JPH0585781A - Production of carbon coated optical fiber - Google Patents

Production of carbon coated optical fiber

Info

Publication number
JPH0585781A
JPH0585781A JP3274820A JP27482091A JPH0585781A JP H0585781 A JPH0585781 A JP H0585781A JP 3274820 A JP3274820 A JP 3274820A JP 27482091 A JP27482091 A JP 27482091A JP H0585781 A JPH0585781 A JP H0585781A
Authority
JP
Japan
Prior art keywords
optical fiber
carbon
reaction tube
carbon coating
film thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3274820A
Other languages
Japanese (ja)
Other versions
JP2920010B2 (en
Inventor
Takeshi Shimomichi
毅 下道
Keiji Ohashi
圭二 大橋
Shinji Araki
真治 荒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP3274820A priority Critical patent/JP2920010B2/en
Publication of JPH0585781A publication Critical patent/JPH0585781A/en
Application granted granted Critical
Publication of JP2920010B2 publication Critical patent/JP2920010B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Surface Treatment Of Glass Fibres Or Filaments (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

PURPOSE:To produce a carbon coated optical fiber having a uniform film thickness and excellent hydrogen resistance within a wide range of spinning rate from low rate to high rate. CONSTITUTION:A naked optical fiber 1 is allowed to run in a carbon coating reaction tube 4, where gaseous starting materials are brought into a reaction to form a carbon coating film on the surface of the optical fiber 1 by a thermochemical vapor growth method. At this time, relative change in thickness of the carbon coating film is measured and the position of the reaction tube 4 is varied in the longitudinal directions of the optical fiber 1 in accordance with the measured value to control conditions in film formation.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、光ファイバ表面に形
成された炭素被膜の膜厚の相対的な変化を監視しつつ紡
糸することにより、低速から高速までの紡糸速度の広い
範囲において耐水素性に優れた均一な膜厚のカーボンコ
ートを被覆することのできるカーボンコート心線の製造
方法に関する。
This invention relates to hydrogen resistance in a wide range of spinning speed from low speed to high speed by spinning while monitoring the relative change in the film thickness of the carbon coating formed on the surface of an optical fiber. The present invention relates to a method for producing a carbon-coated core wire capable of coating a carbon coat having an excellent uniform thickness.

【0002】[0002]

【従来の技術】従来カーボンコート心線の製造方法に
は、紡糸炉において溶融された光ファイバ裸線の余熱を
利用し、光ファイバ裸線をカーボンコート反応管に導
き、ここでその光ファイバ裸線の表面に熱化学気相成長
反応によって、原料ガスを反応させて炭素被膜を形成
し、カーボンコート心線をつくり、これにレーザー光を
照射して、レーザー光の透過率を測定し、この測定値に
基づき原料供給系にフィードバックをかけ、供給原料ガ
スの濃度・流量等を変化させて炭素被膜の膜厚を調整す
る方法がある。また、加熱炉を用いて熱を加え原料ガス
を分解し、光ファイバ裸線の表面に炭素被膜を形成させ
てカーボンコート心線をつくり、同様にレーザー光の透
過率を測定し、この測定値に基づき加熱炉の温度を変化
させて炭素被膜の膜厚を調整する方法がある。またこの
上記二方法を併用する方法がある。一方、光ファイバ裸
線の紡糸においては、通常光ファイバの母材は外径が長
手方向に対し一定でないため、母材の紡糸炉への挿入速
度は一定とし、紡糸速度を変化させることによりファイ
バ外径を一定にする方法がとられている。このときの紡
糸速度の変化率は±10%程度である。
2. Description of the Related Art Conventionally, a method for producing a carbon coated core wire utilizes the residual heat of an optical fiber bare wire melted in a spinning furnace to guide the bare optical fiber to a carbon coated reaction tube, where the bare optical fiber is used. A carbon gas is formed by reacting the raw material gas on the surface of the wire by a thermochemical vapor deposition reaction, a carbon coated core wire is made, laser light is irradiated to this, and the transmittance of the laser light is measured. There is a method of feeding back the raw material supply system based on the measured value to change the concentration and flow rate of the supply raw material gas to adjust the thickness of the carbon coating. Also, heat is applied using a heating furnace to decompose the raw material gas, a carbon coating is formed on the surface of the bare optical fiber, a carbon coated core wire is made, and similarly the transmittance of the laser light is measured. There is a method of adjusting the film thickness of the carbon coating by changing the temperature of the heating furnace based on the above. There is also a method of using these two methods in combination. On the other hand, in the spinning of bare optical fibers, the outer diameter of the base material of an optical fiber is not always constant in the longitudinal direction, so the rate of insertion of the base material into the spinning furnace is constant, and the spinning speed is varied to change the fiber diameter. A method of keeping the outer diameter constant is adopted. The rate of change of spinning speed at this time is about ± 10%.

【0003】したがって、これらの方法においては、紡
糸速度が変化すると、カーボンコート反応管までの光フ
ァイバ裸線の到達時間が変わるため、紡糸速度により光
ファイバ裸線表面の温度低下の割合が異なり、カーボン
コート反応管内で原料ガスと接触する光ファイバ裸線表
面の温度は変化する。熱化学気相成長法においては原料
ガスが反応する際の光ファイバ裸線表面の温度が重要で
あり、上記諸方法においてはこの光ファイバ裸線の温度
の変化が炭素被膜の膜厚不均一の原因となる。光ファイ
バ裸線表面に形成された炭素被膜の耐水素性はこの膜厚
によって大きく変化する。また、これらの方法にはフィ
ードバックをかけてからの原料ガスと反応する際に光フ
ァイバ裸線表面の温度が変化するまでには数秒から数十
秒と時間の遅れがあるため、高速紡糸における炭素被膜
形成に適用できないという欠点があった。
Therefore, in these methods, when the spinning speed changes, the arrival time of the bare optical fiber to the carbon-coated reaction tube changes, so the rate of temperature decrease on the bare optical fiber surface varies depending on the spinning speed. The temperature of the surface of the bare optical fiber that comes into contact with the raw material gas in the carbon-coated reaction tube changes. In the thermal chemical vapor deposition method, the surface temperature of the bare optical fiber when the source gas reacts is important, and in the above methods, the change in temperature of the bare optical fiber causes a nonuniform carbon film thickness. Cause. The hydrogen resistance of the carbon coating formed on the surface of the bare optical fiber largely changes depending on this film thickness. Further, in these methods, there is a delay of several seconds to several tens of seconds until the temperature of the bare optical fiber surface changes when reacting with the raw material gas after feedback is applied. It has a drawback that it cannot be applied to form a film.

【0004】[0004]

【発明が解決しようとする課題】よって、この発明にお
ける課題は、フィードバックをかけてから熱化学気相成
長反応を直接的に支配する光ファイバ裸線の温度を瞬時
に変化させて、高速紡糸においても均一な膜厚の炭素被
膜を形成しうる方法を提供することにある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to increase the temperature of a bare optical fiber that directly controls the thermochemical vapor deposition reaction immediately after feedback is applied, thereby achieving high-speed spinning. Another object is to provide a method capable of forming a carbon film having a uniform film thickness.

【0005】[0005]

【課題を解決するための手段】かかる課題は、 光ファ
イバ裸線表面に熱化学気相成長法によって炭素被膜を形
成する際に、炭素被膜が形成された光ファイバ表面の長
さ方向に沿う炭素被膜の膜厚の相対的な変化を測定し、
この測定値に基づいてカーボンコート反応管の位置を光
ファイバの長手方向に変化させて炭素被膜の形成条件を
制御する方法で解決される。
When a carbon coating is formed on the surface of a bare optical fiber by a thermochemical vapor deposition method, the carbon along the length direction of the surface of the optical fiber on which the carbon coating is formed is formed. Measure the relative change in the film thickness of the coating,
This is solved by changing the position of the carbon-coated reaction tube in the longitudinal direction of the optical fiber based on the measured value to control the conditions for forming the carbon coating.

【0006】[0006]

【作用】炭素被膜の膜厚の変動を計測し、これによって
カーボンコート反応管の位置を変化させるため、遅れの
ない制御ができる。
The function of measuring the variation of the film thickness of the carbon coating and changing the position of the carbon coating reaction tube by this allows control without delay.

【0007】以下、この発明を詳しく説明する。図1は
この発明の製造方法に好適に用いられる製造装置の一例
を示したものである。図中符号1は光ファイバ裸線であ
り、この光ファイバ裸線1は、光ファイバ母材2を紡糸
炉3で紡糸することで得られ、紡糸炉3の下方に設けら
れたカーボンコート反応管4内に送られ、ここでその表
面に炭素被膜が形成されるようになっている。ここで光
ファイバ裸線の表面に炭素被膜が形成されたものをカー
ボンコート心線とする。またこのカーボンコート反応管
4の下方には、カーボンコート心線にレーザー光を照射
し、炭素被膜の膜厚を評価するレーザー膜厚モニタ5が
設けられている。
The present invention will be described in detail below. FIG. 1 shows an example of a manufacturing apparatus preferably used in the manufacturing method of the present invention. In the figure, reference numeral 1 is a bare optical fiber, and the bare optical fiber 1 is obtained by spinning an optical fiber preform 2 in a spinning furnace 3 and is a carbon coated reaction tube provided below the spinning furnace 3. 4, and a carbon film is formed on the surface thereof. Here, a bare carbon fiber having a carbon coating formed on its surface is referred to as a carbon coated core wire. Further, below the carbon coat reaction tube 4, there is provided a laser film thickness monitor 5 which evaluates the film thickness of the carbon coating by irradiating the carbon coat core wire with laser light.

【0008】レーザー膜厚モニタ5は、カーボンコート
心線にレーザー光を照射し、このレーザー光の透過量を
測定し、この測定値から炭素被膜の耐水素特性を表わす
指標である膜厚を計測する装置であって、カーボンコー
ト心線の走行路上でカーボンコート反応管4の下方に測
定点として設けられている。上記カーボンコート反応管
4とこのレーザー膜厚モニタ5とはコントローラ6とモ
ータ7を介して接続されており、レーザー膜厚モニタ5
で得られた炭素被膜の膜厚の計測値がコントローラ6に
送られ、これによってカーボンコート反応管4にフィー
ドバックがかけられ、このカーボンコート反応管4がモ
ータ7により光ファイバの長手方向に沿って上下に移動
するようになっている。
The laser film thickness monitor 5 irradiates the carbon coated core wire with laser light, measures the amount of transmission of this laser light, and measures the film thickness, which is an index representing the hydrogen resistance of the carbon coating, from this measured value. The measurement device is provided as a measurement point below the carbon coat reaction tube 4 on the running path of the carbon coat core wire. The carbon coat reaction tube 4 and the laser film thickness monitor 5 are connected via a controller 6 and a motor 7, and the laser film thickness monitor 5
The measured value of the film thickness of the carbon coating obtained in step 1 is sent to the controller 6, which feeds it back to the carbon coating reaction tube 4, and the carbon coating reaction tube 4 is moved by the motor 7 along the longitudinal direction of the optical fiber. It is designed to move up and down.

【0009】図1のような製造装置を用いて、カーボン
コート心線を製造するには、以下の工程による。まず光
ファイバ母材2を用意し、これを紡糸炉3に設置し、1
00〜600m/分で溶融紡糸して光ファイバ裸線1を
カーボンコート反応管4内に送り込む。カーボンコート
反応管4内では熱化学気相成長反応により、原料ガスの
ジクロルエタンなどが反応して光ファイバ裸線1表面に
炭素被膜が形成され、カーボンコート心線が得られる。
このカーボンコート心線をついでこのカーボンコート心
線の膜厚を計測するレーザー膜厚モニタ5に送り、この
膜厚を計測する。カーボンコート心線の膜厚によってレ
ーザー光の透過量が変動するので、予め十分な膜厚のカ
ーボンコート心線をレーザー膜厚モニタ5内を走行させ
てレーザー光の透過量と膜厚との関係を調べておけば、
レーザー膜厚モニタ5内で測定された透過量によって膜
厚が求められる。よって、このモニタ5からの出力信号
を制御信号としてコントローラ6に送れば、コントロー
ラ6はこの信号に基づいてモータ7を作動させ、カーボ
ンコート反応管4をカーボンコート心線の長さ方向に上
方または下方に移動させる。
The following steps are used to manufacture a carbon-coated core wire using the manufacturing apparatus as shown in FIG. First, the optical fiber preform 2 is prepared, installed in the spinning furnace 3, and
The bare optical fiber 1 is sent into the carbon-coated reaction tube 4 by melt-spinning at 100 to 600 m / min. In the carbon coat reaction tube 4, a raw material gas such as dichloroethane reacts by a thermochemical vapor deposition reaction to form a carbon coating on the surface of the bare optical fiber 1 and a carbon coated core wire is obtained.
This carbon coated core wire is then sent to a laser film thickness monitor 5 for measuring the film thickness of this carbon coated core wire, and this film thickness is measured. Since the laser light transmission amount varies depending on the film thickness of the carbon coated core wire, a carbon coated core wire having a sufficient film thickness is preliminarily run in the laser film thickness monitor 5 so that the relationship between the laser light transmission amount and the film thickness. If you check
The film thickness is obtained by the amount of transmission measured in the laser film thickness monitor 5. Therefore, if the output signal from the monitor 5 is sent to the controller 6 as a control signal, the controller 6 operates the motor 7 based on this signal to move the carbon coat reaction tube 4 upward or in the longitudinal direction of the carbon coat core wire. Move it down.

【0010】紡糸線速が遅くなり膜厚が薄くなり始める
とレーザー光の透過量が多くなり、ここで測定された透
過量は制御信号としてコントローラ6に送られる。制御
信号を受けたコントローラ6はカーボンコート反応管4
を上方に移動するようにモータ7に駆動信号を送ると、
カーボンコート反応管4は上方に移動し、ファイバ裸線
表面の温度が高い部分で原料ガスが分解し、光ファイバ
裸線と反応するので熱化学気相成長反応の効率が高まり
膜厚が厚くなる。
When the spinning linear velocity becomes slow and the film thickness starts to become thin, the laser beam transmission amount increases, and the transmission amount measured here is sent to the controller 6 as a control signal. The controller 6 receiving the control signal is the carbon coating reaction tube 4
When a drive signal is sent to the motor 7 to move the
The carbon-coated reaction tube 4 moves upward, and the raw material gas is decomposed at the high temperature portion of the surface of the bare fiber wire and reacts with the bare optical fiber, so that the efficiency of the thermochemical vapor deposition reaction increases and the film thickness increases. ..

【0011】また、紡糸線速が速くなり膜厚が厚くなり
始めるとレーザー光の透過量が少なくなり、ここで測定
された透過量は制御信号としてコントローラ6に送られ
る。制御信号を受けたコントローラ6はカーボンコート
反応管4を下方に移動するようにモータ7に駆動信号を
送ると、カーボンコート反応管4は下方に移動し、ファ
イバ裸線表面の温度が低い部分で原料ガスが分解し、光
ファイバ裸線と反応するので熱化学気相成長反応の効率
が低くなり膜厚が薄くなる。膜厚は水素透過による光フ
ァイバ伝送損失の低減および機械的強度の向上の見地よ
り0.03μm以上〜0.1μm未満が好ましい。ここ
では膜厚を測定する装置としてレーザー光を用いたが必
ずしもこれに限るものではなく、電磁波をカーボンコー
ト心線に照射して誘電率を測定する方法やカーボンコー
ト心線の電気抵抗値を四端法によって測定する方法など
もある。
Further, when the spinning linear velocity becomes faster and the film thickness becomes thicker, the laser light transmission amount decreases, and the transmission amount measured here is sent to the controller 6 as a control signal. Upon receiving the control signal, the controller 6 sends a drive signal to the motor 7 so as to move the carbon coated reaction tube 4 downward, and the carbon coated reaction tube 4 moves downward, where the temperature of the surface of the bare fiber wire is low. Since the raw material gas is decomposed and reacts with the bare optical fiber, the efficiency of the thermochemical vapor deposition reaction becomes low and the film thickness becomes thin. The film thickness is preferably 0.03 μm or more and less than 0.1 μm from the viewpoint of reducing optical fiber transmission loss due to hydrogen permeation and improving mechanical strength. Although laser light was used as the device for measuring the film thickness here, it is not necessarily limited to this, and a method of irradiating electromagnetic waves on the carbon coated core wire to measure the dielectric constant or the electrical resistance value of the carbon coated core wire can be measured. There is also a method of measuring by edge method.

【0012】このようにして炭素被膜の膜厚をモニタし
て、炭素被膜の不良部分を検出し、、これをフィードバ
ックしてカーボンコート反応管4の位置を光ファイバの
長手方向に沿って上方または下方に移動させることによ
り、長手方向に均一な膜厚の炭素被膜を形成したカーボ
ンコート心線の製造が可能となる。またカーボンコート
反応管4を移動可能としたので、熱化学気相成長反応を
直接的に支配する原料ガスと反応する際のファイバ裸線
表面温度を瞬時に変化させることができ、フィードバッ
クからの時間の遅れが非常に少なく、紡糸線速が速くな
るほど時間の遅れは少なくなるので高速紡糸においての
カーボンコート心線の製造が可能となる。
In this way, the thickness of the carbon coating is monitored to detect the defective portion of the carbon coating, and this is fed back to move the position of the carbon coating reaction tube 4 upward or along the longitudinal direction of the optical fiber. By moving it downward, it becomes possible to manufacture a carbon-coated core wire in which a carbon coating film having a uniform film thickness is formed in the longitudinal direction. Further, since the carbon coat reaction tube 4 is movable, the surface temperature of the bare fiber wire when reacting with the raw material gas that directly controls the thermochemical vapor deposition reaction can be instantly changed, and the time from the feedback can be changed. Is very small, and the higher the spinning speed, the less the time delay. Therefore, it becomes possible to manufacture a carbon-coated core wire in high-speed spinning.

【0013】[0013]

【発明の効果】以上説明したように、この発明のカーボ
ンコート心線の製造方法は炭素被膜が形成された光ファ
イバの長さ方向に沿う炭素被膜の膜厚の相対的な変化を
測定し、この測定値に基づいてカーボンコート反応管の
位置を光ファイバの長手方向に変化させて炭素被膜の形
成条件を制御するものであるので、低速から高速までの
紡糸速度の広い範囲において常に一定の耐水素性に優れ
た均一な膜厚のカーボンコート心線が製造できる。
As described above, the method for producing a carbon coated core wire of the present invention measures the relative change in the thickness of the carbon coating along the length direction of the optical fiber on which the carbon coating is formed, Based on this measurement value, the position of the carbon coating reaction tube is changed in the longitudinal direction of the optical fiber to control the conditions for forming the carbon coating, so that the water resistance is always constant over a wide range of spinning speed from low speed to high speed. It is possible to manufacture a carbon-coated core wire having excellent characteristics and a uniform film thickness.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明のカーボンコート心線の製造方法の実
施に好適に用いられる製造装置の一実施例を示した概略
構成図である。
FIG. 1 is a schematic configuration diagram showing an example of a manufacturing apparatus preferably used for carrying out the method for manufacturing a carbon-coated core wire of the present invention.

【符号の説明】[Explanation of symbols]

1・・・光ファイバ裸線、4・・・カーボンコート反応管 1 ... Bare optical fiber, 4 ... Carbon coated reaction tube

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 光ファイバ裸線をカーボンコート反応管
内に走行させて、この反応管内で熱化学気相成長法によ
って原料ガスを反応させて、光ファイバ裸線表面に炭素
被膜を形成する際に、炭素被膜が形成された光ファイバ
表面の長さ方向に沿う炭素被膜の膜厚の相対的な変化を
測定し、この測定値に基づいてカーボンコート反応管の
位置を光ファイバの長手方向に変化させて炭素被膜の形
成条件を制御することを特徴とするカーボンコート心線
の製造方法。
1. When a bare optical fiber is run in a carbon coated reaction tube and a raw material gas is reacted in the reaction tube by a thermochemical vapor deposition method to form a carbon coating on the bare optical fiber surface. The relative change of the film thickness of the carbon coating along the length direction of the optical fiber surface on which the carbon coating is formed is measured, and the position of the carbon coated reaction tube is changed in the longitudinal direction of the optical fiber based on this measurement value. A method for producing a carbon-coated core wire, which comprises controlling the conditions for forming the carbon coating.
JP3274820A 1991-09-26 1991-09-26 Manufacturing method of carbon coated core wire Expired - Fee Related JP2920010B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3274820A JP2920010B2 (en) 1991-09-26 1991-09-26 Manufacturing method of carbon coated core wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3274820A JP2920010B2 (en) 1991-09-26 1991-09-26 Manufacturing method of carbon coated core wire

Publications (2)

Publication Number Publication Date
JPH0585781A true JPH0585781A (en) 1993-04-06
JP2920010B2 JP2920010B2 (en) 1999-07-19

Family

ID=17547026

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3274820A Expired - Fee Related JP2920010B2 (en) 1991-09-26 1991-09-26 Manufacturing method of carbon coated core wire

Country Status (1)

Country Link
JP (1) JP2920010B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02149451A (en) * 1988-12-01 1990-06-08 Sumitomo Electric Ind Ltd Production of inorganic coated optical fiber and device therefor
JPH0365534A (en) * 1989-07-31 1991-03-20 American Teleph & Telegr Co <Att> Coating method and device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02149451A (en) * 1988-12-01 1990-06-08 Sumitomo Electric Ind Ltd Production of inorganic coated optical fiber and device therefor
JPH0365534A (en) * 1989-07-31 1991-03-20 American Teleph & Telegr Co <Att> Coating method and device

Also Published As

Publication number Publication date
JP2920010B2 (en) 1999-07-19

Similar Documents

Publication Publication Date Title
CA1107508A (en) Method of drawing optical filaments
FI68607C (en) FREQUENCY REFRIGERATION FOR END GLASS FOUNDATION
AU627015B2 (en) Process for optical fiber drawing
US7197898B2 (en) Robust diameter-controlled optical fiber during optical fiber drawing process
CA2017387A1 (en) Method of making a carbon coated optical fiber
US4932990A (en) Methods of making optical fiber and products produced thereby
JPH09132424A (en) Method for drawing optical fiber
JPH0585781A (en) Production of carbon coated optical fiber
WO2006067787A2 (en) Forming and cooling glass-coated microwires
CN114415287B (en) Hydrogen-resistant carbon-coated fiber grating string and preparation method and preparation device thereof
CN1931757B (en) Optical fiber drawing process and control new method
US3428519A (en) Method for making a coated silica fiber and product produced therefrom
JPH0310204A (en) Nonlinear optical fiber and its manufacture
JP4252891B2 (en) Optical fiber drawing method
JP2010269971A (en) Method for manufacturing optical fiber
JP2682603B2 (en) Inorganic coated optical fiber manufacturing apparatus and manufacturing method
EP0301797B1 (en) Methods of making optical fiber and products produced thereby
JPH0832572B2 (en) Method for manufacturing base material for optical fiber
CN115236797B (en) High-temperature-resistant weak fiber grating array and preparation method thereof
JPS5843338B2 (en) Optical fiber manufacturing method
JP2007055852A (en) Manufacturing method of glass minute particle deposit
JPS6250419B2 (en)
JPH02283633A (en) Drawing method for optical fiber
JP2005119916A (en) Method and apparatus for manufacturing glass article
JPS60112638A (en) Manufacture of optical fiber

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19970624

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080423

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090423

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090423

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100423

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees