JPH0585275B2 - - Google Patents

Info

Publication number
JPH0585275B2
JPH0585275B2 JP63141187A JP14118788A JPH0585275B2 JP H0585275 B2 JPH0585275 B2 JP H0585275B2 JP 63141187 A JP63141187 A JP 63141187A JP 14118788 A JP14118788 A JP 14118788A JP H0585275 B2 JPH0585275 B2 JP H0585275B2
Authority
JP
Japan
Prior art keywords
open pipe
pipe
energy beam
welding
electric resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63141187A
Other languages
Japanese (ja)
Other versions
JPH01309792A (en
Inventor
Hirotsugu Inaba
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP63141187A priority Critical patent/JPH01309792A/en
Publication of JPH01309792A publication Critical patent/JPH01309792A/en
Publication of JPH0585275B2 publication Critical patent/JPH0585275B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Laser Beam Processing (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、電気抵抗による加熱と共に、エネル
ギービームによる加熱を併用する電縫管の製造方
法に関する。 〔従来の技術〕 オープンパイプの両側端部の接合部を溶接して
製造する溶接管の製造方法の一つに電縫溶接法が
ある。 電縫溶接法は、一般に数十〜数百KHzの高周波
電流を用いて、電磁誘導又は直接通電方式により
溶接部の金属を加熱溶融させて溶接する方法であ
り、溶接管の製造方法中最も効率的な方法である
ため、小径の金属管を主に汎用されている。 しかし、電縫溶接法には、溶接部に微小な欠陥
が発生するという問題があるため、高級を旨とす
る金属管の製造には適さない等の欠点が指摘され
ている。この微小欠陥は、接合点における過大な
電磁力が原因しているものと考えられる。すなわ
ち、接合点で溶融金属に大きな電磁力が作用して
溶融金属が局部的に接合点から排出され接合点及
びその近傍の形状が変化して、溶融が不均一とな
り、その結果スクイズロールにてアツプセツトを
付加された時に凝固が不均一となる。このアツプ
セツト付加時の衝合部の凝固の不均一性が微小欠
陥の原因となつているものと考えられる。 以上の如き電縫溶接法における問題点を解消
し、高品質の溶接管を得るべく、加熱源として高
周波電流と共にエネルギービームを併用する溶接
法が提案されている(特開昭56−168981、特開昭
59−202187号公報)。これらの溶接法は、オープ
ンパイプの相対向する両側端部を、該両側端部の
接合点の温度が溶融温度又はその近傍の温度にな
るようにジユール熱を発生させて加熱し、次いで
接合点が衝合溶接される溶接点に至る迄の間に溶
接点の温度が溶融温度になるようにエネルギービ
ームを接合点に投射する方法である。 〔発明が解決しようとする課題〕 上記した公報記載の改良技術は、電縫溶接法に
おける微小欠陥をある程度少なくすることは事実
であるが、未だ充分にその発生を抑止するには至
つていない。これは、加熱用の高周波電流により
生成される磁界による電磁力が接合点において微
弱ながら作用して接合点に発生した溶融金属を排
出し、このため溶融池が安定して保持されないか
らである。 本発明は以上の事情に鑑みなされたものであつ
て、その目的とするところは、従来、問題とされ
ていた微小欠陥の発生を充分に抑止し得る電縫管
製造方法を提供することにある。 〔課題を解決するための手段〕 上記目的を達成するために、本発明は移送され
るオープンパイプの相対向する両側端部を、高周
波電流にて加熱し、続いてエネルギービームにて
さらに加熱するエネルギービーム併用電縫管の製
造方法において、インピーダをそのオープンパイ
プ移送方向下流側端部が前記両側端部が接合する
接合点から前記オープンパイプの外径D以上の距
離lだけオープンパイプ移送方向上流側に位置す
るように前記オープンパイプの移送方向に向けて
配し、前記オープンパイプを接合することを特徴
とする。 〔作用〕 上記の如き本発明において、先ずオープンパイ
プの相対向する両側端部を高周波電流にて予熱
し、次いでエネルギービームを接合点に投射する
と、インピーダの前記下流側端部が接合点からオ
ープンパイプの外径D以上の距離lだけ上流側に
位置せしめられているため、形成された溶融池の
溶融金属が排出されることなく溶接され、溶接欠
陥の発生が殆ど見られない電縫管が製造される。 〔実施例〕 以下、本発明の実施例を図面を参照して説明す
る。第1図は本発明に係る電縫管の製造方法(以
下、「本発明方法」という)を示す模式図、第2
図はオープンパイプOPの両側端部の相互の位置
関係を示す説明図であり、図において、OPはオ
ープンパイプであつて、該オープンパイプOPは
スケルプを成形ロール群(図においては最終段の
フインパスロールFRのみを示す)に通して断面
U形から両側端部E,Eが相対向する断面O形に
迄曲成してなり、曲成後のスケルプ幅寸法を外周
長とする外形Dを有する。このオープンパイプ
OPはフインパスロールFRを通過した後、下流に
配されたスクイズロールSR側に向かうに従つて
両側端部E,Eが相互に漸近せしめられ、接合点
O1とスクイズロールSRの圧下位置に対応する点
(以下「圧下点」という)O3との間における溶接
点O2にて衝合溶接され、管Pの状態で圧下され
つつスクイズロールSRを経て仕上げ工程に向け
白抜き矢符方向に移送されてゆく。この間、オー
プンパイプOPはフインパスロールFRよりも下流
側であつて、且つ接合点O1よりも上流側の位置
にて両側端部E,Eを加熱するためにコイルW内
をコイル軸方向に通され、また、コイルWよりも
下流側であつて、且つ接合点O1よりも上流側に
lだけ離隔した位置には、コイルWによるオープ
ンパイプOPの加熱効率を向上させるためにイン
ピーダIPがその下流側端部、つまり先端を一致
せしめて上流側へ延在するように配されている。
但し、前記離隔寸法lはオープンパイプOPの管
径Dより小さくない値である。また、エネルギー
ビーム発進源(図示せず)が接合点O1及びその
近傍にエネルギービームを投射するためにオープ
ンパイプOPの移送路に臨んで配されている。 ここで、コイルWは両側端部E,Eを加熱する
ためのものであつて、そのコイル端子は図示して
いない数十〜数百kHzの高周波電源に接続されて
おり、表皮効果及び近接効果により両側端部E,
Eに高周波電流が誘起せしめられるようにしてあ
る。両側端部E,Eに誘起された高周波電流は接
合点O1を介して両側端部E,E間に通流され、
これにて両側端部E,Eが加熱される。ここにお
いて、高周波電源及びコイルWは接合点O1にお
いて両側端部E,Eをその溶融温度又はその近傍
の温度に迄加熱し得るように電気的、配置的設計
が施されている。而して、両側端部E,Eの接合
は、両側端部が溶融温度又はその近傍の温度であ
つて、固体の状態又は溶融されてはいるが電磁力
等の外力を受けても未だ流動しない程度の溶融状
態下で行われることになる。 一方、エネルギービームは、その投射方向を接
合点及びその近傍に向けられている。ここにおい
てエネルギービームの投射量は溶接点O2におい
て両側端部E,Eを溶融温度以上の温度であつ
て、衝合溶接するに充分な溶融温度に迄加熱昇温
し得るように設計されている。而して、オープン
パイプOPの衝合溶接は、溶接点O2における両側
端部E,E間の溶融金属の殆どが、スクイズロー
ルSRにより圧下されて外側に排出された状態下
で行われることになる。 斯様にしてオープンパイプOPは、管Pに成形
されていくのである。 第3図は上記の如き装置において、オープンパ
イプOPを静止させて加熱した場合の側端部近傍
の外表面部の温度分布を表したものであり、横軸
にオープンパイプの管軸方向位置を、また縦軸に
加熱後5秒経過した後の温度をとつている。ここ
で、A曲線(図中細線で示す曲線)は従来行われ
ていた接合点からインピーダIPの先端までの離
隔寸法lが零の場合の温度分布であり、B曲線
(図中太線で示す曲線)は本発明に係るl≧D(=
34mm)を最小限に充たすl=34mmの場合の温度分
布である。図において、オープンパイプOPの両
側端部E,Eの近傍の外表面部の温度が高い程、
加熱用として配したコイルWに通電した高周波電
流によるその外表面部の磁界が強いことを意味
し、従つて、誘起される電流及び電流密度も大き
いことを意味する。このことより、図において電
流密度が小さい程、その部分に作用する電磁力は
小さく、また該電磁力による溶融金属の排出もま
た小さいと考えることができる。図より明らかな
ように本発明に係るl=34mmの場合にあつては、
接合点における温度が低く、従つて電磁力による
溶融金属の排出が小さいのに対して、l=0mmす
なわちインピーダIPをその先端が接合点に一致
するように位置させて配した場合は接合点におけ
る温度が高く、従つて電磁力による溶融金属の排
出が大きいと言える。 第1表は、被接合材、製管速度、レーザ出力、
高周波出力、インピーダ位置(l)を種々変えた場合
の溶接欠陥の発生状況の測定結果を示している。
なお、測定に用いたレーザはマルチモードの炭酸
ガスレーザである。比較例No.1〜5はコイルWに
て融点近傍まで予熱した後、エネルギービームを
投射した場合であり、l<Dである。これらの場
合は、溶接欠陥は充分には抑止されていない。比
較例No.6は高周波出力を高め、接合点以前で溶融
させた場合であり、溶鋼変動に起因すると考えら
れる欠陥が発生している。比較例No.7〜9はエネ
ルギービームを併用しない電縫溶接の場合であ
り、l=Dの比較例No.7では全長に亘たり冷接欠
陥(表中×印で示す)が現れており、l=0の比
較例No.8及び9では、比較的多数のペネトレータ
が発生している。 これに対して本発明の実施例である実施例No.1
〜5にあつては、溶接欠陥が完全に抑止されてい
る。 なお、実施例No.4及び5、比較例No.9では溶融
金属の酸化防止を図るために窒素ガスによるシー
ルドを行つた。
[Industrial Field of Application] The present invention relates to a method for manufacturing an electric resistance welded tube that uses heating using an energy beam as well as heating using electric resistance. [Prior Art] One of the methods for manufacturing a welded pipe by welding the joints at both ends of an open pipe is electric resistance welding. The electric resistance welding method is a method of welding by heating and melting the metal at the welded part by electromagnetic induction or direct current using a high-frequency current of several tens to hundreds of KHz, and is the most efficient method for manufacturing welded pipes. This method is mainly used for small diameter metal pipes. However, it has been pointed out that the electric resistance welding method has drawbacks such as the problem that minute defects occur in the welded portion, making it unsuitable for manufacturing high-grade metal pipes. This microdefect is thought to be caused by excessive electromagnetic force at the junction. In other words, a large electromagnetic force acts on the molten metal at the joint, causing the molten metal to be locally ejected from the joint, changing the shape of the joint and its vicinity, and causing uneven melting.As a result, the squeeze roll Coagulation becomes uneven when an upset is applied. It is thought that the non-uniform solidification of the abutment area during the addition of upsets is the cause of the micro defects. In order to solve the above-mentioned problems with the electric resistance welding method and obtain high-quality welded pipes, a welding method that uses both a high-frequency current and an energy beam as a heating source has been proposed (Japanese Unexamined Patent Publication No. 56-168981, Kaisho
59-202187). These welding methods involve heating the opposing ends of an open pipe by generating Joule heat so that the temperature at the joining point of the both ends reaches or is close to the melting temperature, and then In this method, an energy beam is projected onto the welding point so that the temperature of the welding point reaches the melting temperature before the welding point reaches the welding point where the welding point is butt-welded. [Problem to be solved by the invention] Although it is true that the improved technology described in the above-mentioned publication reduces the micro defects in the electric resistance welding method to some extent, it has not yet been able to sufficiently prevent their occurrence. . This is because the electromagnetic force caused by the magnetic field generated by the high-frequency heating current acts on the joint, albeit weakly, and discharges the molten metal generated at the joint, and as a result, the molten pool is not stably maintained. The present invention has been made in view of the above circumstances, and its purpose is to provide a method for manufacturing an electric resistance welded pipe that can sufficiently suppress the occurrence of micro defects, which have been a problem in the past. . [Means for Solving the Problems] In order to achieve the above object, the present invention heats opposite ends of an open pipe to be transferred with a high frequency current, and then further heats them with an energy beam. In the method for manufacturing an electric resistance welded pipe combined with an energy beam, the impeder is moved so that its downstream end in the open pipe transport direction is moved upstream in the open pipe transport direction by a distance l greater than or equal to the outer diameter D of the open pipe from the junction where the both ends join. It is characterized in that it is disposed toward the transfer direction of the open pipe so as to be located on the side, and the open pipe is joined. [Function] In the present invention as described above, first, the opposite ends of the open pipe are preheated with high frequency current, and then an energy beam is projected onto the junction, so that the downstream end of the impeder opens from the junction. Since the pipe is located upstream by a distance l that is greater than the outer diameter D of the pipe, the molten metal in the molten pool formed is welded without being discharged, resulting in an electric resistance welded pipe with almost no weld defects. Manufactured. [Example] Hereinafter, an example of the present invention will be described with reference to the drawings. FIG. 1 is a schematic diagram showing the method for manufacturing an electric resistance welded pipe according to the present invention (hereinafter referred to as the "method of the present invention"), and FIG.
The figure is an explanatory diagram showing the mutual positional relationship of both ends of the open pipe OP. Pass roll FR only is shown) and is bent from a U-shaped cross section to an O-shaped cross section with both ends E and E facing each other, and has an outer diameter D whose outer circumference is the skeleton width dimension after bending. have this open pipe
After passing through the fin pass roll FR, as the OP moves toward the squeeze roll SR side arranged downstream, both ends E and E are made to approach each other asymptotically, and the joint point is
The squeeze roll SR is butt-welded at the welding point O 2 between O 1 and the point O 3 corresponding to the rolling position of the squeeze roll SR (hereinafter referred to as the "rolling point"), and the squeeze roll SR is pressed down while the pipe P is being rolled down. Then, it is transported in the direction of the white arrow for the finishing process. During this time, the open pipe OP moves inside the coil W in the coil axial direction in order to heat both ends E, E at a position downstream of the fine pass roll FR and upstream of the junction point O1 . In addition, in order to improve the heating efficiency of the open pipe OP by the coil W, an impeder IP is installed at a position downstream of the coil W and separated by l on the upstream side of the junction point O1 . The downstream ends, that is, the tips thereof, are arranged so as to coincide with each other and extend toward the upstream side.
However, the distance l is not smaller than the diameter D of the open pipe OP. Further, an energy beam launch source (not shown) is arranged facing the transfer path of the open pipe OP in order to project an energy beam to the junction point O1 and its vicinity. Here, the coil W is for heating both end portions E and E, and its coil terminal is connected to a high frequency power source of tens to hundreds of kHz (not shown), and the skin effect and proximity effect Both ends E,
A high frequency current is induced in E. The high frequency current induced in both ends E, E is passed between both ends E, E via junction O1 ,
As a result, both end portions E and E are heated. Here, the high frequency power source and the coil W are designed electrically and in a layout such that the both end portions E, E can be heated to the melting temperature or a temperature close to the melting temperature at the junction point O1 . Therefore, the joint between both ends E and E is such that both ends are at or near the melting temperature and are in a solid state or molten but do not flow even when subjected to external force such as electromagnetic force. This will be carried out under a molten state that will not cause any damage. On the other hand, the energy beam is directed toward the junction and its vicinity. Here, the amount of energy beam projected is designed to heat both ends E and E at the welding point O2 to a temperature higher than the melting temperature, which is sufficient for butt welding. There is. Therefore, the butt welding of the open pipe OP is performed under the condition that most of the molten metal between the opposite ends E and E at the welding point O2 is pressed down by the squeeze roll SR and discharged to the outside. become. In this way, the open pipe OP is formed into a pipe P. Figure 3 shows the temperature distribution on the outer surface near the side end when the open pipe OP is stationary and heated in the above-mentioned device, and the horizontal axis represents the axial position of the open pipe. , and the temperature 5 seconds after heating is plotted on the vertical axis. Here, the A curve (the curve shown by the thin line in the figure) is the temperature distribution when the conventional separation dimension l from the junction point to the tip of the impeder IP is zero, and the B curve (the curve shown by the thick line in the figure) ) is l≧D(=
This is the temperature distribution when l = 34 mm, which fills the minimum amount of air (34 mm). In the figure, the higher the temperature of the outer surface near both ends E and E of the open pipe OP, the
This means that the magnetic field on the outer surface of the coil W provided for heating due to the high frequency current applied thereto is strong, and therefore the induced current and current density are also large. From this, it can be considered that the lower the current density in the figure, the smaller the electromagnetic force acting on that part, and the smaller the discharge of molten metal due to the electromagnetic force. As is clear from the figure, in the case of l=34 mm according to the present invention,
The temperature at the junction is low, and therefore the discharge of molten metal due to electromagnetic force is small, but if l = 0 mm, that is, if the impeder IP is positioned so that its tip coincides with the junction, the temperature at the junction will be low. The temperature is high, so it can be said that the discharge of molten metal due to electromagnetic force is large. Table 1 shows the materials to be joined, pipe manufacturing speed, laser output,
It shows the measurement results of the occurrence of welding defects when the high frequency output and impeder position (l) were varied.
Note that the laser used for the measurement was a multi-mode carbon dioxide laser. Comparative Examples Nos. 1 to 5 are cases in which an energy beam is projected after preheating with a coil W to near the melting point, and l<D. In these cases, weld defects are not sufficiently suppressed. Comparative Example No. 6 is a case where the high frequency output is increased and melting occurs before the welding point, and defects that are considered to be caused by fluctuations in the molten steel occur. Comparative Examples No. 7 to 9 are electric resistance welding that does not use an energy beam, and in Comparative Example No. 7 where l = D, cold welding defects (indicated by an x in the table) appear over the entire length. In Comparative Examples No. 8 and 9 where , l=0, a relatively large number of penetrators were generated. On the other hand, Example No. 1 which is an example of the present invention
-5, welding defects are completely suppressed. In addition, in Examples Nos. 4 and 5 and Comparative Example No. 9, shielding with nitrogen gas was performed in order to prevent oxidation of the molten metal.

【表】【table】

〔発明の効果〕〔Effect of the invention〕

上記の如く本発明に係る電縫管製造方法におい
ては、インピーダをその下流側端部が接合点から
オープンパイプの外径D以上の距離lだけ上流に
位置するように配したので、従来問題とされてい
た微小欠陥の発生を充分に抑止することができる
等、本発明は優れた効果を奏する。
As described above, in the electric resistance welded pipe manufacturing method according to the present invention, the impeder is disposed so that its downstream end is located upstream from the junction point by a distance l equal to or more than the outer diameter D of the open pipe. The present invention has excellent effects, such as being able to sufficiently suppress the occurrence of micro defects that have been previously known.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法を示す模式図、第2図はオ
ープンパイプOPの模式図、第3図は温度分布図
である。 OP…オープンパイプ、FR…フインパスロー
ル、SR…スクイズロール、E…側端部、W…コ
イル、IP…インピーダ、O1…接合点、O2…溶接
点、O3…圧下点。
FIG. 1 is a schematic diagram showing the method of the present invention, FIG. 2 is a schematic diagram of an open pipe OP, and FIG. 3 is a temperature distribution diagram. OP...Open pipe, FR...Fin pass roll, SR...Squeeze roll, E...Side end, W...Coil, IP...Impeder, O1 ...Joint point, O2 ...Welding point, O3 ...Reducing point.

Claims (1)

【特許請求の範囲】 1 移送されるオープンパイプの相対向する両側
端部を、高周波電流にて加熱し、続いてエネルギ
ービームにてさらに加熱するエネルギービーム併
用電縫管の製造方法において、 インピーダをそのオープンパイプ移送方向下流
側端部が前記両側端部が接合する接合点から前記
オープンパイプの外径D以上の距離lだけオープ
ンパイプ移送方向上流側に位置するように前記オ
ープンパイプの移送方向に向けて配し、前記オー
プンパイプを接合することを特徴とするエネルギ
ービーム併用電縫管の製造方法。
[Claims] 1. A method for manufacturing an electric resistance welded pipe using an energy beam, in which opposite ends of an open pipe to be transferred are heated with a high-frequency current, and then further heated with an energy beam. In the transfer direction of the open pipe, the downstream end in the open pipe transfer direction is located upstream in the open pipe transfer direction by a distance l equal to or more than the outer diameter D of the open pipe from the junction where the both end portions join. A method of manufacturing an electric resistance welded pipe combined with an energy beam, characterized in that the open pipes are arranged facing each other and joined together.
JP63141187A 1988-06-07 1988-06-07 Production of electric welded pipe by combination use of energy beam Granted JPH01309792A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63141187A JPH01309792A (en) 1988-06-07 1988-06-07 Production of electric welded pipe by combination use of energy beam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63141187A JPH01309792A (en) 1988-06-07 1988-06-07 Production of electric welded pipe by combination use of energy beam

Publications (2)

Publication Number Publication Date
JPH01309792A JPH01309792A (en) 1989-12-14
JPH0585275B2 true JPH0585275B2 (en) 1993-12-06

Family

ID=15286184

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63141187A Granted JPH01309792A (en) 1988-06-07 1988-06-07 Production of electric welded pipe by combination use of energy beam

Country Status (1)

Country Link
JP (1) JPH01309792A (en)

Also Published As

Publication number Publication date
JPH01309792A (en) 1989-12-14

Similar Documents

Publication Publication Date Title
KR960037157A (en) Method of manufacturing steel pipe by using high-density energy beam
JPH0585275B2 (en)
JP3134706B2 (en) Manufacturing method of welded steel pipe
JP3556061B2 (en) Open pipe edge preheating device
JPH0248349B2 (en)
JP2871404B2 (en) Composite heat source welding pipe making method
JP3313304B2 (en) Open tube induction heating device
JPS5930493A (en) Production of welded pipe
JPH01178380A (en) Impeder case for electric welded steel pipe manufacturing device
JP3288600B2 (en) Steel pipe manufacturing method
JP2924675B2 (en) Manufacturing method of welded section steel
JP3321040B2 (en) Open pipe edge preheating device
JPH04237513A (en) Manufacturing device for electro-resistance-welded tube
JPH02160189A (en) Production of electric welded pipe
JPS6250088A (en) Seam welding method of steel pipe
JPH03133575A (en) Continuous manufacture and equipment for metallic welded pipe combining high-frequency preheating with high density energy melting and welding process
JP2017100173A (en) Method for producing dissimilar metal conjugant
JPH08294703A (en) Method for joining slab in hot rolling
SU527271A1 (en) Inductor for high frequency welding
JP2870433B2 (en) Manufacturing method of welded pipe
JPH0852513A (en) Manufacture of welded tube
JP3755922B2 (en) ERW pipe manufacturing apparatus and ERW pipe manufacturing method
JPH10296458A (en) Manufacture of welded steel tube
JPH02299782A (en) Manufacture of resistance welded tube
JPS5933083A (en) Welding method of electric welded steel pipe