JPH05851A - Silicon carbide-based material and its production - Google Patents

Silicon carbide-based material and its production

Info

Publication number
JPH05851A
JPH05851A JP3017966A JP1796691A JPH05851A JP H05851 A JPH05851 A JP H05851A JP 3017966 A JP3017966 A JP 3017966A JP 1796691 A JP1796691 A JP 1796691A JP H05851 A JPH05851 A JP H05851A
Authority
JP
Japan
Prior art keywords
silicon carbide
silicon
porous body
carbon
quartz glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3017966A
Other languages
Japanese (ja)
Inventor
Kazuhiro Minagawa
和弘 皆川
Shigetoshi Hayashi
茂利 林
Tadahisa Arahori
忠久 荒堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP3017966A priority Critical patent/JPH05851A/en
Publication of JPH05851A publication Critical patent/JPH05851A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE:To improve corrosion resistance by depositing C formed by thermally decomposing C-contg. gas in a porous body of synthetic quartz glass while continuously varying the amt. of C in a certain direction, firing the C-contg. porous body and impregnating metallic Si into the resulting porous SiC material. CONSTITUTION:Gas contg. gaseous hydrocarbon or halogenated hydrocarbon is fed at a prescribed flow rate and thermally decomposed by heating at a prescribed temp. to deposit C in a porous body of synthetic quartz glass by an amt. expressed by the inequality (where (x) is the bulk density (g/cm<3>) of the porous body, 0<x<2.3 and (y) is the molar ratio of C to SiO2) while continuously varying the amt. of C from the surface of the porous body toward the interior. The resulting SiO2-C composite body is fired at a prescribed temp. in a nonoxidizing atmosphere or in vacuum to convert the SiO2 into SiC. Metallic Si melted by heating to the m.p. or above is impregnated into the formed SiC-C composite body in vacuum and converted into SiC by reaction with the C in the porous body. After this reaction, metallic Si is further filled into the pores in the sintered body to obtain a dense SiC-based sintered body having continuously varying ratio between Si and SiC in a certain direction.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は炭化珪素質材料及びその
製造方法、より詳しくは特に半導体製造用治具、例えば
シリコンウェハの熱拡散処理等に使用されるプロセスチ
ューブ、ウェハボード等の耐熱性治具の材料として有用
な高純度炭化珪素質材料及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a silicon carbide material and a method for producing the same, more particularly, a jig for semiconductor production, for example, a heat resistance of a process tube or a wafer board used for thermal diffusion treatment of a silicon wafer. The present invention relates to a high-purity silicon carbide material useful as a jig material and a method for manufacturing the same.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】従来、
高純度を要求される半導体製造用耐熱性治具としては、
主として石英ガラス製のものが用いられていた。石英ガ
ラス製治具は、極めて純度の高いものを容易に製作する
ことができ、また透明であることから内部の観察が容易
である等の利点を有している。
2. Description of the Related Art Conventionally, the problems to be solved by the invention
As a heat resistant jig for semiconductor manufacturing that requires high purity,
Those mainly made of quartz glass were used. The quartz glass jig has advantages that it is possible to easily manufacture a jig having extremely high purity, and that it is transparent because it is easy to observe the inside.

【0003】しかし、この石英ガラス製のものは1000℃
を越えると粘性流動による変形が生じ始めるため、1150
℃以上の熱処理にはほとんど使用することができず、ま
た失透、破損あるいは酸によって劣化する等寿命が短い
という欠点があった。
However, this quartz glass is 1000 ° C.
When the temperature exceeds 1150, deformation due to viscous flow begins to occur.
It has a drawback that it can hardly be used for heat treatment at a temperature of ℃ or more, and has a short life such as devitrification, damage or deterioration by acid.

【0004】近年、このような欠点を解決し得る材料と
して石英ガラスに代わって、炭化珪素粉体を成形した多
孔質炭化珪素成形体に、金属シリコンを充填した複合体
が開発され、半導体製造用耐熱性治具として使用されて
いる。しかしながら、高純度な炭化珪素原料粉が得難
く、また原料配合、成形、高純度化処理、焼成等と製造
工程が複雑な上、フェノール樹脂等のバインダーを必要
とするため、プロセスにおける汚染及び原材料の不純物
等に起因して高純度な炭化珪素質複合材料を得ることが
困難であった。また、この半導体製造用耐熱性治具の表
面には金属シリコン含浸部が露出しているので、HCl
ガスやHF−NO3 溶液等の洗浄剤で処理すると、金属
シリコンがHCl等と容易に反応して分解、離脱するた
め強度が低下するという欠点を有している。
In recent years, as a material capable of solving such drawbacks, a composite in which metallic silicon is filled in a porous silicon carbide compact formed by molding silicon carbide powder has been developed in place of quartz glass, and is used for semiconductor manufacturing. Used as a heat resistant jig. However, it is difficult to obtain a high-purity silicon carbide raw material powder, and the manufacturing process such as raw material blending, molding, high-purification treatment, firing, etc. is complicated, and a binder such as a phenol resin is required. It was difficult to obtain a high-purity silicon carbide composite material due to the impurities and the like. In addition, since the metal silicon impregnated portion is exposed on the surface of this heat-resistant jig for semiconductor production,
When treated with a gas or a cleaning agent such as an HF-NO 3 solution, metallic silicon easily reacts with HCl or the like to decompose and separate, resulting in a decrease in strength.

【0005】これに対して、不純物の拡散を抑制してシ
リコンウェハ等に対する汚染を低減し、さらに金属シリ
コンの反応を抑制する方法として、炭化珪素の表面に炭
化珪素あるいはシリカ膜等を気相蒸着させて緻密質炭化
珪素膜を形成する方法(特開昭62−122212号公
報、特開昭64−61376号公報)が提案されてい
る。
On the other hand, as a method of suppressing the diffusion of impurities to reduce the contamination of a silicon wafer or the like and further suppressing the reaction of metallic silicon, a silicon carbide or silica film or the like is vapor-deposited on the surface of silicon carbide. A method for forming a dense silicon carbide film (Japanese Patent Application Laid-Open No. 62-122212, Japanese Patent Application Laid-Open No. 64-61376) has been proposed.

【0006】しかし、この炭化珪素質材料は、その表面
の炭化珪素あるいはシリカ膜にピンホールが発生した
り、膜の密着強度が低く、機械的、熱的衝撃により亀裂
が生じる等の課題があった。
However, this silicon carbide-based material has the problems that pinholes are generated in the silicon carbide or silica film on the surface, the adhesion strength of the film is low, and cracks occur due to mechanical and thermal shocks. It was

【0007】本発明はこのような課題に鑑み発明された
ものであって、高温下で変形することがなく、純度及び
耐腐食性に優れ、シリコンウェハの拡散処理中にウェハ
を汚染することがない半導体治具に有用な炭化珪素質材
料及びその製造方法を提供することを目的としている。
The present invention has been invented in view of the above problems, is not deformed at a high temperature, is excellent in purity and corrosion resistance, and can contaminate a silicon wafer during diffusion processing. An object of the present invention is to provide a silicon carbide based material useful for a semiconductor jig and a method for manufacturing the same.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に本発明に係る炭化珪素質材料は、シリコンと炭化珪素
の組成比が、ある一定方向に対して連続的に変化してい
ることを特徴とし、さらに、上記炭化珪素質材料におい
て、該炭化珪素質材料の表面が、実質的に炭化珪素であ
ることを特徴としている。
In order to achieve the above object, in the silicon carbide based material according to the present invention, the composition ratio of silicon and silicon carbide is continuously changed in a certain direction. Further, in the above silicon carbide based material, the surface of the silicon carbide based material is substantially silicon carbide.

【0009】また本発明に係る炭化珪素質材料の製造方
法は、合成石英ガラスの多孔体中に、炭化水素ガス又は
ハロゲン化炭化水素ガスを含有するガスの熱分解により
生成する炭素をある一定方向に対して連続的に変化する
量でもって析出させ、その後焼成して得られた多孔質炭
化珪素材料に金属シリコンを充填することを特徴とし、
また、上記記載の炭化珪素質材料の製造方法において、
合成石英ガラス多孔体のかさ密度がxg/cm3 の場
合、その表面に析出させる炭素量が、次式を満足するこ
とを特徴としている。
In the method for producing a silicon carbide material according to the present invention, carbon produced by thermal decomposition of a gas containing a hydrocarbon gas or a halogenated hydrocarbon gas is produced in a certain direction in a porous body of synthetic quartz glass. Is deposited with an amount that continuously changes with respect to the porous silicon carbide material obtained by firing, and then filled with metallic silicon.
Further, in the method for producing a silicon carbide based material described above,
When the bulk density of the synthetic quartz glass porous body is xg / cm 3 , the amount of carbon deposited on the surface thereof is characterized by satisfying the following formula.

【0010】y≧4.78/x+2 (y:炭素/二酸化珪素のモル比、0<x<2.3)Y ≧ 4.78 / x + 2 (Y: carbon / silicon dioxide molar ratio, 0 <x <2.3)

【0011】[0011]

【作用】VAD(Vapor−phase Axial
Deposition)法気相合成石英ガラスは多孔
質であるため、炭素含有ガス雰囲気中で熱処理すること
により内部にまで炭素を析出させることが可能である。
またこの際、温度、ガス流量等の処理条件を制御すると
共に、炭素含有ガスの分解速度を制御することにより、
多孔質合成石英ガラスの表面と内部との炭素析出量を連
続的に変化させることが可能である。さらに、この二酸
化珪素−炭素複合体を焼成することにより多孔質炭化珪
素−炭素複合体が得られる。
[Function] VAD (Vapor-phase Axial)
Deposition) vapor-phase synthetic quartz glass is porous, so that it is possible to deposit carbon even inside by heat treating in a carbon-containing gas atmosphere.
At this time, by controlling the processing conditions such as temperature and gas flow rate, and by controlling the decomposition rate of the carbon-containing gas,
It is possible to continuously change the amount of carbon deposited on the surface and the inside of the porous synthetic quartz glass. Further, by firing this silicon dioxide-carbon composite, a porous silicon carbide-carbon composite is obtained.

【0012】従って本発明においては、まず、多孔質合
成石英ガラスを出発物質とし、炭素含有ガス雰囲気中で
熱処理を行なう。この際、反応温度、ガス流量等を調節
することにより炭素含有ガスの熱分解速度を制御し、多
孔質合成石英ガラス表面から内部への熱分解炭素の析出
量を連続的に変化させる。この炭素析出量は後記する数
2より、最低でも基材である多孔質合成石英ガラス中の
二酸化珪素に対し、モル比で3以上である必要がある。
これは、炭素析出量がモル比で3未満であるときには過
剰の二酸化珪素が残存し、この二酸化珪素が熱処理の際
にSiOガスとなって揮発するため、多孔体の形状が崩
れ、強度の低下あるいは粉体化を起こすことがあるため
である。析出量が最も多い場合は、多孔質合成石英ガラ
スの表面は実質的に炭素単体で形成されても良い。
Therefore, in the present invention, first, a porous synthetic quartz glass is used as a starting material, and heat treatment is performed in a carbon-containing gas atmosphere. At this time, the pyrolysis rate of the carbon-containing gas is controlled by adjusting the reaction temperature, the gas flow rate, etc., and the amount of pyrolytic carbon deposited from the surface of the porous synthetic quartz glass to the inside is continuously changed. This carbon deposition amount must be at least 3 or more in terms of molar ratio to the silicon dioxide in the porous synthetic quartz glass which is the base material, based on the number 2 described later.
This is because when the amount of deposited carbon is less than 3 in terms of molar ratio, excess silicon dioxide remains, and this silicon dioxide volatilizes as SiO gas during heat treatment and volatilizes, resulting in collapse of the shape of the porous body and reduction in strength. Alternatively, it may cause pulverization. When the amount of precipitation is the largest, the surface of the porous synthetic quartz glass may be formed substantially by simple carbon.

【0013】合成石英ガラス多孔体に炭素を析出させた
後、この合成石英ガラス−炭素複合体を非酸化性雰囲気
下あるいは真空中で焼成することにより、熱分解炭素の
超微粒子が、二酸化珪素微粒子を極めて速やかに還元
し、完全に炭化珪素化する。
After carbon is deposited on the synthetic quartz glass porous body, the synthetic quartz glass-carbon composite is fired in a non-oxidizing atmosphere or in a vacuum, whereby ultrafine particles of pyrolytic carbon are converted into silicon dioxide fine particles. Is reduced extremely quickly and completely converted into silicon carbide.

【0014】その後さらに、この多孔質炭化珪素−炭素
複合体に、真空下、融点以上に加熱して溶融させた金属
シリコンを含浸させると多孔体内部の炭素と反応して、
炭化珪素を生じながら緻密化が起こり、反応終了後の焼
結体の気孔にさらに金属シリコンが充填され、緻密な焼
結体となる。この時、開気孔中に過剰の炭素が多く存在
する場合は、反応焼結により生成する炭化珪素もまた多
いため、シリコン/炭化珪素の組成比は小さくなり、逆
に過剰の炭素が少ない場合は、シリコン/炭化珪素の組
成比は大きくなる。また、シリコン含浸後表面に炭素が
残存する場合は、酸化雰囲気中で熱処理することによ
り、容易に除去できる。
Thereafter, when the porous silicon carbide-carbon composite is further impregnated with metallic silicon which is heated to a temperature equal to or higher than the melting point under vacuum and melted, it reacts with carbon inside the porous body,
Densification occurs while producing silicon carbide, and the pores of the sintered body after the reaction are further filled with metallic silicon to form a dense sintered body. At this time, when a large amount of excess carbon is present in the open pores, the silicon / silicon carbide composition ratio is small because a large amount of silicon carbide is also generated by reaction sintering. Conversely, when the excess carbon is small, , The composition ratio of silicon / silicon carbide becomes large. If carbon remains on the surface after impregnation with silicon, it can be easily removed by heat treatment in an oxidizing atmosphere.

【0015】また、合成石英ガラス多孔体表面に析出さ
せる炭素量yが次式を満足する値となると、シリコン含
浸後の表面は実質的に炭化珪素単体で形成される。
When the amount y of carbon deposited on the surface of the synthetic quartz glass porous body reaches a value satisfying the following equation, the surface after impregnation with silicon is substantially formed by simple substance of silicon carbide.

【0016】y≧4.78/x+2 ただし、x:合成石英ガラス多孔体のかさ密度(g/c
3 ) y:炭素/二酸化珪素のモル比 これを図4に従って説明すると、つまり図4(a)に示
したように、かさ密度xg/cm3 、体積Zcm3 の合
成石英ガラス多孔体があると、この時のSiO2 のモル
数は、
Y ≧ 4.78 / x + 2 where x: bulk density (g / c) of the synthetic quartz glass porous body
m 3 ) y: carbon / silicon dioxide molar ratio This will be described with reference to FIG. 4, that is, as shown in FIG. 4A, there is a synthetic quartz glass porous body having a bulk density of xg / cm 3 and a volume of Zcm 3. And the number of moles of SiO 2 at this time is

【0017】[0017]

【数1】 [Equation 1]

【0018】で表わされる。この合成石英ガラス多孔体
に炭素を析出させた(図4(b))後、熱処理を行なう
ことにより下記の数2によって炭化珪素が生成する(図
4(c))。
It is represented by After carbon is deposited on this synthetic quartz glass porous body (FIG. 4 (b)), heat treatment is performed to produce silicon carbide according to the following equation 2 (FIG. 4 (c)).

【0019】[0019]

【数2】 SiO2 +3C→SiC+2CO 従って、脱離する炭素ガスのモル数は、[Equation 2] SiO 2 + 3C → SiC + 2CO Therefore, the number of moles of the desorbed carbon gas is

【0020】[0020]

【数3】 y(CO)=2×y(SiO2) で表わされる。その後さらに、金属シリコンを含浸させ
ることにより、次式によって炭化珪素が生成する。
## EQU3 ## It is represented by y (CO) = 2 × y (SiO 2 ). After that, by further impregnating metallic silicon, silicon carbide is generated by the following formula.

【0021】Si+C→SiC この時、多孔質炭化珪素−炭素複合体の体積変化がない
とすると、炭化珪素のモル数は、
Si + C → SiC At this time, assuming that there is no volume change of the porous silicon carbide-carbon composite, the number of moles of silicon carbide is

【0022】[0022]

【数4】 [Equation 4]

【0023】で表わされる。炭素/二酸化珪素のモル比
y(C/SiO2)は、
It is represented by The carbon / silicon dioxide molar ratio y (C / SiO 2 ) is

【0024】[0024]

【数5】 [Equation 5]

【0025】と表わされ、この数5に数1、数3及び数
4を代入し、内部の微小な気孔等を考慮すると下記の数
6が得られる。
[Mathematical formula-see original document] By substituting the equations 1, 3, and 4 into this equation 5, and taking into account the minute pores inside, the following equation 6 is obtained.

【0026】[0026]

【数6】 y≧4.78/x+2 ただし、x:石英ガラス多孔体のかさ密度(g/cm
3 )、0<x<2.3 y:炭素/二酸化珪素のモル比 ここで、石英ガラスの真比重は2.3であるので、石英
ガラス多孔体のかさ密度を0<x<2.3としたが、好
ましくは0.2から1.2の範囲が望ましい。
Y ≧ 4.78 / x + 2 where x: bulk density of the silica glass porous body (g / cm
3 ), 0 <x <2.3 y: molar ratio of carbon / silicon dioxide Here, since the true specific gravity of quartz glass is 2.3, the bulk density of the quartz glass porous body is 0 <x <2.3. However, the range of 0.2 to 1.2 is preferable.

【0027】このように、多孔質合成石英ガラスに析出
される炭素量を制御することにより、得られる炭化珪素
質材料のシリコンと炭化珪素との組成比を制御すること
ができる。
By controlling the amount of carbon deposited on the porous synthetic quartz glass in this manner, the composition ratio of silicon to silicon carbide in the obtained silicon carbide material can be controlled.

【0028】上記のように製造される本発明に係る炭化
珪素質材料によれば、シリコンと炭化珪素の組成比が、
ある一定方向に対して連続的に変化しているので、シリ
コン/炭化珪素の組成に界面が存在せず、熱膨張係数差
等による膜の剥離等の問題が生じない。
According to the silicon carbide-based material of the present invention produced as described above, the composition ratio of silicon and silicon carbide is
Since it continuously changes in a certain direction, there is no interface in the composition of silicon / silicon carbide, and there is no problem such as film peeling due to a difference in thermal expansion coefficient.

【0029】さらに、上記炭化珪素質材料において、炭
化珪素質材料の表面が実質的に炭化珪素である場合に
は、HClガスやHF−NO3 溶液等により表面が侵さ
れることがない。
Further, in the above-mentioned silicon carbide-based material, when the surface of the silicon carbide-based material is substantially silicon carbide, the surface is not attacked by HCl gas, HF-NO 3 solution or the like.

【0030】さらに本発明に係る炭化珪素質材料の製造
方法によれば、合成石英ガラスの多孔体中に、炭化水素
ガス又はハロゲン化炭化水素ガスを含有するガスの熱分
解により生成する炭素をある一定方向に対して連続的に
変化する量でもって析出させ、その後焼成して得られた
多孔質炭化珪素材料に金属シリコンを充填するので、緻
密な炭化珪素質材料が容易に得られる。
Further, according to the method for producing a silicon carbide-based material according to the present invention, carbon produced by the thermal decomposition of a gas containing a hydrocarbon gas or a halogenated hydrocarbon gas is present in the porous body of synthetic quartz glass. Since the porous silicon carbide material obtained by precipitating in an amount that continuously changes in a certain direction and then firing is filled with metallic silicon, a dense silicon carbide material can be easily obtained.

【0031】また、上記記載の炭化珪素質材料の製造に
おいて、合成石英ガラス多孔体のかさ密度がxg/cm
3 の場合、その表面に析出させる炭素量が、数6を満足
する場合には、シリコン含浸後、表面が実質的に炭化珪
素単体で形成される炭化珪素質材料が製造されることと
なり、HClガスやHF−NO3 溶液等により表面が侵
されることがない。
In the production of the above-mentioned silicon carbide material, the bulk density of the synthetic quartz glass porous body is xg / cm.
In the case of 3 , when the amount of carbon deposited on the surface satisfies the formula 6, a silicon carbide-based material whose surface is substantially formed by simple silicon carbide is produced after silicon impregnation, and The surface is not attacked by gas or HF-NO 3 solution.

【0032】[0032]

【実施例及び比較例】以下、本発明に係る実施例及び比
較例を説明する。 実施例 VAD法により合成した、かさ密度が約0.5g/cm
3 、比表面積が約12m2 /g、平均粒子径が約0.2
μmの合成石英ガラス多孔体を半径10mmの円筒状に
加工し、メタンガス100%の雰囲気下、1000℃の
温度で6時間処理し、トータルの二酸化珪素と炭素のモ
ル比が約9.8で、表面から0.5mm程度までが、モ
ル比で13.7である二酸化珪素−炭素複合体を得た。
EXAMPLES AND COMPARATIVE EXAMPLES Examples and comparative examples according to the present invention will be described below. Example Bulk density synthesized by VAD method is about 0.5 g / cm
3 , specific surface area of about 12m 2 / g, average particle size of about 0.2
A synthetic quartz glass porous body having a diameter of 10 μm was processed into a cylindrical shape having a radius of 10 mm, and treated at a temperature of 1000 ° C. for 6 hours in an atmosphere of 100% methane gas, and the total molar ratio of silicon dioxide to carbon was about 9.8. A silicon dioxide-carbon composite having a molar ratio of 13.7 from the surface to about 0.5 mm was obtained.

【0033】ついで、この複合体を真空下、2000℃
の温度で3時間焼成し、平均かさ密度が約0.80g/
cm3 、平均気孔率が約35%、トータルの炭化珪素と
炭素のモル比が約6.8である多孔質炭化珪素−炭素複
合体を得た。
The composite is then placed under vacuum at 2000.degree.
Firing for 3 hours at an average bulk density of about 0.80 g /
A porous silicon carbide-carbon composite having a cm 3 , an average porosity of about 35%, and a total molar ratio of silicon carbide to carbon of about 6.8 was obtained.

【0034】この多孔体を炭化珪素のコーティングを施
した黒鉛製るつぼ内に挿入し、周囲に金属シリコンを入
れて1500℃で加熱し、溶融したシリコンを多孔体の
開気孔中に浸透させ、図1に示した炭化珪素質材料10
を得た。得られた炭化珪素質材料10の断面及びシリコ
ン/炭化珪素組成比を図1に、機械的性質及び耐蝕性を
表1に示す。
This porous body was inserted into a graphite crucible coated with silicon carbide, metallic silicon was placed around the crucible and heated at 1500 ° C. to allow the molten silicon to penetrate into the open pores of the porous body. Silicon Carbide Material 10 Shown in 1
Got The cross section and silicon / silicon carbide composition ratio of the obtained silicon carbide based material 10 are shown in FIG. 1, and the mechanical properties and corrosion resistance are shown in Table 1.

【0035】比較例1 平均粒径約5μmの炭化珪素粉末80重量%、平均粒径
約2μmの炭素粉末10重量%及びフェノール樹脂10
重量%を混合し、半径10mmの円筒状に成形した。そ
の成形体を900℃で焼成した後、1500℃で溶融シ
リコンを浸透させて、反応焼結させ、図2に示した炭化
珪素質材料11を得た。この炭化珪素質材料11の断面
及びシリコン/炭化珪素組成比を図2に、機械的性質及
び耐蝕性を表1に示す。
Comparative Example 1 80% by weight of silicon carbide powder having an average particle size of about 5 μm, 10% by weight of carbon powder having an average particle size of about 2 μm, and phenol resin 10
% By weight was mixed and molded into a cylindrical shape with a radius of 10 mm. After firing the molded body at 900 ° C., molten silicon was permeated at 1500 ° C. and reaction sintering was performed to obtain a silicon carbide-based material 11 shown in FIG. The cross section and silicon / silicon carbide composition ratio of this silicon carbide material 11 are shown in FIG. 2, and the mechanical properties and corrosion resistance are shown in Table 1.

【0036】比較例2 比較例1と同じ方法により得られた炭化珪素質材料11
に、図3に示したように約200μmの炭化珪素膜13
をCVDコーティングし、炭化珪素質材料12を得た。
この炭化珪素質材料12の断面及びシリコン/炭化珪素
組成比を図3に、機械的性質及び耐蝕性を表1に示す。
Comparative Example 2 Silicon carbide material 11 obtained by the same method as Comparative Example 1
In addition, as shown in FIG.
Was coated by CVD to obtain a silicon carbide based material 12.
The cross section and silicon / silicon carbide composition ratio of this silicon carbide material 12 are shown in FIG. 3, and the mechanical properties and corrosion resistance are shown in Table 1.

【0037】[0037]

【表1】 [Table 1]

【0038】なお、耐蝕性試験は、HCl/H2 =1/
1のガス中で、1200℃、4時間処理を行なった場合
の結果であり、耐熱衝撃性試験は不活性雰囲気下で12
00℃に加熱した試料を水中に入れて急冷した場合の結
果である。
The corrosion resistance test was carried out by HCl / H 2 = 1 /
These are the results when the treatment was performed at 1200 ° C. for 4 hours in the gas No. 1 and the thermal shock resistance test was conducted under an inert atmosphere at 12
It is a result when the sample heated at 00 degreeC is put in water and rapidly cooled.

【0039】表1から明らかなように、実施例において
は曲げ強度も大きく、耐蝕性及び耐熱衝撃性も良好な結
果が得られた。一方、比較例1については、曲げ強度が
実施例に比べて小さく、さらに耐蝕性についても良好な
結果が得られなかった。また、比較例2についても、曲
げ強度が実施例に比べて小さく、耐熱衝撃性についても
良好な結果が得られなかった。
As is clear from Table 1, in the examples, the bending strength was high, and the corrosion resistance and thermal shock resistance were good. On the other hand, in Comparative Example 1, the bending strength was smaller than that in Examples, and further, good results were not obtained in terms of corrosion resistance. In addition, also in Comparative Example 2, the bending strength was smaller than that of the Examples, and good results were not obtained regarding thermal shock resistance.

【0040】このように、上記実施例に係る炭化珪素質
材料及びその製造方法においては、半導体製造用治具、
例えばシリコンウェハの熱拡散処理等に使用されるプロ
セスチューブ、ウェハボート等の耐熱性治具に有用な高
純度な炭化珪素質材料を提供することができ、産業上極
めて有用である。
As described above, in the silicon carbide based material and the method for manufacturing the same according to the above-mentioned embodiment, the jig for semiconductor manufacturing is
For example, it is possible to provide a high-purity silicon carbide material useful for heat-resistant jigs such as process tubes and wafer boats used for thermal diffusion treatment of silicon wafers, which is extremely useful industrially.

【0041】[0041]

【発明の効果】以上詳述したように本発明に係る炭化珪
素質材料にあっては、シリコンと炭化珪素の組成比が、
ある一定方向に対して連続的に変化しているので、シリ
コン/炭化珪素の組成に界面が存在せず、熱膨張係数差
等による膜の剥離等の問題が生じない。
As described above in detail, in the silicon carbide based material according to the present invention, the composition ratio of silicon and silicon carbide is
Since it continuously changes in a certain direction, there is no interface in the composition of silicon / silicon carbide, and there is no problem such as film peeling due to a difference in thermal expansion coefficient.

【0042】さらに、上記炭化珪素質材料において、炭
化珪素質材料の表面が実質的に炭化珪素である場合に
は、HClガスやHF−NO3 溶液等により表面が侵さ
れることがない。
Further, in the above-mentioned silicon carbide-based material, when the surface of the silicon carbide-based material is substantially silicon carbide, the surface is not corroded by HCl gas, HF-NO 3 solution or the like.

【0043】さらに本発明に係る炭化珪素質材料の製造
方法にあっては、合成石英ガラスの多孔体中に、炭化水
素ガス又はハロゲン化炭化水素ガスを含有するガスの熱
分解により生成する炭素をある一定方向に対して連続的
に変化する量でもって析出させ、その後焼成して得られ
た多孔質炭化珪素材料に金属シリコンを充填するので、
緻密な炭化珪素質材料が容易に得られる。
Further, in the method for producing a silicon carbide based material according to the present invention, carbon produced by thermal decomposition of a gas containing a hydrocarbon gas or a halogenated hydrocarbon gas is added to the porous body of synthetic quartz glass. Since the porous silicon carbide material obtained by precipitating with a continuously changing amount in a certain direction and then firing is filled with metallic silicon,
A dense silicon carbide material can be easily obtained.

【0044】また、上記記載の炭化珪素質材料の製造に
おいて、合成石英ガラス多孔体のかさ密度がxg/cm
3 の場合、その表面に析出させる炭素量が、次式を満足
するので、シリコン含浸後の表面が実質的に炭化珪素単
体で形成される炭化珪素質材料が得られることとなり、
HClガスやHF−NO3 溶液等により表面が侵される
ことがない。
In the production of the silicon carbide material described above, the bulk density of the synthetic quartz glass porous body is xg / cm.
In the case of 3, the amount of carbon deposited on the surface satisfies the following formula, so that a silicon carbide-based material whose surface after silicon impregnation is substantially formed of silicon carbide is obtained,
The surface is not attacked by HCl gas or HF-NO 3 solution.

【0045】y≧4.78/x+2 (y:炭素/二酸化珪素のモル比、0<x<2.3) 従って、半導体製造用治具、例えばシリコンウェハの熱
拡散処理等に使用されるプロセスチューブ、ウェハボー
ド等の耐熱性治具に有用な高純度な炭化珪素質材料を提
供することができ、産業上極めて有用である。
Y ≧ 4.78 / x + 2 (y: carbon / silicon dioxide molar ratio, 0 <x <2.3) Therefore, a process used for a semiconductor manufacturing jig, for example, thermal diffusion treatment of a silicon wafer. It is possible to provide a high-purity silicon carbide material useful for heat-resistant jigs such as tubes and wafer boards, which is extremely useful in industry.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る炭化珪素質材料の断面図及び径方
向に対するシリコン/炭化珪素組成比の変化を示す図で
ある。
FIG. 1 is a cross-sectional view of a silicon carbide based material according to the present invention and a diagram showing changes in a silicon / silicon carbide composition ratio in a radial direction.

【図2】比較例における炭化珪素質材料の断面図及び径
方向に対するシリコン/炭化珪素組成比の変化を示す図
である。
FIG. 2 is a cross-sectional view of a silicon carbide based material in a comparative example and a diagram showing changes in the silicon / silicon carbide composition ratio in the radial direction.

【図3】別の比較例における炭化珪素質材料の断面図及
び径方向に対するシリコン/炭化珪素組成比の変化を示
す図である。
FIG. 3 is a cross-sectional view of a silicon carbide based material in another comparative example and a diagram showing changes in the silicon / silicon carbide composition ratio in the radial direction.

【図4】炭化珪素質材料生成のプロセスを説明するため
の概念図である。
FIG. 4 is a conceptual diagram for explaining a process for producing a silicon carbide based material.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 シリコンと炭化珪素の組成比が、ある一
定方向に対して連続的に変化していることを特徴とする
炭化珪素質材料。
1. A silicon carbide-based material, characterized in that the composition ratio of silicon and silicon carbide continuously changes in a certain direction.
【請求項2】 炭化珪素質材料の表面が、実質的に炭化
珪素である請求項1記載の炭化珪素質材料。
2. The silicon carbide based material according to claim 1, wherein the surface of the silicon carbide based material is substantially silicon carbide.
【請求項3】 合成石英ガラスの多孔体中に、炭化水素
ガス又はハロゲン化炭化水素ガスを含有するガスの熱分
解により生成する炭素をある一定方向に対して連続的に
変化する量でもって析出させ、その後焼成して得られた
多孔質炭化珪素材料に金属シリコンを充填することを特
徴とする炭化珪素質材料の製造方法。
3. Precipitation of carbon produced by thermal decomposition of a gas containing a hydrocarbon gas or a halogenated hydrocarbon gas in a porous body of synthetic quartz glass in an amount that continuously changes in a certain direction. A method for producing a silicon carbide-based material, which comprises filling the porous silicon carbide material obtained by firing and then filling with metallic silicon.
【請求項4】 合成石英ガラス多孔体のかさ密度がxg
/cm3 の場合、その表面に析出させる炭素量が、次式
を満足する請求項3記載の炭化珪素質材料の製造方法。 y≧4.78/x+2 (y:炭素/二酸化珪素のモル比、0<x<2.3)
4. The bulk density of the synthetic quartz glass porous body is xg.
/ Cm 3, the amount of carbon deposited on the surface thereof satisfies the following formula: y ≧ 4.78 / x + 2 (y: molar ratio of carbon / silicon dioxide, 0 <x <2.3)
JP3017966A 1991-02-08 1991-02-08 Silicon carbide-based material and its production Pending JPH05851A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3017966A JPH05851A (en) 1991-02-08 1991-02-08 Silicon carbide-based material and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3017966A JPH05851A (en) 1991-02-08 1991-02-08 Silicon carbide-based material and its production

Publications (1)

Publication Number Publication Date
JPH05851A true JPH05851A (en) 1993-01-08

Family

ID=11958482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3017966A Pending JPH05851A (en) 1991-02-08 1991-02-08 Silicon carbide-based material and its production

Country Status (1)

Country Link
JP (1) JPH05851A (en)

Similar Documents

Publication Publication Date Title
US4040849A (en) Polycrystalline silicon articles by sintering
JPS6356700B2 (en)
US5380511A (en) Process for producing silicon carbide-base complex
JPH1012692A (en) Dummy wafer
JPS5913442B2 (en) Manufacturing method of high purity type silicon nitride
JPH0532458A (en) Heat-treating apparatus for semiconductor, high-purity silicon carbide part for semiconductor heat-treating apparatus and its production
JP2721678B2 (en) β-silicon carbide molded body and method for producing the same
JPH09275078A (en) Silicon wafer retaining jig
JP4348429B2 (en) Porous silicon nitride and method for producing the same
JP3793553B2 (en) Black SiO2 corrosion-resistant member and method for producing the same
JPH05851A (en) Silicon carbide-based material and its production
JP4382919B2 (en) Method for producing silicon-impregnated silicon carbide ceramic member
EP3597621A1 (en) Method for producing silicon-carbide-based complex
JPS62182105A (en) Improved silicon nitride and manufacture
JP2000185981A (en) Porous molded article of silicon carbide and its production
JP5532654B2 (en) Crucible and manufacturing method thereof, and silicon nitride powder manufacturing method using the same
JPH0558676A (en) Production of sio2-sic-si composite material
JP3482480B2 (en) Graphite-silicon carbide composite having excellent oxidation resistance and method for producing the same
JP2002338366A (en) High purity silicon carbide heating element and method of producing the same
JP2726693B2 (en) High thermal conductive silicon carbide sintered body and method for producing the same
JPH0583517B2 (en)
JPS63166789A (en) Graphite crucible used in pulling up device for silicon single crystal and production thereof
JPH0692761A (en) Sic-cvd coated and si impregnated sic product and its manufacture
JPH0568433B2 (en)
JPH06345412A (en) Highly pure silicon nitride-silicon carbide complex fine powder and its production