JPH0585434B2 - - Google Patents

Info

Publication number
JPH0585434B2
JPH0585434B2 JP62221875A JP22187587A JPH0585434B2 JP H0585434 B2 JPH0585434 B2 JP H0585434B2 JP 62221875 A JP62221875 A JP 62221875A JP 22187587 A JP22187587 A JP 22187587A JP H0585434 B2 JPH0585434 B2 JP H0585434B2
Authority
JP
Japan
Prior art keywords
floating roof
displacement
angular
tank
vertical displacement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62221875A
Other languages
Japanese (ja)
Other versions
JPS6470395A (en
Inventor
Kazuo Ishida
Osamu Asai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP62221875A priority Critical patent/JPS6470395A/en
Publication of JPS6470395A publication Critical patent/JPS6470395A/en
Publication of JPH0585434B2 publication Critical patent/JPH0585434B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、地震時のスロツシングによる浮屋根
の上下変位を計測する浮屋根式タンクにおける浮
屋根の変位計測方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for measuring the displacement of a floating roof in a floating roof tank, which measures the vertical displacement of the floating roof due to sloshing during an earthquake.

〔従来の技術〕[Conventional technology]

石油等を貯蔵する浮屋根式タンクでは、地震時
の貯液のスロツシングにより浮き屋根が傾動し、
大地震では浮屋根外周部が数mも上下に変位する
ことがある。浮屋根の外周部の上下変位を計測で
きれば、地震時の浮屋根の保守点検などに役立て
ることができる。
In floating roof tanks that store petroleum, etc., the floating roof tilts due to sloshing of the stored liquid during an earthquake.
In a major earthquake, the outer periphery of a floating roof can move up and down by several meters. If the vertical displacement of the outer periphery of a floating roof can be measured, it will be useful for maintenance and inspection of floating roofs during earthquakes.

浮屋根外周部の上下変位の計測には、ワイヤー
型ゲージが考えられる。即ち、タンクの側板上部
に滑車を設け、滑車にワイヤーを巻き付け、ワイ
ヤーの一端を浮屋根の外周部に連結すると共にワ
イヤーの他端をタンク外側のウエイトに連結し、
浮屋根外周部の上下変位をウエイトの上下変位と
して計測する。
A wire type gauge may be used to measure the vertical displacement of the outer circumference of the floating roof. That is, a pulley is provided on the upper side of the tank, a wire is wound around the pulley, one end of the wire is connected to the outer circumference of the floating roof, and the other end of the wire is connected to a weight on the outside of the tank.
The vertical displacement of the outer circumference of the floating roof is measured as the vertical displacement of the weight.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところが、側板上部内側に滑車等の付属品を設
置すると、スロツシングにより浮屋根の外周部が
上下し、浮屋根と付属品とがぶつかつて火花が飛
び、石油等の可然性貯液または蒸発ガスに着火し
て火災が発生するおそれがある。このため、消防
関係の法令等においても、側板上部内側に付属品
を設置することが禁止されており、上記ワイヤー
型ゲージを浮屋根の上下変位計測に採用すること
は好ましくない。
However, when accessories such as pulleys are installed inside the upper part of the side panels, the outer periphery of the floating roof moves up and down due to slotzing, causing sparks to fly when the floating roof and the accessories collide, causing possible accumulation of liquid such as petroleum or evaporative gas. may ignite and cause a fire. For this reason, fire-fighting related laws and regulations also prohibit the installation of accessories inside the upper part of the side panels, and it is not preferable to use the wire-type gauge described above to measure the vertical displacement of a floating roof.

本発明の目的は、上記従来技術の問題点を解消
し、浮屋根外周部の上下変位を簡易に計測するこ
とができる浮屋根式タンクにおける浮屋根の変位
計測方法を提供することにある。
An object of the present invention is to provide a method for measuring the displacement of a floating roof in a floating roof type tank, which solves the problems of the prior art described above and can easily measure the vertical displacement of the outer periphery of the floating roof.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の浮屋根の変位計測方法は、浮屋根上に
角速度あるいは角加速度を検出するセンサを複数
設置し、これらセンサからの検出信号を時間積分
して各センサが設置された浮屋根の角変位を求
め、得られた角変位から浮屋根の外周部の上下変
位を算出する。
The floating roof displacement measuring method of the present invention includes installing a plurality of sensors on the floating roof to detect angular velocity or angular acceleration, and integrating the detection signals from these sensors over time to determine the angular displacement of the floating roof on which each sensor is installed. The vertical displacement of the outer periphery of the floating roof is calculated from the obtained angular displacement.

〔作 用〕[Effect]

センサにより浮屋根の角速度あるいは角加速度
が検出される。検出された角速度あるいは角加速
度は時間積分されて角変位が求められる。得られ
た浮屋根の複数箇所の角変位には、浮屋根の撓み
を考慮した係数が掛けられ、浮屋根の外周部の上
下変位が算出される。
The sensor detects the angular velocity or acceleration of the floating roof. The detected angular velocity or angular acceleration is time-integrated to obtain angular displacement. The obtained angular displacements at multiple locations on the floating roof are multiplied by a coefficient that takes into account the deflection of the floating roof, and the vertical displacement of the outer periphery of the floating roof is calculated.

〔実施例〕〔Example〕

以下に、本発明の実施例を図面を用いて説明す
る。
Embodiments of the present invention will be described below with reference to the drawings.

第1図、第2図において、1は有底円筒状で石
油等を貯蔵するタンクである。タンク1は底板2
と側板3とを有する。タンク1内には貯液の揮発
成分の蒸発を押えるために、貯液面に浮かび貯液
の増減にしたがつて上下する浮屋根4が設けられ
ている。浮屋根4は、上部デツキと下部デツキの
間に円周方向および半径方向に区画板が設けられ
たダブルデツキ型のものである。
In FIGS. 1 and 2, 1 is a cylindrical tank with a bottom for storing oil and the like. Tank 1 is bottom plate 2
and a side plate 3. In order to suppress the evaporation of volatile components of the stored liquid, a floating roof 4 is provided inside the tank 1, which floats on the liquid storage surface and moves up and down as the stored liquid increases and decreases. The floating roof 4 is of a double deck type in which dividing plates are provided in the circumferential direction and the radial direction between the upper deck and the lower deck.

浮屋根4の上面には、第2図中、白丸で示す位
置に浮屋根4の各部の角速度あるいは角加速度を
検出するセンサ51,52,53,54が設けられて
いる。センサ51は浮屋根4の中心にセンサ52
3,54は浮屋根4の外周部に45゜間隔で設置さ
れている。センサ51〜54の検出信号は図示省略
のデータレコーダに一旦記録しておき、地震が起
つた後に地震時のデータを取り出して解析を行な
う。
Sensors 5 1 , 5 2 , 5 3 , and 5 4 for detecting the angular velocity or angular acceleration of each part of the floating roof 4 are provided on the upper surface of the floating roof 4 at positions indicated by white circles in FIG. Sensor 5 1 is located at the center of floating roof 4, sensor 5 2 ,
5 3 and 5 4 are installed on the outer periphery of the floating roof 4 at 45° intervals. Detection signals from the sensors 5 1 to 5 4 are temporarily recorded on a data recorder (not shown), and after an earthquake occurs, the earthquake data is extracted and analyzed.

解析にあたつては、まずセンサ51〜54が検出
した角速度(角加速度)を一回(または二回)時
間積分して角変位を算出する。次にセンサ51
角変位θ1とセンサ52の角変位θ2から、0度方向
の浮屋根外周部の上下変位Y0を算出する。浮屋
根4はダブルデツキタイプであつて剛性が高いの
で、角変位θ1とθ2とは略同一の値であり、上下変
位Y0は、浮屋根4の半径をrとすると、rsinθ1
求められる。しかし、浮屋根4も多少サインカー
ブ状に撓むので、浮屋根4の構造解析によつて撓
みによる修正も考慮した修正係数C1,C2を予め
算出しておき、次式よりY0を算出する。
In the analysis, first, the angular velocity (angular acceleration) detected by the sensors 5 1 to 5 4 is time-integrated once (or twice) to calculate the angular displacement. Next, from the angular displacement θ 1 of the sensor 5 1 and the angular displacement θ 2 of the sensor 5 2 , the vertical displacement Y 0 of the outer peripheral portion of the floating roof in the 0 degree direction is calculated. Since the floating roof 4 is a double deck type and has high rigidity, the angular displacements θ 1 and θ 2 are approximately the same value, and the vertical displacement Y 0 is rsinθ 1 , where r is the radius of the floating roof 4. Desired. However, since the floating roof 4 also bends somewhat in a sine curve shape, the correction coefficients C 1 and C 2 that take into account corrections due to deflection are calculated in advance by structural analysis of the floating roof 4, and Y 0 is calculated using the following formula. calculate.

Y0=C1θ2+C2θ2 同様にして、45度方向、90度方向の浮屋根外周
部の上下変位Y45,Y90を算出する。そしてこれ
ら上下変位Y0,Y45,Y90から最大上下変位を算
定する。円周方向のセンサ52,53,54の数を
増やすほど、最大上下変位の算出精度が高くな
る。なお、例えばセンサ53を225度方向の外周部
に設置するようにしてもよい。
Y 0 =C 1 θ 2 +C 2 θ 2 Similarly, calculate the vertical displacements Y 45 and Y 90 of the outer circumference of the floating roof in the 45-degree direction and the 90-degree direction. Then, the maximum vertical displacement is calculated from these vertical displacements Y 0 , Y 45 , and Y 90 . As the number of sensors 5 2 , 5 3 , 5 4 in the circumferential direction increases, the accuracy of calculating the maximum vertical displacement increases. Note that, for example, the sensor 53 may be installed on the outer periphery in the 225 degree direction.

次に、第3図に示すシングルデツキ型の浮屋根
6に適用した例を述べる。
Next, an example in which the present invention is applied to a single deck type floating roof 6 shown in FIG. 3 will be described.

シングルデツキ型の浮屋根6は、一枚板のデツ
キの外周部に環状のポンツーン7を設けたもの
で、ポンツーン7の浮力により浮くようになつて
いる。シングルデツキ型は一枚板構造で柔軟性が
あるため、地震時の貯液の1次モードの波面によ
つて図示のようにサインカーブ状に変形する。そ
こで、ダブルデツキ型の浮屋根4の場合のよう
に、浮屋根4の中心および外周のみならず、第2
図中、黒丸で示すように中間の位置にもセンサ5
,56,57を設置する。そうして、浮屋根6の
撓みを考慮した修正係数Cを用いて、例えば0度
方向の浮屋根6の上下変位Y0を次式により求め
る。
The single deck type floating roof 6 has an annular pontoon 7 provided on the outer periphery of a single deck, and is made to float due to the buoyancy of the pontoon 7. Since the single deck type has a single plate structure and is flexible, it deforms into a sine curve shape as shown in the figure by the wavefront of the first mode of the stored liquid during an earthquake. Therefore, as in the case of a double deck type floating roof 4, not only the center and outer periphery of the floating roof 4 but also the second
In the figure, as shown by the black circle, there is also a sensor 5 in the middle position.
Set up 5 , 5 6 , and 5 7 . Then, using a correction coefficient C that takes into account the deflection of the floating roof 6, the vertical displacement Y0 of the floating roof 6 in the 0 degree direction, for example, is determined by the following equation.

Y0=C1θ1+C2θ2+C3θ3 浮屋根の角変位は、これを直接計る角変位計で
計測する方法も考えられる。しかし、角変位計は
振子型のもので水平方向の地震動による浮屋根の
回転(ローリング)振動のみならず上下方向の地
震動の影響も拾つてしまうため、精度が悪い。こ
れに対し、シーソー型の角速度センサや角加速度
センサは回転方向の振動だけを検知するので精度
がよい。また、浮屋根の上下変位を求めるため
に、ジヤイロを用いることも考えられるが、ジヤ
イロは高価であり、コストアツプとなり経済性の
面から採用し難い。
Y 0 =C 1 θ 1 +C 2 θ 2 +C 3 θ 3It is also possible to measure the angular displacement of the floating roof using an angular displacement meter that directly measures it. However, the angular displacement meter is of a pendulum type and picks up not only the rotational (rolling) vibration of the floating roof due to horizontal seismic motion, but also the effects of vertical seismic motion, so its accuracy is poor. On the other hand, seesaw-type angular velocity sensors and angular acceleration sensors have good accuracy because they detect only vibrations in the rotational direction. Furthermore, it is possible to use a gyroscope to determine the vertical displacement of the floating roof, but the gyroscope is expensive and increases the cost, making it difficult to employ from an economic standpoint.

なお、上記実施例では浮屋根の同一半径上の複
数の角変位から浮屋根外周部の上下変位を算出し
たが、角変位θの分布から浮屋根の曲げ撓みを算
出することもできる。
In the above embodiment, the vertical displacement of the outer circumference of the floating roof is calculated from a plurality of angular displacements on the same radius of the floating roof, but the bending deflection of the floating roof can also be calculated from the distribution of angular displacements θ.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、タンク側板にではなく、浮屋
根上に角速度あるいは角加速度のセンサを設置
し、その信号処理により浮屋根外周部の上下変位
を求めるようにしているため、火災の発生等のお
それがなく、また計測装置も小型・軽量で且つ安
価なものとなる。
According to the present invention, an angular velocity or angular acceleration sensor is installed on the floating roof instead of on the tank side plate, and the vertical displacement of the outer circumference of the floating roof is determined by signal processing, thereby preventing the occurrence of a fire, etc. There is no fear, and the measuring device is also small, lightweight, and inexpensive.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る変位計測方法をダブルデ
ツキ型の浮屋根に適用した場合の一例を示す浮屋
根式タンクの概略正面断面図、第2図は同タンク
の平面図、第3図は本発明をシングルデツキ型の
浮屋根に適用した場合の一例を示す浮屋根式タン
クの概略正面断面図である。 図中、1はタンク、2は底板、3は側板、4は
ダブルデツキ型の浮屋根、5はセンサ、6はシン
グルデツキ型の浮屋根、7はポンツーン、θは角
変位である。
Fig. 1 is a schematic front sectional view of a floating roof tank showing an example of applying the displacement measurement method according to the present invention to a double deck type floating roof, Fig. 2 is a plan view of the tank, and Fig. 3 is a main part of this tank. 1 is a schematic front sectional view of a floating roof type tank showing an example of the case where the invention is applied to a single deck type floating roof. In the figure, 1 is a tank, 2 is a bottom plate, 3 is a side plate, 4 is a double deck type floating roof, 5 is a sensor, 6 is a single deck type floating roof, 7 is a pontoon, and θ is an angular displacement.

Claims (1)

【特許請求の範囲】[Claims] 1 浮屋根上に角速度あるいは角加速度を検出す
るセンサを複数設置し、これらセンサからの検出
信号を時間積分して各センサが設置された浮屋根
の角変位を求め、得られた角変位から浮屋根の外
周部の上下変位を算出するようにしたことを特徴
とする浮屋根式タンクにおける浮屋根の変位計測
方法。
1 Install multiple sensors on the floating roof to detect angular velocity or angular acceleration, time-integrate the detection signals from these sensors to determine the angular displacement of the floating roof on which each sensor is installed, and calculate the floating roof from the obtained angular displacement. A method for measuring the displacement of a floating roof in a floating roof tank, characterized in that the vertical displacement of the outer periphery of the roof is calculated.
JP62221875A 1987-09-07 1987-09-07 Displacement calculation method of floating roof in floating roof tank Granted JPS6470395A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62221875A JPS6470395A (en) 1987-09-07 1987-09-07 Displacement calculation method of floating roof in floating roof tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62221875A JPS6470395A (en) 1987-09-07 1987-09-07 Displacement calculation method of floating roof in floating roof tank

Publications (2)

Publication Number Publication Date
JPS6470395A JPS6470395A (en) 1989-03-15
JPH0585434B2 true JPH0585434B2 (en) 1993-12-07

Family

ID=16773552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62221875A Granted JPS6470395A (en) 1987-09-07 1987-09-07 Displacement calculation method of floating roof in floating roof tank

Country Status (1)

Country Link
JP (1) JPS6470395A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200404485A (en) 2002-05-22 2004-03-16 Assembleon Nv Method of placing a component by means of a placement device at a desired position on a substrate holder, and device suitable for performing such a method
JP4552110B2 (en) * 2004-02-05 2010-09-29 株式会社Ihi Tank float roof strength evaluation method
CA2719431C (en) * 2008-03-31 2015-01-27 Syscor Research & Development Inc. Apparatus for the wireless remote monitoring of storage tank roofs

Also Published As

Publication number Publication date
JPS6470395A (en) 1989-03-15

Similar Documents

Publication Publication Date Title
CN101688802B (en) Position correction in sodar and meteorological lidar systems
US4220044A (en) Wave measuring buoy
US4739494A (en) Apparatus for measuring the weight of fuel remaining in a fuel tank on a flying object
GB2088554A (en) Pipeline route surveying device
EP0787307A1 (en) Sludge topography measurement in oil tanks
JP2010500556A (en) Internal air displacement measuring apparatus using optical fiber grating sensor and measuring method using the same
JP4523904B2 (en) Water level measuring device and water level measuring system using this water level measuring device
US4481818A (en) Method of detecting cracks in constructions
JPH0585434B2 (en)
JP4822337B2 (en) Diagnosis method for building structures
MX2015003675A (en) Real-time structural measurement (rtsm) for control devices.
CN106643660B (en) Tower inclination detection device and method
CN116539032A (en) SINS/DVL/USBL underwater tight combination navigation method based on centralized filtering
EP0433971B1 (en) Device for measuring the movements of flexion of an antenna support mast and application for the pointing control of a motorised antenna
JPH01111691A (en) Evaluation of safety of floating roof
JP4256227B2 (en) Inclination angle detector
JPH0754255B2 (en) Position measurement method for cylindrical structures
JPS5837508A (en) Wave measuring device
JPH038488B2 (en)
US11371841B2 (en) System and method of tilt sensor tide and inland water level gauge
SU857709A1 (en) Angle and tilt pickup
JP2547547B2 (en) Float type liquid level gauge
CN114114443B (en) Ocean plumb line deviation measurement method based on horizontal gravitational potential-position conversion
JPH03291480A (en) Ice production amount detector
Van de Bunt et al. Measuring sloshing impacts during full-scale tests