JPH0585532B2 - - Google Patents

Info

Publication number
JPH0585532B2
JPH0585532B2 JP58176773A JP17677383A JPH0585532B2 JP H0585532 B2 JPH0585532 B2 JP H0585532B2 JP 58176773 A JP58176773 A JP 58176773A JP 17677383 A JP17677383 A JP 17677383A JP H0585532 B2 JPH0585532 B2 JP H0585532B2
Authority
JP
Japan
Prior art keywords
afp
antibody
liposome
monoclonal antibody
cells
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58176773A
Other languages
Japanese (ja)
Other versions
JPS6067434A (en
Inventor
Hiroyuki Konno
Koichiro Kumai
Takuji Tadakuma
Tateji Yasuda
Kazuhiro Nagaike
Minoru Muramatsu
Seiko Hosokawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP17677383A priority Critical patent/JPS6067434A/en
Publication of JPS6067434A publication Critical patent/JPS6067434A/en
Publication of JPH0585532B2 publication Critical patent/JPH0585532B2/ja
Granted legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/127Liposomes
    • A61K9/1271Non-conventional liposomes, e.g. PEGylated liposomes, liposomes coated with polymers

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Dispersion Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は抗腫瘍剤に関する。 ガンのマーカーとして、αーフエトプロテイン
(AFP)及び胎児性抗原(CEA)が、よく知られ
ている。CEAは、消化器系のガン細胞の膜表面
に存在するとされている。他方、AFPは、多く
の肝ガン及びセルラインで産生することが認めら
れているが、細胞質に存在することが確かめられ
ているにすぎず、膜表面に存在するか否かは必ず
しも明らかではない。 本発明者らは、モノクローナル抗体に制ガン剤
や毒素を結合させる、いわゆる“ミサイル療法”
に適したヒト由来のAFPに対するモノクローナ
ル抗体を見出すべく、種々検討を行ない、ヒト由
来の膜表面に存在するAFP及びそれを認識する
モノクローナル抗体を見出し、本発明に到達し
た。 すなわち、本発明の要旨は腫瘍細胞に対する毒
素又は制ガン剤をリポソームに封入し、かかるリ
ポソーム表面にヒト由来のα−フエトプロテイン
(AFP)を認識するモノクローナル抗体を結合さ
せてなる抗腫瘍剤にある。 以下、本発明を詳細に説明する。 本発明において使用されるモノクロナール抗体
は、ヒト由来のAFPを認識するモノクローナル
抗体であればよいが、特に好適にはヒト由来の細
胞膜表面に存在するAFPを認識するモノクロー
ナル抗体が用いられる。かかるモノクローナル抗
体は次のような方法で得られる。 すなわち、まず、ヒト胎盤由来のAFPを、た
とえばBALB/Cマウス等に免疫した後、脾臓
を摘出し、ポリエチレングリコールを用い、P3
−U1等のマウスミエローマ細胞と融合し、常法
によりハイブリドーマを得る。そしてハイブリド
ーマ上清よりモノクローナル抗体を得る。 つぎに、常法により得られたこれらの抗体を用
いて、肝ガンセルライン(たとえば、PLC,
KN,NuE)を免疫組織化学的に染色し、陽性を
示す抗体を選択する。この検出は、アビオシン:
ビオチン化ワサビペルオキシダーゼコンプレツク
ス(ABC)キツトを用い、ホースラデイシユ・
ペルオキシダーゼの酵素活性により、ジアミノベ
ンジジンを基質として用いて行なわれる。 陽性を示す抗体を大量に入手するには、この選
択された抗体を産生するハイブリドーマを
BALB/Cマウス腹腔内に注射し、増殖させ、
腹水を採取することにより行なうことができる。
また、上記ハイブリドーマを培養タンクで大量培
養する方法によることもできる。 このようにして得られるモノクローナル抗体は
次のような性質を有する。 i 14Cラベル化した本抗体を用いて、胎盤由来
AFPがPLC肝ガンセルラインの膜に対する結
合を阻害するか否かをみると、AFPが抗体と
セルライン膜との結合を競合的に阻害すること
がわかる。 PLCセルラインを14C−ロイシンでラベル
し、その膜成分を“トリトンX”で可溶化し、
本抗体との結合をみると、明らかな結合性が認
められる。 また、培養上清中の分泌蛋白にも結合性が確
認される。 PLCセルラインの可溶化膜成分ならびに培
養上清中の抗体反応物を、オフアレル
(O′Farrel)らの方法に準じて二次元電気泳動
を行なうと、膜由来、培養上清由来のいずれの
結合物もAFPの性質(等電点、分子量)を有
することがわかる。 PLCセルラインの膜分画をトリプシン、プ
ロテアーゼ、チモトリプシン等の蛋白質分解酵
素で消化すると、本抗体との結合性は低下又は
低下傾向を示す。 また、“トリトンX”処理で低下傾向を示し、
リパーゼ処理により、その結合性は増加する。 本発明に係わる抗腫瘍剤は、腫瘍細胞に対する
毒素又は制ガン剤をリポソームに封入し、かかる
リポソーム表面にヒト由来のα−フエトプロテイ
ン(AFP)を認識するモノクローナル抗体、好
ましくは上記のような、ヒと由来の膜表面に存在
するAFPを認識する抗体を結合させてなる。 この毒素としては、リシン、アブリン等の植物
種子毒素及びジフテリア毒素等の細菌毒素などが
挙げられる。 これらの毒素は、細胞結合にあずかるB鎖と、
細胞内に入り毒性を示すA鎖とが、ジスルフイド
(S−S)結合によつて連結されている。このS
−S結合を還元し、−SH基を有するA鎖を分離し
て用いられる。 その他、補体活性化因子として知られているコ
ブラ毒などの動物毒素も用いることができる。 また、上記制ガン剤としては、特に制限されな
いが、たとえば、アドリアマイシン
(adriamycin)、アクチノマイシン
(actinomycin)、ダウノマイシン
(daunomycin)、ノガラマイシン
(nogalamycin)、ブレオマイシン(bleomycin)、
クロモマイシン(chromomycin)、ミスラマイシ
ン(mithramycin)等が挙げられる。 モノクローナル抗体との結合は、毒素または制
ガン剤の種類により、その官能基に応じてジアゾ
化、カルボジイミド化等の反応を利用する方法、
デキストランを用いる方法等が採用される。 本発明においては、リポソーム(脂質膜小胞)
にこれを封入(組み込み)させ、このリポソーム
の表面にモノクローナル抗体を結合するのが、薬
剤の細胞への取り込み、徐放化、毒性の軽減等の
観点から好適である。 主としてリン脂質からなる二重の脂質層からな
るリポソームとしては、()多重層、()小さ
な一枚膜、()大きな一枚膜、のいずれも使用
することができる。 脂質としてはホスフアチジルコリン(レシチ
ン)、リゾレシチン、ホスフアチジルエタノール
アミン、コレステロール等が用いられる。 調製は常法に従い、通常20nm〜数μm程度のも
のを得る。 この場合、毒素または制ガン剤の封入組み込み
は通常、リポソーム調製時に薬剤を溶液中に含有
させることにより行なわれる。これにより、親水
性のものは、リポソーム内に封入され、疎水性の
ものはリポソーム膜に組み込まれる。封入(組み
込み)量は、薬剤の種類に応じて適宜決定し得る
が、通常の投与法に比し、高濃度化することがで
きる。 このリポソーム表面上にモノクローナル抗体を
結合させる際には、抗体に疎水性の物質をつける
ことでリポソームに挿入させる方法、ホスフアチ
ジルエタノールアミンと抗体をグルタールで架橋
させる方法等が用いられるが、好適には次のよう
な方法が用いられる。 (a) ホスフアチジルエタノールアミンに−SH基
と反応する試薬を共有結合させたものを合成
し、リポソームに組み込んでおく。これに抗体
をSH化したもの、又は抗体間のS−S結合を
はずしてSH化したものを結合させる。上記共
有結合にはSPDP,MBS等が用いられる。又
は、 (b) リポソーム内に糖脂質を組み込んでおき、過
ヨウ素酸処理で生じたアルデヒド基と抗体を反
応させる。糖脂質としてガングリオシド等を用
い、過ヨウ素酸塩で処理してリポソーム表面を
アルデヒド化する。ついでNaBH3CNの存在
下で抗体をリポソーム結合させる。 本発明に係る抗腫瘍剤の投与は常法によること
ができる。 本発明に係る抗腫瘍剤は、毒素又は制ガン剤
を、ガン細胞へ選択的に輸送することができるの
で、高い治療効果が得られる。 以下、本発明を実施例によりさらに詳細に説明
する。 参考例 (1) マウスモノクローナル抗体の作製: ヒトAFPとして、胎盤より精製された純度99
%以上で、免疫化学的にヒトアルブミン(HSA)
と反応しないもの((株)森永生科研製)を用いた。 このヒトAFPを、BALB/Cマウスに10μg、
1回、フロイントの完全アジユバントとともに感
作し、最終免疫は静脈より注射し、3日後に脾臓
を摘出し、ポリエチレングリコール#400を用い
P3−U1マウスミエローマと融合し、常法により
ハイブリドーマを作製した。クローニングは限界
希釈法を用い、同法を4回以上行なつた。なお、
大量の抗体は、BALB/Cマウス腹水系により
採取した。 抗AFP抗体を産生するハイブリドーマは、6
回の融合により、約400クローンが選別された。
そのうち、11クローンの培養上清の抗体価IgG量
を表1に示す(上清を10倍濃縮した後、測定。)。
TECHNICAL FIELD The present invention relates to antitumor agents. Alpha-phetoprotein (AFP) and embryonic antigen (CEA) are well known as cancer markers. CEA is said to exist on the membrane surface of cancer cells in the digestive system. On the other hand, AFP has been recognized to be produced in many liver cancers and cell lines, but it has only been confirmed that it exists in the cytoplasm, and it is not necessarily clear whether it exists on the membrane surface or not. . The present inventors have developed the so-called "missile therapy" in which anticancer drugs and toxins are attached to monoclonal antibodies.
In order to find a monoclonal antibody against human-derived AFP suitable for this purpose, various studies were conducted, and the present invention was achieved by discovering AFP present on the surface of human-derived membranes and a monoclonal antibody that recognizes it. That is, the gist of the present invention resides in an antitumor agent, which is obtained by encapsulating a toxin or anticancer agent for tumor cells in a liposome, and binding a monoclonal antibody that recognizes human-derived α-fetoprotein (AFP) to the surface of the liposome. The present invention will be explained in detail below. The monoclonal antibody used in the present invention may be any monoclonal antibody that recognizes human-derived AFP, but monoclonal antibodies that recognize human-derived AFP present on the surface of cell membranes are particularly preferably used. Such monoclonal antibodies can be obtained by the following method. That is, first, after immunizing, for example, BALB/C mice with AFP derived from human placenta, the spleen was removed, and P3 was inoculated using polyethylene glycol.
-Fuse with mouse myeloma cells such as U1 to obtain a hybridoma by a conventional method. Monoclonal antibodies are then obtained from the hybridoma supernatant. Next, using these antibodies obtained by conventional methods, liver cancer cell lines (e.g., PLC,
Immunohistochemically stain KN, NuE) and select antibodies that show positivity. This detection is based on abiocin:
Using a biotinylated horseradish peroxidase complex (ABC) kit, horseradish
The enzymatic activity of peroxidase is carried out using diaminobenzidine as a substrate. To obtain large quantities of antibodies that show positivity, hybridomas that produce the selected antibodies are
BALB/C mice were injected intraperitoneally and allowed to grow.
This can be done by collecting ascites fluid.
Alternatively, the above hybridoma may be cultured in large quantities in a culture tank. The monoclonal antibody thus obtained has the following properties. Using this i 14 C-labeled antibody, placenta-derived
Examining whether AFP inhibits the binding of the PLC liver cancer cell line to the membrane, it is found that AFP competitively inhibits the binding of antibodies to the cell line membrane. Label the PLC cell line with 14 C-leucine, solubilize its membrane components with "Triton X",
When looking at the binding with this antibody, clear binding is observed. Furthermore, binding to secreted proteins in the culture supernatant was confirmed. When two-dimensional electrophoresis was performed on solubilized membrane components of the PLC cell line and antibody reactants in the culture supernatant according to the method of O'Farrel et al., it was found that both membrane-derived and culture supernatant-derived bonds were detected. It can be seen that substances also have AFP properties (isoelectric point, molecular weight). When the membrane fraction of the PLC cell line is digested with proteolytic enzymes such as trypsin, protease, and thymotrypsin, the binding property with the present antibody decreases or tends to decrease. Furthermore, treatment with “Triton X” showed a decreasing tendency;
Lipase treatment increases its binding properties. The antitumor agent according to the present invention encapsulates a toxin for tumor cells or an anticancer agent in a liposome, and a monoclonal antibody that recognizes human-derived α-fetoprotein (AFP), preferably a human as described above, is attached to the surface of the liposome. and an antibody that recognizes AFP present on the derived membrane surface. Examples of the toxin include plant seed toxins such as ricin and abrin, and bacterial toxins such as diphtheria toxin. These toxins have a B chain that participates in cell binding,
The A chain, which enters cells and exhibits toxicity, is linked by a disulfide (SS) bond. This S
It is used by reducing the -S bond and separating the A chain having the -SH group. In addition, animal toxins such as cobra venom, which is known as a complement activator, can also be used. In addition, the above-mentioned anticancer drugs are not particularly limited, but include, for example, adriamycin, actinomycin, daunomycin, nogalamycin, bleomycin,
Examples include chromomycin and mithramycin. Binding to the monoclonal antibody can be carried out using diazotization, carbodiimidation, or other reactions depending on the type of toxin or anticancer drug, depending on its functional group.
A method using dextran, etc. is adopted. In the present invention, liposomes (lipid membrane vesicles)
It is preferable to encapsulate (incorporate) the liposome into a liposome and bind a monoclonal antibody to the surface of the liposome, from the viewpoint of drug uptake into cells, sustained release, and reduction of toxicity. As a liposome consisting of a double lipid layer mainly composed of phospholipids, any of () multilayer, () small unilamellar, and () large unilamellar can be used. As the lipid, phosphatidylcholine (lecithin), lysolecithin, phosphatidylethanolamine, cholesterol, etc. are used. The preparation is carried out according to a conventional method, and a particle size of about 20 nm to several μm is usually obtained. In this case, the encapsulation of toxins or anticancer agents is usually carried out by including the drug in solution during liposome preparation. Thereby, hydrophilic substances are encapsulated within the liposome and hydrophobic substances are incorporated into the liposome membrane. The amount to be encapsulated (incorporated) can be determined as appropriate depending on the type of drug, but the concentration can be increased compared to normal administration methods. When binding a monoclonal antibody onto the liposome surface, methods such as attaching a hydrophobic substance to the antibody and inserting it into the liposome, or crosslinking phosphatidylethanolamine and the antibody with glutar, etc. are used, but suitable methods include The following methods are used: (a) Synthesize phosphatidylethanolamine with a reagent that reacts with the -SH group covalently bonded to it, and incorporate it into liposomes. To this is bound an antibody that has been converted to SH, or an antibody that has been converted to SH by removing the S-S bond between the antibodies. SPDP, MBS, etc. are used for the above covalent bond. Alternatively, (b) a glycolipid is incorporated into the liposome, and the antibody is reacted with the aldehyde group generated by periodic acid treatment. Ganglioside or the like is used as the glycolipid and treated with periodate to aldehyde the liposome surface. The antibody is then bound to liposomes in the presence of NaBH 3 CN. The antitumor agent according to the present invention can be administered by conventional methods. Since the antitumor agent according to the present invention can selectively transport toxins or anticancer agents to cancer cells, high therapeutic effects can be obtained. Hereinafter, the present invention will be explained in more detail with reference to Examples. Reference example (1) Production of mouse monoclonal antibody: Purity 99 purified from placenta as human AFP
% or more, immunochemically human albumin (HSA)
A material (manufactured by Morinaga Seikaken Co., Ltd.) that does not react with was used. 10 μg of this human AFP was administered to BALB/C mice.
The animals were sensitized once with complete Freund's adjuvant, and the final immunization was given by intravenous injection. After 3 days, the spleen was removed and polyethylene glycol #400 was used.
It was fused with P3-U1 mouse myeloma, and a hybridoma was produced by a conventional method. Cloning was carried out using the limiting dilution method, which was repeated four or more times. In addition,
A large amount of antibody was collected by BALB/C mouse ascites system. Hybridomas producing anti-AFP antibodies are 6
Approximately 400 clones were selected after multiple rounds of fusion.
Among them, the antibody titer IgG amount of the culture supernatant of 11 clones is shown in Table 1 (measured after concentrating the supernatant 10 times).

【表】 (2) 抗体の選択 a セルラインは、一週間以上、イーグルMEM
を基本とした倍地に代えて培養後、リン酸緩衝
液で4回洗浄し、)直ちにハイブリドーマ培
養上清と反応させる方法、及び、)4%パラ
ホルムアルデヒド固定後、メタノール、H2O2
溶液で、内因性酵素を不活化し、抗体と反応さ
せる方法、を用いた。抗体の検出はベクタスタ
イン(vectastain)社のABCキツトを用い、
ホースラデイツシユ・ペルオキシダーゼの酵素
活性により、基質としてジアミノベンジジンを
用いて行なつた。 b セルラインと維持 ヒト肝ガンのセルラインとしては、KN,
PLC、また、胎児性肝細胞由来のガン細胞株
NuEを、その他コントロールとして、ヒト胃
ガン培養株KATO,MKN45、大腸ガンC−
1の各細胞株を用いた。なお、培養細胞は、20
%牛胎児血清含有RPMI1640の培養液で37.0
℃、5%CO2、95%Airの条件で維持、増殖さ
せた。 c 上記(1)の抗AFPモノクロナール抗体を含む
培養上清及びその希釈物(28倍まで)を肝ガン
セルラインPLC,KNならびに胎児肝細胞NuE
と免疫組織化学的に反応させたところ、19F12
に強い反応を認めた。この反応は無固定標本で
も、固定、メタノール、H2O2処理法のいずれ
でも同様であつた。 また、コントロールとして市販の抗AFPモ
ノクローナル抗体(ハイブリテツク社製)を、
抗体価として103にあわせて反応させたが、他
のハイブリドーマクローンと同様に陽性反応は
認められなかつた。 19F12は表1に示すように抗体価が特に強い
ものでもなく、またIgG量が多いというもので
もないが、上記のように、他と異なり陽性を示
した。 一方、AFPの産生が認められないセルライ
ンMKN45,KATO,C1にはこの19F12は反
応しなかつた。 実施例 1 (1) 方法と材料 (a) セルライン: 上記参考例で述べた((2)b)PLC,NuE,
C−1及びKATOとLic(ヒト肝ガン)を
用いた。 (b) 培養法: 上記参考例の方法による。 (c) モノクローナル抗体: 上記参考例で得られた抗体(19F12)を用
いた。 (d) 3H−チミジン(Thymidine)のとり込
み: 96穴(well)培養板に細胞を培養し、培養
液中に、2μCi/well(制ガン剤のとき)又
は、5μCi/ml(毒素のとき)の3H−チミジ
ンを添加し、培養後に細胞を洗浄、細胞中の
放射能を液体シンチレーシヨンカウンターで
測定した。 (e) 毒素: リシンAを用い、その精製と抗体との結合
は、それぞれ、Olsnessらの方法
(Biochemistry Vol12,No.16,1973)及び
Rasoらの方法(Cancer Research 42,457
−464,1982)によつた。 (f) 制ガン剤: アドリアマイシンを使用した。 (g) リポソーム: 作成と抗体の結合は次の方法による。 (i) 抗ヒトAFPマウスモノクローナル抗体
(19F12)1mlとSPDP(0.2mM)を室温で
30分間反応させて、ついで酢酸緩衝液(PH
4.5)を用いて、“セフアデツクスG−50”
に付し、蛋白画分を溶出させ、これをジチ
オスレイトール(DTT)50mMを用いて
40分間室温で反応させ、S−S結合を切断
し、次いでさらに“セフアデツクスG−
50”に付し、蛋白画分1mlを得る。 (ii) 一方、リポソームとして、卵黄ホスフア
チジルコリン4μmole、コレステロール
2μmole,DTP−DPPE0.006μmoleを使用
して、アドリアマイシンを添加して洗浄
し、酢酸緩衝液1ml中に懸濁させる。 (iii) ついで、上記()、()の生成物を混
合し、PH8.0に調製し、24時間インキユベ
ートして、目的とするアドリアマイシン封
入リポソーム−モノクロナール抗体結合体
を得る。 (2) リシンA−モノクローナル抗体結合体の
PLCに対する効果(in vitro) リシン全分子は10-9Mでも強い細胞毒性を示し
たが、リシンA鎖については、その毒性(3H−
チミジンの取り込み抑制)は10-8Mオーダーでは
ほとんどみとめられなかつた。 一方、モノクローナル抗体に結合されたリシン
Aは10-8Mのオーダーでも3H−チミジンの取り
込みを抑制し、濃度に依存していた。 また、コントロールとして用いた抗HSAモノ
クローナル抗体に結合されたリシンAは5×10-7
Mで3H−チミジンの取り込みが抑制されたが、
それ以下の濃度10-8Mでは、全く効果がなかつ
た。 (3) アドリアマイシン封入リポソーム−モノクロ
ーナル抗体結合体の効果(in vitro) 細胞を2時間、薬剤に接触させた後、洗浄し、
前記の3H−チミジンの取り込みを行なつた。 結果を図1〜5に示す。 制ガン剤アドリアマイシンがin vitroで、腫瘍
の増殖の抑制、3H−チミジンの取り込みの低下を
導くことは当然の結果であるが、アドリアマイシ
ン封入リポソームとこれにモノクローナル抗体を
さらに結合したものを比較すると、PLC(図1)、
LiC(図2)、NuE(図3)のAFP産生腫瘍肝ガン
セルラインでは、常にモノクローナル結合型に強
い抗腫瘍効果が現われており、特にNuEにおい
ては、アドリアマイシン単独より強い作用が出現
した。 一方、肝ガン以外の腫瘍C−1,KATOで
はモノクローナル抗体の結合の有無にかかわら
ず、差異がみとめられなかつた。 (4) ヌードマウス可移植性肝ガンセルラインLi7
に対する効果 バツテル・コロンブス ラボラトリーズのプロ
トコールに準じて、長径(L)と短径(W)を週
2回、スラデイングキヤリパーによりmm単位で測
定した。(W2×L)/2より推定腫瘍重量を算出
し、腫瘍重量が100〜300mgの時期に治療を開始
し、4日毎に3回行なつた。 アドリアマイシン封入リポソーム、モノクロー
ナル抗体を結合したアドリアマイシン封入リポソ
ーム、アドリアマイシン単独についての結果は図
6のとおりであつた。 すなわち、コントロール群(無治療)より明ら
かにアドリアマイシン単独が、さらにそれよりリ
ポソーム結合体が効果を有し、モノクローナル抗
体を結合したリポソーム(アドリアマイシン封
入)が最も強く、in vivoで治療効果を生じてい
る。
[Table] (2) Selection of antibody a Cell line was incubated with Eagle MEM for at least one week.
After culturing in a medium based on , the cells were washed four times with phosphate buffer, and immediately reacted with the hybridoma culture supernatant; and) After fixation with 4% paraformaldehyde, methanol, H 2 O 2
A method was used in which endogenous enzymes were inactivated in a solution and reacted with antibodies. Antibody detection was performed using Vectastain's ABC kit.
Due to the enzymatic activity of horseradish peroxidase, diaminobenzidine was used as the substrate. b. Cell lines and maintenance Cell lines for human liver cancer include KN,
PLC, also a cancer cell line derived from fetal liver cells
NuE was used as a control, and human gastric cancer culture lines KATO, MKN45, and colon cancer C-
1 of each cell line was used. In addition, cultured cells are 20
%37.0 in culture medium of RPMI1640 containing fetal bovine serum
The cells were maintained and grown at 5% CO 2 and 95% Air. c The culture supernatant containing the anti-AFP monoclonal antibody in (1) above and its dilutions (up to 2 to 8 times) were added to liver cancer cell lines PLC, KN and fetal liver cells NuE.
When immunohistochemically reacted with 19F12
A strong reaction was observed. This reaction was similar for unfixed samples, fixation, methanol, and H 2 O 2 treatment. In addition, a commercially available anti-AFP monoclonal antibody (manufactured by Hybritech) was used as a control.
Although the antibody titer was adjusted to 103 , no positive reaction was observed as with other hybridoma clones. As shown in Table 1, 19F12 does not have a particularly strong antibody titer nor does it have a large amount of IgG, but as mentioned above, unlike the others, it showed positive. On the other hand, 19F12 did not react with cell lines MKN45, KATO, and C1, which do not produce AFP. Example 1 (1) Method and materials (a) Cell line: ((2) b ) PLC, NuE,
C-1, KATO and Lic (human liver cancer) were used. (b) Culture method: According to the method in the above reference example. (c) Monoclonal antibody: The antibody (19F12) obtained in the above reference example was used. (d) Incorporation of 3 H-Thymidine: Culture cells in a 96-well culture plate, and add 2μCi/well (for anticancer drugs) or 5μCi/ml (for toxins) into the culture medium. 3H -thymidine was added, and after culturing, the cells were washed and the radioactivity in the cells was measured using a liquid scintillation counter. (e) Toxin: Using ricin A, its purification and binding to antibodies were carried out by the methods of Olsness et al. (Biochemistry Vol. 12, No. 16, 1973) and
Raso et al.'s method (Cancer Research 42, 457
-464, 1982). (f) Anticancer drug: Adriamycin was used. (g) Liposomes: Creation and binding of antibodies are performed by the following method. (i) Add 1 ml of anti-human AFP mouse monoclonal antibody (19F12) and SPDP (0.2 mM) at room temperature.
Incubate for 30 minutes, then add acetate buffer (PH
4.5) using “Sephadex G-50”
The protein fraction was eluted using 50mM dithiothreitol (DTT).
The reaction was carried out for 40 minutes at room temperature to cleave the S-S bond, and then further reacted with "Sephadex G-
50" to obtain 1 ml of protein fraction. (ii) On the other hand, as liposomes, 4 μmole of egg yolk phosphatidylcholine, cholesterol
Wash by adding adriamycin using 2 μmole of DTP-DPPE and 0.006 μmole of DTP-DPPE, and suspend in 1 ml of acetate buffer. (iii) Next, the products of () and () above are mixed, adjusted to pH 8.0, and incubated for 24 hours to obtain the desired adriamycin-encapsulated liposome-monoclonal antibody conjugate. (2) Ricin A-monoclonal antibody conjugate
Effect on PLC (in vitro) Although all ricin molecules showed strong cytotoxicity even at 10 -9 M, the toxicity of ricin A chain ( 3 H-
Inhibition of thymidine uptake) was hardly observed at 10 -8 M order. On the other hand, ricin A bound to a monoclonal antibody inhibited the incorporation of 3 H-thymidine even at a concentration of 10 -8 M, and the effect was concentration dependent. In addition, ricin A bound to the anti-HSA monoclonal antibody used as a control was 5 × 10 -7
Although 3H -thymidine incorporation was inhibited by M,
At a lower concentration of 10 -8 M, there was no effect at all. (3) Effect of adriamycin-encapsulated liposome-monoclonal antibody conjugate (in vitro) After contacting the cells with the drug for 2 hours, they were washed.
Incorporation of 3 H-thymidine was carried out as described above. The results are shown in Figures 1-5. It is natural that the anticancer drug Adriamycin suppresses tumor growth and reduces 3H -thymidine uptake in vitro, but when comparing adriamycin-encapsulated liposomes and liposomes further conjugated with monoclonal antibodies, PLC (Figure 1),
In AFP-producing tumor liver cancer cell lines of LiC (Fig. 2) and NuE (Fig. 3), strong antitumor effects were always exhibited by the monoclonal binding type, and especially with NuE, a stronger effect than adriamycin alone appeared. On the other hand, no difference was observed in tumors other than liver cancer, C-1 and KATO, regardless of the presence or absence of monoclonal antibody binding. (4) Nude mouse transplantable liver cancer cell line Li7
According to the Battel Columbus Laboratories protocol, the major axis (L) and minor axis (W) were measured in mm twice a week using a sliding caliper. Estimated tumor weight was calculated from (W 2 ×L)/2, and treatment was started when the tumor weight was 100 to 300 mg and was repeated three times every 4 days. The results for adriamycin-encapsulated liposomes, adriamycin-encapsulated liposomes bound to monoclonal antibodies, and adriamycin alone are as shown in FIG. In other words, adriamycin alone was clearly more effective than the control group (no treatment), and even more so, the liposome conjugate was more effective, and the monoclonal antibody-conjugated liposome (adriamycin encapsulated) was the strongest, producing a therapeutic effect in vivo. .

【図面の簡単な説明】[Brief explanation of drawings]

図1〜5は、本発明に係る抗腫瘍剤のin vitro
での試験結果を示し、図6はin vivoでの試験結
果を示す。
Figures 1 to 5 show in vitro results of the antitumor agent according to the present invention.
Figure 6 shows the in vivo test results.

Claims (1)

【特許請求の範囲】[Claims] 1 腫瘍細胞に対する毒素又は制ガン剤をリポソ
ームに封入し、かかるリポソーム表面にヒト由来
のα−フエトプロテイン(AFP)を認識するモ
ノクローナル抗体を結合させてなる抗腫瘍剤。
1. An antitumor agent comprising a liposome encapsulating a toxin or anticancer agent for tumor cells, and a monoclonal antibody that recognizes human-derived α-fetoprotein (AFP) bound to the surface of the liposome.
JP17677383A 1983-09-24 1983-09-24 Antitumor agent Granted JPS6067434A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17677383A JPS6067434A (en) 1983-09-24 1983-09-24 Antitumor agent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17677383A JPS6067434A (en) 1983-09-24 1983-09-24 Antitumor agent

Publications (2)

Publication Number Publication Date
JPS6067434A JPS6067434A (en) 1985-04-17
JPH0585532B2 true JPH0585532B2 (en) 1993-12-07

Family

ID=16019574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17677383A Granted JPS6067434A (en) 1983-09-24 1983-09-24 Antitumor agent

Country Status (1)

Country Link
JP (1) JPS6067434A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2635267B1 (en) * 1988-08-09 1992-05-22 Tokuyama Soda Kk MONOCLONAL ANTIBODIES AND PROCESS FOR PRODUCING THE SAME

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5686121A (en) * 1979-12-14 1981-07-13 Teijin Ltd Antitumor proten complex and its preparation
JPS58118520A (en) * 1982-01-09 1983-07-14 Hidematsu Hirai Antitumor proteinic complex and preparation thereof
JPS59227828A (en) * 1983-06-09 1984-12-21 Teijin Ltd Antitumor modified immunoglobulin and its preparation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5686121A (en) * 1979-12-14 1981-07-13 Teijin Ltd Antitumor proten complex and its preparation
JPS58118520A (en) * 1982-01-09 1983-07-14 Hidematsu Hirai Antitumor proteinic complex and preparation thereof
JPS59227828A (en) * 1983-06-09 1984-12-21 Teijin Ltd Antitumor modified immunoglobulin and its preparation

Also Published As

Publication number Publication date
JPS6067434A (en) 1985-04-17

Similar Documents

Publication Publication Date Title
US5990287A (en) Human monoclonal antibody specifically binding to surface antigen of cancer cell membrane
US4379145A (en) Antitumor protein hybrid and process for the preparation thereof
Hauri et al. Monoclonal antibodies to sucrase/isomaltase: probes for the study of postnatal development and biogenesis of the intestinal microvillus membrane.
EP1024835B1 (en) J-chain and analogues as epithelial cell targeting conjugates
JP3541296B2 (en) Monoclonal antibodies that specifically bind to tumor vascular endothelial cells and their use
US5459240A (en) Peptides which serve as substrates for a phosphokinase and methods for their use to modify antibodies in order to facilitate radioabelling of antibodies with 32 P
US6787153B1 (en) Human monoclonal antibody specifically binding to surface antigen of cancer cell membrane
EP0074279A2 (en) Selective anti-tumour agents
JPH08228777A (en) Blending gene for composite protein production
JPH0348699A (en) Double specific and oligo specific, monovalent and oligo valent receptor, and adjustment and use of them
Khar Development and characterization of a rat histiocyte-macrophage tumor line
US6022541A (en) Immunological preparation for concurrent specific binding to spatially exposed regions of vascular permeability factor bound in-vivo to a tumor associated blood vessel
EP1056472A2 (en) Specific antibodies against mammary tumor-associated mucin, method for production and use
JPS62501955A (en) Monoclonal antibody for human non-small cell lung cancer
JPH06502617A (en) Antibody conjugates for the treatment of proliferative diseases
NZ224156A (en) Human cancer antigen and antibodies to it
JPH0585532B2 (en)
Panicot-Dubois et al. Monoclonal antibody 16D10 to the C-terminal domain of the feto-acinar pancreatic protein binds to membrane of human pancreatic tumoral SOJ-6 cells and inhibits the growth of tumor xenografts
JPH0355450B2 (en)
Yu et al. Antitumor activity of doxorubicin-monoclonal antibody conjugate on human bladder cancer
JPH08509698A (en) Protein complex, composition containing the same, and use thereof as a medicine
WO1994001536A1 (en) Cancer immunotherapy with antibodies to cancer procoagulant
Gao et al. The epidermal growth factor/cAMP-inducible ectoCa2+-ATPase of human hepatoma Li-7A cells is similar to rat liver ectoATPase/hepatocyte cell adhesion molecule (Cell-CAM 105)
JP2950928B2 (en) Labeled antibody
JPH0469998B2 (en)