓p−downカウン
タの上位段にカウントパルスを接続し、一方その
量が小さいときは制御速度を遅くし、積分時間を
長くすることにより安定な制御信号を出力するよ
う、自動的に切替えることにより全体として、特
性の向上を可能にするタツプ重み制御信号を得る
ことができる。
[Table] (Effects of the Invention) As described above, this error signal correlation detection circuit uses the upper p-down counter to quickly converge control when the amount of intersymbol interference is large. By connecting a count pulse to the stage and automatically switching to output a stable control signal by slowing down the control speed and lengthening the integration time when the amount is small, overall characteristics can be improved. A tap weight control signal can be obtained that enables the tap weight control signal.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の識別法を示す図、第2図は従来
のタツプ重み制御回路、第3図は本発明による制
御回路、第4図は本発明による識別法を示す図、
第5図はPath5′とPath6′の間の符号間干渉を示す
図、第6図はアツプダウンカウンタのブロツク図
である。第7図は64QAM通信方式の受信系の構
成例、第8図はトランスバーサルフイルタを用い
た波形等化器の構成例である。 1……極性信号入力端子、2……誤差信号(符
号間干渉の方向)入力端子、3,4,5,6,
7,8,9,10……クロツク周期遅延回路、1
1,12,13,14,15,16,17……排
他的論理和回路、18,19,20,21,2
2,23,24……積分器、25……極性信号入
力端子、26……符号間干渉の方向を示すビツト
の入力端子、27,28…符号間干渉量を示すビ
ツトの入力端子、29〜44……クロツク周期遅
延回路、45〜51……排他的論理和回路、52
〜58……積分器、59……カウントパルス入力
端子、60,61……符号間干渉量を示すビツト
の入力端子子、62……〓p−down制御信号、
63〜69……T−フリツプフロツプ、70〜7
3……3入力AND回路、74〜78……反転回
路、79〜95……2入力NAND回路、96〜
98……2入力OR回路。
FIG. 1 is a diagram showing a conventional identification method, FIG. 2 is a conventional tap weight control circuit, FIG. 3 is a control circuit according to the present invention, and FIG. 4 is a diagram showing a classification method according to the present invention.
FIG. 5 is a diagram showing intersymbol interference between Path5' and Path6', and FIG. 6 is a block diagram of the up-down counter. FIG. 7 shows an example of the configuration of a receiving system for a 64QAM communication system, and FIG. 8 shows an example of the configuration of a waveform equalizer using a transversal filter. 1...Polar signal input terminal, 2...Error signal (direction of intersymbol interference) input terminal, 3, 4, 5, 6,
7, 8, 9, 10...clock period delay circuit, 1
1, 12, 13, 14, 15, 16, 17...exclusive OR circuit, 18, 19, 20, 21, 2
2, 23, 24...Integrator, 25...Polar signal input terminal, 26...Bit input terminal indicating the direction of intersymbol interference, 27, 28...Bit input terminal indicating the amount of intersymbol interference, 29- 44... Clock cycle delay circuit, 45-51... Exclusive OR circuit, 52
~58...Integrator, 59...Count pulse input terminal, 60, 61...Bit input terminal indicating the amount of intersymbol interference, 62...〓p-down control signal,
63-69...T-flipflop, 70-7
3...3-input AND circuit, 74-78...inverting circuit, 79-95...2-input NAND circuit, 96-
98...2 input OR circuit.

Claims (1)

【特許請求の範囲】 1 2N値(N:整数)の多値信号を識別するJ
(J:J≧N+2の整数)ビツトの精度を持つ
A/D変換器出力の最上位ビツト(MSB)をク
ロツク周期単位で遅延させる第一の遅延素子列2
9,30,31,22と、 前記A/D変換器出力の上位(N+1)ビツト
目のデータをクロツク周期単位で遅延させる第二
の遅延素子列33,34,35,36と、 前記A/D変換器の上位(N+1)ビツト目以
降の出力に基づいて生成した符号間干渉量を表す
信号をクロツク周期単位で遅延させるための、前
記第二の遅延素子列と同一構成をとる少なくとも
一つの遅延素子列37,38,39,40を含む
第三の遅延素子列と、 前記第一の遅延素子列と前記第二の遅延素子列
て互いに遅延量の異なる出力信号同士の排他的論
理和をとる排他的論理和回路列45,46,4
7,48,49,50,,51と、 該排他的論理和回路列の出力に応じてクロツク
を加算又は減算するカウンタ列52,53,5
4,55,56,57,58より構成してトラン
スバーサルフイルタのタツプ制御信号を得る回路
であつて、前記第三の遅延素子列から出力される
前記符号間干渉量を表す信号に応じて前記カウン
タ列のカウント段数を可変にすることを特徴とす
る誤差信号相関検出回路。
[Claims] 1 2 J for identifying a multi-value signal with N values (N: integer)
A first delay element array 2 that delays the most significant bit (MSB) of the A/D converter output with (J: an integer of J≧N+2) bit precision in units of clock cycles.
9, 30, 31, 22, a second delay element array 33, 34, 35, 36 that delays the upper (N+1) bit data of the output of the A/D converter in clock cycle units; At least one delay element array having the same configuration as the second delay element array for delaying a signal representing the amount of intersymbol interference generated based on the output from the upper (N+1)th bit of the D converter in units of clock cycles. A third delay element array including delay element arrays 37, 38, 39, and 40, and an exclusive OR of output signals having different delay amounts from the first delay element array and the second delay element array. Exclusive OR circuit arrays 45, 46, 4
7, 48, 49, 50, , 51, and counter rows 52, 53, 5 that add or subtract clocks according to the output of the exclusive OR circuit row.
4, 55, 56, 57, and 58 to obtain the tap control signal of the transversal filter, the circuit is configured to obtain the tap control signal of the transversal filter according to the signal representing the amount of intersymbol interference output from the third delay element array. An error signal correlation detection circuit characterized in that the number of count stages of a counter string is made variable.
JP10059084A 1984-05-21 1984-05-21 Error signal correlation detecting circuit Granted JPS60245322A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10059084A JPS60245322A (en) 1984-05-21 1984-05-21 Error signal correlation detecting circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10059084A JPS60245322A (en) 1984-05-21 1984-05-21 Error signal correlation detecting circuit

Publications (2)

Publication Number Publication Date
JPS60245322A JPS60245322A (en) 1985-12-05
JPH0586092B2 true JPH0586092B2 (en) 1993-12-09

Family

ID=14278088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10059084A Granted JPS60245322A (en) 1984-05-21 1984-05-21 Error signal correlation detecting circuit

Country Status (1)

Country Link
JP (1) JPS60245322A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH084245B2 (en) * 1986-11-07 1996-01-17 日本電信電話株式会社 Multi-valued identification method

Also Published As

Publication number Publication date
JPS60245322A (en) 1985-12-05

Similar Documents

Publication Publication Date Title
AU652154B2 (en) Receiver comprising at least two receive branches
AU615864B2 (en) Demodulator with composite transversal equalizer and eye detection clock synchronizer
JPH04291522A (en) Receiver consisting of at least two receiving rranches
US11627022B2 (en) Variable gain amplifier and sampler offset calibration without clock recovery
CA2055847C (en) Decision feedback equalizer
JPS6069908A (en) Adaptive equalizer for digital signal affected by distortion with time change charcteristic
US11368278B2 (en) Skew detection and correction for orthogonal differential vector signaling codes
EP0235300B1 (en) Radio data transmission system
US3875333A (en) Method of eliminating errors of discrimination due to intersymbol interference and a device for using the method
JPH0586092B2 (en)
JP2518690B2 (en) Transversal filter control circuit
KR20050021491A (en) Fsk receiver having a variable threshold slicer stage and corresponding method
US6292510B1 (en) Automatic equalization method and automatic equalizer
JP2606540B2 (en) Waveform equalizer
JP2827197B2 (en) Wireless data transmission system
JP2511157B2 (en) Automatic equalizer
JPH0748677B2 (en) Equalizer
KR100192798B1 (en) A matched filter of quadrature phase shift keying demodulator
SU1113891A1 (en) Device for adaptive receiving of digital signals
NZ779952A (en) Adaptive hopping equalizer
KR100321741B1 (en) Decision feed-back equalizer having feed-back equalizer and un-normalized slicer
Wong et al. Application of a transversal Laguerre network in adaptive equalization
JPH0211189B2 (en)
JP2001111462A (en) Delay judgment feedback type series estimation diversity receiver
SU559399A1 (en) Adaptive corrector for a multi-level signal transmission system

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term