JPH0585217B2 - - Google Patents

Info

Publication number
JPH0585217B2
JPH0585217B2 JP63118426A JP11842688A JPH0585217B2 JP H0585217 B2 JPH0585217 B2 JP H0585217B2 JP 63118426 A JP63118426 A JP 63118426A JP 11842688 A JP11842688 A JP 11842688A JP H0585217 B2 JPH0585217 B2 JP H0585217B2
Authority
JP
Japan
Prior art keywords
reaction
rhodium
solid catalyst
catalyst
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63118426A
Other languages
Japanese (ja)
Other versions
JPH01288341A (en
Inventor
Akio Matsuda
Takashi Masuda
Kazuhisa Murata
Shuichi Niwa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP63118426A priority Critical patent/JPH01288341A/en
Publication of JPH01288341A publication Critical patent/JPH01288341A/en
Publication of JPH0585217B2 publication Critical patent/JPH0585217B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は液相ヒドロホルミル化反応用固体触媒
およびその製造方法に関する。 〔従来技術及びその問題点〕 従来知られているオレフインのヒドロホルミル
化反応用触媒の主なものは、周期律表第8族金属
の化合物の中、ロジウムカルボニル、コバルトカ
ルボニル、ルテニウムカルボニル、または反応条
件下でこれらの金属カルボニル化合物に変換する
ロジウム、コバルトまたはルテニウム化合物であ
り、ヒドロホルミル化反応はこれら金属カルボニ
ル化合物による液相均一系触媒反応として知られ
ていた。そのため、反応後触媒分離のために、酸
による金属カルボニルの分解、および水による抽
出、あるいは生成物の蒸留分離などの特別の手段
を必要とする欠点があつた。 〔発明の目的〕 本発明は上記従来の欠点を解消するためになさ
れたものであり、反応後の分離回収および循環使
用が容易で、しかも温和な条件下で選択性よくア
ルデヒドを製造することができる液相ヒドロホル
ミル化反応用固体触媒、およびその製造方法を提
供することを目的とするものである。 〔発明の構成〕 上記目的を達成する本発明の液相ヒドロホルミ
ル化反応用固体触媒は、ニツケル−クロム合金
(Ni−Cr合金)を担体として用い、これにロジウ
ムを担持させたことを特徴とするものである。従
つて、ヒドロホルミル化反応後の触媒分離のため
の特別の手段を全く必要とせず、従来の均一系ヒ
ドロホルミル化反応の欠点を完全に解消すること
ができる。 また本発明の液相ヒドロホルミル化反応用固体
触媒の製造方法は、Ni−Cr合金と、ロジウムア
セチルアセテトナートRh(C5H7O23、ロジウム
ジカルボニルアセチルアセトナートRh(CO)2
(C5H7O2)、またはロジウムカルボニルRh4(CO)
12などの可溶性ロジウム化合物を溶媒中で合成ガ
スの加圧下に反応させることを特徴とするもので
あり、従つて容易に実施することができる。 本発明の液相ヒドロホルミル化反応用固体触媒
を製造するには、Ni−Cr合金をオートクレーブ
中で可溶性ロジウム化合物の溶液中に浸漬し、合
成ガスの加圧下に200〜300℃に加熱しながら2〜
20時間静置する。ついで反応物を取り出し、アセ
トン及び水で洗浄し、好ましくは1%程度のうす
い硝酸水溶液および水でさらに洗浄したのち、空
気中で乾燥し、このものをヒドロホルミル化反応
用固体触媒として使用する。本発明で触媒担体と
して用いるNi−Cr合金は、いからる形状、大き
さであつてもよく、例えば削り屑(切り子)状、
多孔板状、粉末状等で用いられる。またNi−Cr
合金製の反応管内壁そのものを触媒担体として使
用することができる。ロジウム化合物の使用量
は、Ni−Cr合金の表面積100cm2あたり、0.1〜100
マイクログラム原子のロジウムを含む量であり、
好ましくは1〜40マイクログラム原子のロジウム
を含む量である。触媒としてはベンゼン、トルエ
ン、キシレン、ヘキサン、ヘプタン、オクタン等
の炭化水素溶媒、エーテル、アルコール、エステ
ル等の含酸素溶媒を用いられる。溶媒の使用量は
特に制限はないが、例えば、Ni−Cr合金1g当
り2〜3gが適当である。ロジウム化合物の溶液
中の濃度は、通常では1あたり0.5〜5ミリグ
ラム原子のロジウムで含む濃度である。また合成
ガス中の水素、一酸化炭素比率は1:2〜2:1
であり、かかる合成ガスによる加圧圧力は常温で
30〜200Kg/cm2であり、200〜300℃に加熱したと
きの圧力は50〜400Kg/cm2である。このようにし
てNi−Cr合金表面に担持されたロジウムは、薄
膜の形で存在するものと考えられる。 次に上記のようにして製造した液相ヒドロホル
ミル化反応用固体触媒をヒドロホルミル化反応に
繰返し使用する方法について説明する。まず液相
ヒドロホルミル化反応用固体触媒とオレフインお
よび溶媒をオートクレーブに入れ、合成ガスで加
圧した後に攪拌しながら昇温し、ヒドロホルミル
化反応(オキソ反応)を行わせる。ここで、液相
ヒドロホルミル化反応用固体触媒の使用量はオレ
フイン1gに対して通常では0.01〜1gであり、
好ましくはくは0.1〜1gである。オレフインと
してはオキソ反応に一般に使用されるオレフイン
を全て使用することができ例えばプロピレン、1
−ブテン、1−ペンテン、1−ヘキセン、1−デ
セン等、あるいはこれらの異性体である2−ブテ
ン、2−ペンテン、2−ヘキセン、2−デセン等
の内部オレフインを挙げることができる。溶媒と
してはベンゼン、トルエン、オクタン等を使用す
ることができ、その使用量はオレフイン1gに対
して0〜5gであり、無溶媒での反応も行うこと
ができる。合成ガスによる加圧圧力は通常10〜
120Kg/cm2であり、好ましくは30〜90Kg/cm2であ
る。反応温度は使用するオレフインおよび溶媒の
種類により異なるが、一般的には100〜140℃、好
ましくは110〜130℃であり、反応継続時間は0.5
〜4時間できる。反応後オートクレーブを冷却
し、残留ガスを放出した後生成液を取り出し、固
体触媒を回収する。回収した固体触媒はアセトン
および水で洗い、好ましくは1%硝酸水溶液およ
び水でさらに洗浄し、乾燥した後次回の反応に繰
返し使用する。 〔発明の効果〕 以上述べたように本発明の触媒はロジウムを
Ni−Cr合金の表面に担持させた固体触媒である。
従つてヒドロホルミル化反応後の触媒分離のため
の特別の手段を全く必要とせず、従来の均一系ヒ
ドロホルミル化反応用触媒の欠点を完全に解消す
ることができる。また本発明の触媒はNi−Cr合
金と可溶性ロジウム化合物を合成ガスの加圧下に
反応させることによつて容易に製造することがで
きる。 〔実施例〕 以下、本発明の実施例を述べる。 実施例 1 Ni/Cr比が1:1のNi−Cr合金製フイルタの
細片5.0gを、ハステロイC276製、内容積約50ml
のオートクレーブに入れ、Rh4(CO)1212.5マイク
ログラムモル(9.5ミリグラム)を15gのトルエ
ンに溶かした溶液で浸し、合成ガス(H2/CO=
1)で器内の空気を置換し、ついで70Kg/cm2に加
圧し、約1時間で240℃に昇温し、240℃、100
Kg/cm2の条件で4時間静置した後、オートクレー
ブを冷却し、ガスを放出し、内容物を取り出し
た。溶媒から分離した固体をアセトンおよび水で
洗い、さらに1%硝酸水溶液および水で洗浄し、
乾燥したものを触媒として、次にの述べるように
1−ヘキセンのヒドロホルミル化反応を繰り返し
行なつた。 触媒5.0g、1−ヘキセン50mol(4.2g)、トル
エン20gを内容積約100mlのステンレス鋼製、電
磁上下攪拌式オートクレーブに仕込み、H2/CO
比8の合成ガスで加圧しつつ加熱して、120℃、
70Kg/cm2の条件に調整し、以後、H2/CO比1の
合成ガスを補給して加圧しつつ、120℃、70Kg/
cm2の条件を保持し、かきまぜながら1時間反応さ
せた。 反応後オートクレーブを冷却し、残留ガスを放
出したのち生成液を取り出してガスクロマト分析
を行つた。生成液から分離した固体触媒はアセト
ンおよび水で洗い、さらに1%硝酸水溶液および
水で洗浄したのち乾燥し、次回の反応の触媒とし
て繰り返し使用した。初回の反応および、全く同
様の方法により2回繰り返して行つた反応の結果
を表1に示す。なお、表中に示したヘキセン転化
率は、 (50−未反応ヘキセンmmol)×100/50 であり、未反応ヘキセンは全て1−ヘキセンの異
性化により生成した内部ヘキセン(2−ヘキセン
+3−ヘキセン)であつた。アルデヒド選択率は
異性化以外の反応により転化したヘキサンのアル
デヒドへの選択率であり、アルデヒド以外の生成
物はヘキサンである。アルデヒド直鎖率は生成ア
ルデヒド中の直鎖状アルデヒドの比率である。 【表】
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a solid catalyst for liquid-phase hydroformylation reactions and a method for producing the same. [Prior art and its problems] Mainly known catalysts for the hydroformylation reaction of olefins include rhodium carbonyl, cobalt carbonyl, ruthenium carbonyl, among compounds of Group 8 metals of the periodic table, or reaction conditions. The hydroformylation reaction was known as a liquid phase homogeneous catalytic reaction using these metal carbonyl compounds. Therefore, there is a drawback that special means such as decomposition of the metal carbonyl with an acid, extraction with water, or separation of the product by distillation are required for catalyst separation after the reaction. [Object of the Invention] The present invention has been made in order to solve the above-mentioned conventional drawbacks, and it is possible to easily separate and recover and recycle after the reaction, and to produce aldehydes with good selectivity under mild conditions. The object of the present invention is to provide a solid catalyst for a liquid phase hydroformylation reaction that can be used in a liquid-phase hydroformylation reaction, and a method for producing the same. [Structure of the Invention] The solid catalyst for liquid phase hydroformylation reaction of the present invention which achieves the above object is characterized in that a nickel-chromium alloy (Ni-Cr alloy) is used as a carrier and rhodium is supported on this. It is something. Therefore, there is no need for any special means for separating the catalyst after the hydroformylation reaction, and the drawbacks of conventional homogeneous hydroformylation reactions can be completely eliminated. Further, the method for producing a solid catalyst for liquid phase hydroformylation reaction of the present invention includes a Ni-Cr alloy, rhodium acetylacetetonate Rh(C 5 H 7 O 2 ) 3 , rhodium dicarbonylacetylacetonate Rh(CO) 2
(C 5 H 7 O 2 ), or rhodium carbonyl Rh 4 (CO)
This method is characterized by reacting a soluble rhodium compound such as 12 in a solvent under the pressure of synthesis gas, and therefore can be easily carried out. To produce the solid catalyst for liquid-phase hydroformylation reactions of the present invention, a Ni-Cr alloy is immersed in a solution of a soluble rhodium compound in an autoclave, and heated to 200-300°C under the pressure of synthesis gas. ~
Let stand for 20 hours. The reactant is then taken out, washed with acetone and water, preferably further washed with a dilute aqueous nitric acid solution of about 1% and water, dried in air, and used as a solid catalyst for the hydroformylation reaction. The Ni-Cr alloy used as a catalyst carrier in the present invention may have any shape or size, such as shavings (cuttings),
It is used in the form of perforated plates, powder, etc. Also, Ni−Cr
The alloy reaction tube inner wall itself can be used as a catalyst carrier. The amount of rhodium compound used is 0.1 to 100 per 100 cm2 of surface area of Ni-Cr alloy.
It is the amount containing microgram atoms of rhodium,
Preferred amounts include 1 to 40 microgram atoms of rhodium. As the catalyst, hydrocarbon solvents such as benzene, toluene, xylene, hexane, heptane, and octane, and oxygen-containing solvents such as ether, alcohol, and ester are used. The amount of solvent used is not particularly limited, but for example, 2 to 3 g per 1 g of Ni-Cr alloy is suitable. The concentration of the rhodium compound in solution is usually between 0.5 and 5 milligram atoms of rhodium per rhodium compound. Also, the ratio of hydrogen and carbon monoxide in the synthesis gas is 1:2 to 2:1.
, and the pressurized pressure by such synthesis gas is at room temperature.
The pressure is 30-200Kg/ cm2 , and the pressure when heated to 200-300°C is 50-400Kg/ cm2 . The rhodium thus supported on the surface of the Ni-Cr alloy is thought to exist in the form of a thin film. Next, a method of repeatedly using the solid catalyst for liquid-phase hydroformylation reactions produced as described above in hydroformylation reactions will be described. First, a solid catalyst for a liquid-phase hydroformylation reaction, an olefin, and a solvent are placed in an autoclave, and after pressurized with synthesis gas, the temperature is raised while stirring to perform a hydroformylation reaction (oxo reaction). Here, the amount of solid catalyst used for liquid phase hydroformylation reaction is usually 0.01 to 1 g per 1 g of olefin.
Preferably it is 0.1 to 1 g. As the olefin, all olefins commonly used in oxo reactions can be used, such as propylene, 1
Examples include internal olefins such as -butene, 1-pentene, 1-hexene, 1-decene, and their isomers such as 2-butene, 2-pentene, 2-hexene, and 2-decene. Benzene, toluene, octane, etc. can be used as a solvent, and the amount used is 0 to 5 g per 1 g of olefin, and the reaction can also be carried out without a solvent. The pressurization pressure by synthesis gas is usually 10~
120Kg/ cm2 , preferably 30-90Kg/ cm2 . The reaction temperature varies depending on the type of olefin and solvent used, but is generally 100 to 140°C, preferably 110 to 130°C, and the reaction duration is 0.5
It can be done for ~4 hours. After the reaction, the autoclave is cooled, residual gas is released, the product liquid is taken out, and the solid catalyst is recovered. The recovered solid catalyst is washed with acetone and water, preferably further washed with a 1% aqueous nitric acid solution and water, dried, and then used repeatedly for the next reaction. [Effects of the invention] As described above, the catalyst of the present invention contains rhodium.
It is a solid catalyst supported on the surface of Ni-Cr alloy.
Therefore, there is no need for any special means for separating the catalyst after the hydroformylation reaction, and the drawbacks of conventional catalysts for homogeneous hydroformylation reactions can be completely overcome. Further, the catalyst of the present invention can be easily produced by reacting a Ni-Cr alloy and a soluble rhodium compound under pressure of synthesis gas. [Examples] Examples of the present invention will be described below. Example 1 5.0 g of a Ni-Cr alloy filter strip with a Ni/Cr ratio of 1:1 was made of Hastelloy C276 and had an internal volume of about 50 ml.
Rh 4 (CO) 12 was placed in an autoclave and immersed in a solution of 12.5 microgram moles (9.5 milligrams) of Rh 4 (CO) 12 in 15 g of toluene, and syngas (H 2 /CO=
In step 1), the air inside the vessel was replaced, and then the pressure was increased to 70Kg/ cm2 , and the temperature was raised to 240℃ in about 1 hour.
After standing for 4 hours under Kg/cm 2 conditions, the autoclave was cooled, the gas was released, and the contents were taken out. The solid separated from the solvent was washed with acetone and water, further washed with a 1% aqueous nitric acid solution and water,
Using the dried product as a catalyst, 1-hexene was repeatedly hydroformylated as described below. Charge 5.0 g of catalyst, 50 mol (4.2 g) of 1-hexene, and 20 g of toluene into a stainless steel electromagnetic vertical stirring autoclave with an internal volume of approximately 100 ml, and add H 2 /CO.
Heat to 120℃ while pressurizing with synthesis gas of ratio 8,
The conditions were adjusted to 70Kg/cm 2 , and thereafter, while supplying and pressurizing synthesis gas with a H 2 /CO ratio of 1, the temperature was 70Kg/cm 2 at 120°C.
cm 2 condition was maintained and the reaction was allowed to proceed for 1 hour while stirring. After the reaction, the autoclave was cooled and residual gas was released, and the resulting solution was taken out and subjected to gas chromatography analysis. The solid catalyst separated from the product liquid was washed with acetone and water, further washed with a 1% aqueous nitric acid solution and water, dried, and repeatedly used as a catalyst for the next reaction. Table 1 shows the results of the first reaction and the reactions conducted twice in exactly the same manner. The hexene conversion rate shown in the table is (50 - mmol of unreacted hexene) x 100/50, and all unreacted hexene is internal hexene (2-hexene + 3-hexene) produced by isomerization of 1-hexene. ). The aldehyde selectivity is the selectivity of hexane converted to aldehyde by a reaction other than isomerization, and the product other than the aldehyde is hexane. The linear aldehyde ratio is the ratio of linear aldehydes in the aldehyde produced. 【table】

Claims (1)

【特許請求の範囲】 1 ニツケル−クロム合金を坦体として用い、こ
れにロジウムを担持させたことを特徴とする液相
ヒドロホルミル化反応用固体触媒。 2 ニツケル−クロム合金と可溶性ロジウム化合
物を溶媒中で合成ガスの加圧下に反応させること
を特徴とする液相ヒドロホルミル化反応用固体触
媒の製造方法。
[Scope of Claims] 1. A solid catalyst for a liquid phase hydroformylation reaction, characterized in that a nickel-chromium alloy is used as a carrier and rhodium is supported on the carrier. 2. A method for producing a solid catalyst for a liquid-phase hydroformylation reaction, which comprises reacting a nickel-chromium alloy and a soluble rhodium compound in a solvent under pressure of synthesis gas.
JP63118426A 1988-05-16 1988-05-16 Solid catalyst for liquid phase hydroformylation reaction and its production Granted JPH01288341A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63118426A JPH01288341A (en) 1988-05-16 1988-05-16 Solid catalyst for liquid phase hydroformylation reaction and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63118426A JPH01288341A (en) 1988-05-16 1988-05-16 Solid catalyst for liquid phase hydroformylation reaction and its production

Publications (2)

Publication Number Publication Date
JPH01288341A JPH01288341A (en) 1989-11-20
JPH0585217B2 true JPH0585217B2 (en) 1993-12-06

Family

ID=14736353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63118426A Granted JPH01288341A (en) 1988-05-16 1988-05-16 Solid catalyst for liquid phase hydroformylation reaction and its production

Country Status (1)

Country Link
JP (1) JPH01288341A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0364188A (en) * 1989-05-12 1991-03-19 Rai Radiotelevisione It Discrete cosine transform coder of digital video signal

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0364188A (en) * 1989-05-12 1991-03-19 Rai Radiotelevisione It Discrete cosine transform coder of digital video signal

Also Published As

Publication number Publication date
JPH01288341A (en) 1989-11-20

Similar Documents

Publication Publication Date Title
AU2017224165B2 (en) Process for preparing terpinene-4-ol
US4678857A (en) Process for separation of product resulting from hydroformylation
US4111837A (en) Homologation of alkanols
JPS6221771B2 (en)
Kunin et al. In situ FTIR spectroscopy at elevated carbon monoxide pressure. Evidence for single electron transfer in the catalytic carbonylation of nitroaromatics
CN112608340A (en) Tetradentate nitrogen phosphine ligand and preparation method and application thereof
Neibecker et al. Synthesis of 2-arylpropionaldehydes through hydroformylation
US4900413A (en) Process for direct carbonylation of hydrocarbons
EP0155002B1 (en) Hydroformylation of 3-methyl-3-buten-1-ol and use of such hydroformylation products
US4258214A (en) Process for the production of aldehydes
US4235744A (en) Carbonylation of olefinically unsaturated compounds
CA1073469A (en) Process for preparing, 2,3-dimethylpentanal
CA1106857A (en) Process for the preparation of 3-(4-methyl-3- cyclohexen-1-yl) butyraldehyde
JP3410120B2 (en) Method for producing alcohol
CA1157047A (en) Hydroformylation of olefinically unsaturated compounds
JPH0585217B2 (en)
US4301090A (en) Carbonylation of olefinically unsaturated compounds
US4263460A (en) Process for preparing methyl-nonyl-acetaldehyde
CN113015715B (en) Iron catalyzed selectivity for the preparation of methyl esters from aldehydes
US4178313A (en) Olefin isomerization and hydroformylation process
JPH0436251A (en) Alcohol for plasticizer
JPH03391B2 (en)
US3509221A (en) Production of cyclooctanemethanol
JP3526608B2 (en) Method for producing 3-methylisoquinoline
JPH0364188B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term