JPH0584429A - Membrane separator - Google Patents

Membrane separator

Info

Publication number
JPH0584429A
JPH0584429A JP3277020A JP27702091A JPH0584429A JP H0584429 A JPH0584429 A JP H0584429A JP 3277020 A JP3277020 A JP 3277020A JP 27702091 A JP27702091 A JP 27702091A JP H0584429 A JPH0584429 A JP H0584429A
Authority
JP
Japan
Prior art keywords
membrane
rotary shaft
hollow
hollow rotary
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3277020A
Other languages
Japanese (ja)
Inventor
Konosuke Matsushita
幸之助 松下
Yasutoshi Shimizu
康利 清水
Kenichi Shimodera
健一 下寺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toto Ltd
Original Assignee
Toto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto Ltd filed Critical Toto Ltd
Priority to JP3277020A priority Critical patent/JPH0584429A/en
Publication of JPH0584429A publication Critical patent/JPH0584429A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/16Rotary, reciprocated or vibrated modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/06Tubular membrane modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2315/00Details relating to the membrane module operation
    • B01D2315/02Rotation or turning

Abstract

PURPOSE:To prevent lowering of membrane permeation flux in a lapse of time by removing a cake layer, which sticks on a surface of a separation membrane, without using special power or a cleaning member. CONSTITUTION:In the membrane separator, plural filtration membrane unit 21 is provided in the tight closed vessel 11. The inflow opening 16 of a solution to be treated and the outflow opening 17 of a concentrated solution are provided through the outside case 12 in the inside case 13 of the tight closed vessel 11. The filtration membrane unit 21 consists of the hollow rotary shaft 22 and the cylindrical separation membrane 23 provided on the outer circumferential surface of the hollow rotary shaft 22. The hollow rotary shaft 22 is supported freely rotatably with the bearing 24 through the tight closed vessel 11, the hollow rotary shaft 22 adjacent to each other are closely arranged in parallel and the communicating hole 26 is formed to introduce the permeating solution, which permeates the cylindrical separation membrane 23 at regular interval in axial direction, into the hollow part 25, in which the permeating solution flows as a passage.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は例えばバイオリアクター
における菌体の濃縮に用いる膜分離装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a membrane separator used for concentrating bacterial cells in a bioreactor, for example.

【0002】[0002]

【従来の技術】相分離を伴わない省エネルギーな分離方
法として膜分離がバイオリアクター等に利用されてい
る。斯かる膜分離を行う装置としては特開平1−215
308号公報、特開昭62−180706号公報或いは
特開昭61−138505号公報に開示されるものがあ
る。これらはいずれも密閉容器内に回転する濾過膜ユニ
ットを設け、密閉容器内に導入した培養液などの被処理
液を濾過膜ユニットに接触せしめ、濾過膜にて透過液と
濃縮液に分離して回収若しくは循環するようにしてい
る。
2. Description of the Related Art Membrane separation is used in bioreactors and the like as an energy-saving separation method that does not involve phase separation. An apparatus for performing such membrane separation is disclosed in Japanese Patent Laid-Open No. 1-215.
308, JP-A-62-180706 or JP-A-61-138505. All of these are provided with a rotating filtration membrane unit in a closed container, and a liquid to be treated such as a culture solution introduced into the closed container is brought into contact with the filtration membrane unit, and separated into a permeated liquid and a concentrated liquid by a filtration membrane. It is collected or circulated.

【0003】[0003]

【発明が解決しようとする課題】特開平1−21530
8号公報及び特開昭62−180706号公報に開示さ
れる膜分離装置の濾過膜ユニットは回転軸を中心とし
て、その周囲に多数の中空糸状分離膜を配列した構成と
なっている。このため、回転軸に近い位置にある分離膜
と遠い位置にある分離膜とでは被処理液に加わる剪断応
力が異なり、微生物や細胞等の剪断応力に弱い物質を含
む被処理液を分離するのには不利が大きい。更に多数の
中空糸状分離膜を配列しているので内側の中空糸状分離
膜の表面に付着したケーキ層やゲル層等のファウリング
層を除去しにくい。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
The filtration membrane unit of the membrane separation device disclosed in Japanese Patent Application Laid-Open No. 8 and Japanese Patent Application Laid-Open No. 62-180706 has a structure in which a large number of hollow fiber separation membranes are arranged around the rotation axis as a center. For this reason, the shear stress applied to the liquid to be treated is different between the separation membrane near the rotation axis and the separation membrane at the far position, and the treatment liquid containing a substance vulnerable to the shear stress such as microorganisms and cells is separated. Has a great disadvantage. Further, since a large number of hollow fiber separation membranes are arranged, it is difficult to remove the fouling layer such as the cake layer or gel layer attached to the surface of the inner hollow fiber separation membrane.

【0004】一方、特開昭61−138505号公報に
開示される膜分離装置にあっては、スポンジ等の洗浄部
材をドラムに張設した分離膜表面に接触せしめてファウ
リング層を除去しているが、これでは洗浄のための機構
が付加されるだけでなく、分離膜に直接スポンジ等の部
材が接触するため、膜の寿命が極めて短くなってしま
う。尚、逆洗や薬品による洗浄は特開昭61−1385
05号公報にも述べられているように運転を停止しなけ
ればならない等種々の問題がある。
On the other hand, in the membrane separation device disclosed in Japanese Patent Laid-Open No. 61-138505, a fouling layer is removed by bringing a cleaning member such as a sponge into contact with the surface of a separation membrane stretched on a drum. However, this not only adds a mechanism for washing, but also a member such as a sponge comes into direct contact with the separation membrane, so that the life of the membrane is extremely shortened. Incidentally, backwashing and washing with chemicals are disclosed in JP-A-61-1385.
As described in Japanese Patent Publication No. 05, there are various problems such as having to stop the operation.

【0005】[0005]

【課題を解決するための手段】上記課題を解決すべく本
発明は、被処理液の流入口と濃縮液の流出口を備えた密
閉容器内に設ける濾過膜ユニットを互いに近接して平行
に配列され且つ同一方向に回転する複数本の中空回転軸
と、この中空回転軸の外周面に装着された筒状分離膜に
て構成した。
In order to solve the above problems, the present invention is directed to arranging filter membrane units provided in a closed container having an inlet for a liquid to be treated and an outlet for a concentrated liquid in close proximity to each other. And a plurality of hollow rotating shafts that rotate in the same direction, and a cylindrical separation membrane mounted on the outer peripheral surface of the hollow rotating shafts.

【0006】[0006]

【作用】各濾過膜ユニットは同一方向に回転しているた
め、互いに近接する対向部の隙間においては膜面が互い
に反対方向に走行し、その結果当該隙間に渦流が発生
し、この渦流の剪断応力によって分離膜表面に付着した
ファウリング層が除去される。
Since each of the filtration membrane units rotates in the same direction, the membrane surfaces run in opposite directions in the gaps between the facing portions that are close to each other, and as a result, a vortex is generated in the gaps and shearing of the vortex flows occurs. The stress removes the fouling layer attached to the surface of the separation membrane.

【0007】[0007]

【実施例】以下に本発明の実施例を添付図面に基づいて
説明する。ここで、図1は本発明に係る膜分離装置を適
用した濾過システムの一例を示す図、図2は同膜分離装
置の断面図、図3は図2のA−A線断面図である。
Embodiments of the present invention will be described below with reference to the accompanying drawings. Here, FIG. 1 is a diagram showing an example of a filtration system to which the membrane separation device according to the present invention is applied, FIG. 2 is a sectional view of the membrane separation device, and FIG. 3 is a sectional view taken along line AA of FIG.

【0008】濾過システムは貯蔵タンク1内に被処理液
を貯蔵し、この被処理液を無菌フィルタ3を備えたコン
プレッサ2から加圧気体を貯蔵タンク1内に供給するこ
とで配管4を通して本発明に係る膜分離装置10に供給
し、この膜分離装置10にて被処理液を透過液と濃縮液
に分離し、濃縮液については配管5を通して貯蔵タンク
1に戻し、透過液については配管6を介して透過液貯蔵
タンク7a,7b,7cに蓄えるようにしている。尚、
透過液貯蔵タンク7b,7cについては真空ポンプ8に
接続している。
The filtration system stores the liquid to be treated in the storage tank 1, and supplies the pressurized liquid from the compressor 2 equipped with the aseptic filter 3 to the storage tank 1 to supply the liquid to be treated through the pipe 4 to the present invention. Is supplied to the membrane separation device 10 according to the above, and the liquid to be treated is separated into a permeated liquid and a concentrated liquid by the membrane separation device 10. The concentrated liquid is returned to the storage tank 1 through the pipe 5, and the permeated liquid is supplied through the pipe 6. The permeated liquid storage tanks 7a, 7b and 7c are used to store them. still,
The permeated liquid storage tanks 7b and 7c are connected to a vacuum pump 8.

【0009】膜分離装置10は密閉容器11内に複数の
濾過膜ユニット21を配設している。密閉容器11は外
側ケース12と内側ケース13からなるジャケット構造
とし、外側ケース12には温度調節用の温水の入口14
及び出口15を設け、内側ケース13には外側ケース1
2を貫通して被処理液の流入口16と濃縮液の流出口1
7を設けている。
The membrane separation device 10 has a plurality of filtration membrane units 21 arranged in a closed container 11. The closed container 11 has a jacket structure consisting of an outer case 12 and an inner case 13. The outer case 12 has an inlet 14 for hot water for temperature control.
And an outlet 15 are provided, and the inner case 13 has an outer case 1
An inlet 16 for the liquid to be treated and an outlet 1 for the concentrated liquid passing through 2.
7 is provided.

【0010】ここで、密閉容器11の形状は図3に示す
ようなボックス状或いは円筒状の他に、図4に示すよう
に1つの濾過膜ユニット21を収納する膨出部11aを
括れ部11bで連続した形状としてもよい。このように
することで、隣接する濾過膜ユニット21,21の対向
部以外の部分においてテイラー渦が生じ、ファウリング
層の掻き取り効果が高まる。
Here, in addition to the box-like or cylindrical shape of the closed container 11 as shown in FIG. 3, the bulging portion 11a for accommodating one filtration membrane unit 21 as shown in FIG. The shape may be continuous. By doing so, Taylor vortices are generated in portions other than the facing portions of the adjacent filtration membrane units 21, 21, and the scraping effect of the fouling layer is enhanced.

【0011】一方、濾過膜ユニット21は中空部25を
備えた中空回転軸22と、この中空回転軸22の外周面
に装着された筒状分離膜23からなる。中空回転軸22
は軸受け24を介して密閉容器11を貫通して回転自在
に支承され、隣接する中空回転軸22同士は互いに近接
して平行に配列され、中空部25を透過液の通路とし、
軸方向に等間隔で筒状分離膜23を透過した透過液を中
空部25に導く連通孔26を形成している。
On the other hand, the filtration membrane unit 21 comprises a hollow rotary shaft 22 having a hollow portion 25 and a cylindrical separation membrane 23 mounted on the outer peripheral surface of the hollow rotary shaft 22. Hollow rotating shaft 22
Is rotatably supported through the sealed container 11 via a bearing 24, adjacent hollow rotating shafts 22 are arranged in parallel with each other, and the hollow portion 25 serves as a permeate passage.
Communication holes 26 for guiding the permeated liquid that has permeated the tubular separation membrane 23 to the hollow portion 25 at equal intervals in the axial direction are formed.

【0012】そして、中空回転軸22の一端にはプーリ
27が嵌着され、このプーリ27とモータ28によって
回転するプーリ29とをベルト30で連結し、モータ2
8の駆動力にて各濾過膜ユニット21の中空回転軸22
を同一方向に回転せしめるようにしている。尚、各濾過
膜ユニット21毎にモータ28を設けず、図6に示すよ
うに1個のモータ28の駆動力を軸31及びギヤ列32
…を介して各中空回転軸22に伝達して同一方向に回転
せしめてもよい。また濾過膜ユニット21の本数は図示
した2本或いは3本に限らずこれ以上であってもよい。
A pulley 27 is fitted to one end of the hollow rotary shaft 22, and the pulley 27 and a pulley 29 rotated by a motor 28 are connected by a belt 30 to make the motor 2
The hollow rotary shaft 22 of each filtration membrane unit 21 by the driving force of 8
Is designed to rotate in the same direction. It should be noted that the motor 28 is not provided for each filtration membrane unit 21, and the driving force of one motor 28 is applied to the shaft 31 and the gear train 32 as shown in FIG.
It may be transmitted to each of the hollow rotary shafts 22 via ... And rotate in the same direction. Further, the number of the filtration membrane units 21 is not limited to the two or three shown in the figure, and may be more.

【0013】筒状分離膜23はOリング33を介してナ
ット部材34にて中空回転軸22の外周面に螺着され
る。筒状分離膜23としては例えばセラミック製とし、
その構造は細孔径が10〜100μmの支持体層の上に
細孔径が0.01〜5μmの多孔質層を形成した多層構
造のものとし、細孔径としては微粒子除去の場合は精密
濾過膜のものを、高分子成分除去の場合は限外濾過膜の
ものを選定する。尚、筒状分離膜23の材質としては金
属やプラスチックを用いることも可能である。
The tubular separation membrane 23 is screwed to the outer peripheral surface of the hollow rotary shaft 22 by a nut member 34 via an O-ring 33. The cylindrical separation membrane 23 is made of, for example, ceramic,
The structure has a multilayer structure in which a porous layer having a pore size of 0.01 to 5 μm is formed on a support layer having a pore size of 10 to 100 μm. If you want to remove high-molecular components, select an ultrafiltration membrane. It is also possible to use metal or plastic as the material of the tubular separation membrane 23.

【0014】以上において、貯蔵タンク1内の被処理液
を膜分離装置10の密閉容器11内に供給するとともに
各濾過膜ユニット21を同一方向に回転せしめる。する
と、処理液を膜面に沿って流すクロスフロー濾過と同一
の機構により、処理液は透過液と濃縮液に分離され、濃
縮液は再び貯蔵タンク内1に戻され、透過液は濾過膜ユ
ニット21の筒状分離膜23、中空回転軸22の連通孔
及び中空部25を徹って透過液貯蔵タンクに蓄えられ
る。
In the above, the liquid to be treated in the storage tank 1 is supplied into the closed container 11 of the membrane separation device 10 and each filtration membrane unit 21 is rotated in the same direction. Then, the treatment liquid is separated into the permeated liquid and the concentrated liquid by the same mechanism as the cross-flow filtration in which the treated liquid flows along the membrane surface, the concentrated liquid is returned to the storage tank 1 again, and the permeated liquid is filtered through the filtration membrane unit. It is stored in the permeated liquid storage tank through the tubular separation membrane 23 of 21, the communication hole of the hollow rotary shaft 22 and the hollow portion 25.

【0015】ここで、各濾過膜ユニット21は同一方向
に回転しているため、図7に示すように互いに近接する
対向部の隙間においては分離膜23の表面が互いに反対
方向に走行する。そして、分離膜23表面近傍には膜の
走行に引き摺られて流体の流分布つまり境界層が形成さ
れ、隣接する濾過膜ユニットの境界層が互いに作用し合
って図に示すような渦流が生じ、この渦流によって膜面
に付着したファウリング層が除去される。
Since each of the filtration membrane units 21 rotates in the same direction, the surfaces of the separation membranes 23 run in opposite directions in the gap between the facing portions as shown in FIG. Then, in the vicinity of the surface of the separation membrane 23, a fluid flow distribution, that is, a boundary layer is formed by being dragged by the traveling of the membrane, and the boundary layers of the adjacent filtration membrane units act on each other to generate a vortex as shown in the figure. The vortex removes the fouling layer attached to the film surface.

【0016】尚、上記の境界層の厚さδは、膜の速度に
は無関係で、流体の動粘度をν、膜が動作し始めてから
の時間をtとすると、δ=(12νt)0.5で計算され
る。この式からも分るように濾過膜ユニット21が回転
し始めてから渦流が生じるまでにはある程度に時間が必
要であり、また膜面に付着したファウリング層を除去す
るのに有効な渦流を発生させるには隣接する分離膜2
3,23の間隔を濾過膜ユニット21の直径よりも小さ
くすることが好ましい。
The boundary layer thickness δ is irrelevant to the velocity of the film, and δ = (12νt) 0.5 , where ν is the kinematic viscosity of the fluid and t is the time after the membrane starts to operate. Calculated. As can be seen from this equation, it takes a certain amount of time from when the filtration membrane unit 21 starts to rotate to when a vortex is generated, and a vortex that is effective for removing the fouling layer adhering to the membrane surface is generated. Adjacent separation membrane 2
It is preferable to make the interval of 3, 23 smaller than the diameter of the filtration membrane unit 21.

【0017】また、上記の渦流は層流状態と乱流状態と
の中間の遷移領域で発生するテイラー渦とその発生機構
が異なる。本発明の膜分離装置にあってはテイラー渦が
生じないような層流状態でもファウリング層を除去する
のに有効な渦流が発生するので、動力的に有利である。
尚、図4に示した構造にすると、濾過膜ユニット21の
互いに近接する対向部の隙間以外にはテイラー渦が生じ
やすいので、掻き取り効果は更に高まる。
Further, the above-mentioned vortex flow differs in Taylor vortex generated in the transition region between the laminar flow state and the turbulent flow state from the generation mechanism thereof. In the membrane separation device of the present invention, a vortex flow effective for removing the fouling layer is generated even in a laminar flow state in which Taylor vortices are not generated, which is advantageous in terms of power.
Incidentally, with the structure shown in FIG. 4, Taylor vortices are likely to occur except in the gaps between the facing portions of the filtration membrane unit 21, so that the scraping effect is further enhanced.

【0018】図8は本発明の膜分離装置と従来の膜分離
装置を用いて枯草菌発酵により生産したα−アミラーゼ
を発酵液から分離する場合の透過流束の経時変化を比較
したグラフである。ここで、使用した枯草菌はα−アミ
ラーゼ生産性の高温性菌で、株名はBacillis caldolyti
cus DSM405を用い、この菌を前培養した後、20リット
ルの発酵タンクで、マルト−ス・カシトン培地(カシト
ン;1g/リットル、マルトース;1g/リットル、K
2PO4;0.05g/リットル、Cacl2・2H2O;0.
1g/リットル、MgSO4・7H2O;0.25g/リット
ル、Mncl2;0.001g/リットル、FeSO4・7H2
O;0.03g/リットル)で回分培養を行った。培養温度
は60℃、培養時間は8時間とした。その結果、回分発
酵終了時における菌体濃度は13,000mg/l、生
菌数は2.4×108個/ml、α−アミラーゼの活性
は500U/l、発酵液の粘度は1.8cpの発酵液を
作成した。そして、この発酵液からα−アミラーゼを分
離する本発明及び従来の各装置の運転条件等は以下の通
りである。
FIG. 8 is a graph comparing changes in permeation flux with time when α-amylase produced by Bacillus subtilis fermentation is separated from the fermentation broth using the membrane separator of the present invention and the conventional membrane separator. .. The Bacillus subtilis used here is an α-amylase-producing thermophilic bacterium, and its strain name is Bacillis caldolyti.
After pre-culturing this bacterium using cus DSM405, in a 20-liter fermentation tank, maltose-casitone medium (casitone; 1 g / liter, maltose; 1 g / liter, K
H 2 PO 4 ; 0.05 g / liter, Cacl 2 · 2H 2 O;
1 g / l, MgSO 4 · 7H 2 O; 0.25g / l, Mncl 2; 0.001g / l, FeSO 4 · 7H 2
O; 0.03 g / liter) was used for batch culture. The culture temperature was 60 ° C. and the culture time was 8 hours. As a result, the bacterial cell concentration at the end of the batch fermentation was 13,000 mg / l, the viable cell count was 2.4 × 10 8 cells / ml, the activity of α-amylase was 500 U / l, and the viscosity of the fermentation solution was 1.8 cp. A fermented liquid was prepared. Then, the operating conditions and the like of the present invention and the conventional devices for separating α-amylase from this fermentation broth are as follows.

【0019】(本発明装置)先ず、空の密閉容器11の
流入口16から121℃以上の蒸気を送り込んで、20
分間以上121℃に保って滅菌を行った後、α−アミラ
ーゼの失活を防ぐために、温水入口14から温水を供給
して密閉容器11内を60℃に制御した。そして、温度
が60℃に制御されてから流入口16より発酵液をコン
プレッサ2により圧送した。コンプレッサの圧力は密閉
容器11内の圧力が0.5kg/cm2になるようにし
た。また濾過の進行に伴って減少した発酵液は、圧送に
よりタンク1内の発酵液を補充し、真空ポンプ8による
減圧は行わなかった。また、濾過膜ユニット21は2本
でその間隔は1mmとし、各濾過膜ユニット21は同一
方向に637rpmで回転させ、膜面流速は1.00m
/sとした。また筒状分離膜23としては、高純度アル
ミナ製とし、細孔径10〜100μmの支持体層の上に
細孔径0.1μmの多孔質層を形成し、外径30mm、
内径26mm、長さ500mmで、2本の濾過膜ユニッ
トの総膜面積が0.094m2となる精密濾過膜を使用
した。
(Invention apparatus) First, steam of 121 ° C. or higher is fed from the inflow port 16 of the empty hermetically sealed container 11 to 20
After the sterilization was performed by maintaining the temperature at 121 ° C. for at least a minute, hot water was supplied from the hot water inlet 14 to control the inside of the closed container 11 at 60 ° C. in order to prevent the inactivation of α-amylase. Then, after the temperature was controlled at 60 ° C., the fermentation liquid was pressure-fed by the compressor 2 through the inflow port 16. The pressure of the compressor was such that the pressure in the closed container 11 was 0.5 kg / cm 2 . The fermentation liquor decreased with the progress of filtration was replenished with the fermentation liquor in the tank 1 by pressure feeding, and the vacuum pump 8 did not reduce the pressure. Further, the two filtration membrane units 21 are arranged at an interval of 1 mm, each filtration membrane unit 21 is rotated in the same direction at 637 rpm, and the membrane surface velocity is 1.00 m.
/ S. The cylindrical separation membrane 23 is made of high-purity alumina, and a porous layer having a pore diameter of 0.1 μm is formed on a support layer having a pore diameter of 10 to 100 μm, and an outer diameter of 30 mm,
A microfiltration membrane having an inner diameter of 26 mm and a length of 500 mm was used in which the total membrane area of two filtration membrane units was 0.094 m 2 .

【0020】(従来装置:円筒膜)システムの全体構成
は図9(a)に示すように、膜モジュール100を上下
に直列に接続し、この膜モジュール100内に本発明に
用いた筒状分離膜23と同一の筒状分離膜をセットし、
膜面流速を1.00m/s、膜間差圧をポンプによる加
圧のみで0.5kg/cm2として行った。尚、図9に
おいて図1に示したものと同一のものには同一の番号を
付して説明を省略する。
(Conventional device: Cylindrical membrane) As shown in FIG. 9 (a), the overall structure of the system is such that the membrane modules 100 are vertically connected in series and the tubular separation used in the present invention is provided in the membrane module 100. Set the same cylindrical separation membrane as the membrane 23,
The membrane surface velocity was 1.00 m / s, and the transmembrane pressure difference was 0.5 kg / cm 2 only by pressurization by a pump. In FIG. 9, the same parts as those shown in FIG. 1 are designated by the same reference numerals and the description thereof will be omitted.

【0021】(従来装置:回転平膜)システムの全体構
成は図9(b)に示すように、モータ101にて回転せ
しめられる回転平膜102を密閉容器内に配置した膜モ
ジュールを用いて分離を行うようにした。密閉容器の容
量は2.1リットル、分離膜は高純度アルミナ製で、細
孔径が10〜100μmの支持層の上に0.1μmの多
孔質層を形成したものとし、膜の寸法は外径260m
m、内径89mmの円板で、総膜面積は0.094m2
とし、膜の回転速度は109rpmとし回転平膜の平均
半径の位置における膜面流速を1.00m/s、膜間差
圧をコンプレッサで0.5kg/cm2として行った。
(Conventional device: rotary flat membrane) As shown in FIG. 9B, the entire structure of the system is separated by using a membrane module in which a rotary flat membrane 102 rotated by a motor 101 is placed in a closed container. To do. The closed container has a capacity of 2.1 liters, the separation membrane is made of high-purity alumina, and a porous layer of 0.1 μm is formed on a support layer having a pore diameter of 10 to 100 μm. 260m
m, inner diameter 89 mm disc, total membrane area 0.094 m 2
The rotation speed of the membrane was 109 rpm, the surface velocity of the membrane at the position of the average radius of the rotating flat membrane was 1.00 m / s, and the pressure difference between the membranes was 0.5 kg / cm 2 with the compressor.

【0022】上記の実験において、濾過開始後4時間後
における透過液中のα−アミラーゼの活性は3種類の膜
分離装置のいずれも500U/lで当初の活性と同じで
あったが、生菌数は円筒膜を用いた従来装置では2.4
×108個/mlから1.4×108個/ml(58%)
に、回転平膜を用いた従来装置では1.9×108個/
ml(79%)に減少したのに対し、本願発明では2.
2×108個/ml(92%)に減少しただけであっ
た。これは本願発明においては循環ポンプを必要とせ
ず、被処理液に作用する剪断応力が一定であるからと考
えられる。このように本発明にあっては循環ポンプを用
いなくともクロスフロー濾過を行えるため、図示例では
循環ポンプを用いない例を示したが、循環ポンプを用い
て連続運転するようにしてもよいのは勿論である。
In the above experiment, the activity of α-amylase in the permeate 4 hours after the start of filtration was 500 U / l in all of the three types of membrane separators, which was the same as the initial activity. The number is 2.4 in the conventional device using the cylindrical membrane.
× 10 8 pieces / ml to 1.4 × 10 8 pieces / ml (58%)
In addition, in the conventional device using the rotating flat membrane, 1.9 × 10 8 pieces /
While it was reduced to ml (79%), in the present invention, 2.
It was only reduced to 2 × 10 8 cells / ml (92%). It is considered that this is because the circulating pump is not required in the present invention and the shear stress acting on the liquid to be treated is constant. As described above, in the present invention, since cross-flow filtration can be performed without using a circulation pump, an example in which a circulation pump is not used is shown in the illustrated example, but continuous operation may be performed using a circulation pump. Of course.

【0023】[0023]

【発明の効果】以上の説明及び図8に示した実験結果か
らも明らかなように本発明によれば、密閉容器内に配置
する濾過膜ユニットを互いに近接して平行に配列され且
つ同一方向に回転する複数本の中空回転軸と、この中空
回転軸の外周面に装着された筒状分離膜にて構成したの
で、互いに近接する対向部の隙間に渦流が発生し、この
渦流の剪断応力によって分離膜表面に付着したファウリ
ング層が除去され、高い膜透過流束を維持でき、しかも
被処理液に加わる剪断応力が一定であるのでバイオリア
クター等に本願装置を組込むことにより、菌体の死滅を
有効に防止することができる。
As is apparent from the above description and the experimental results shown in FIG. 8, according to the present invention, the filtration membrane units arranged in the closed container are arranged in parallel with each other and in the same direction. Since it is composed of a plurality of rotating hollow rotary shafts and a tubular separation membrane attached to the outer peripheral surface of the hollow rotary shafts, vortexes are generated in the gaps of the facing parts that are close to each other, and due to the shear stress of these vortexes. The fouling layer adhering to the surface of the separation membrane is removed, a high membrane permeation flux can be maintained, and the shear stress applied to the liquid to be treated is constant. Can be effectively prevented.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る膜分離装置を適用した濾過システ
ムの一例を示す図
FIG. 1 is a diagram showing an example of a filtration system to which a membrane separation device according to the present invention is applied.

【図2】同膜分離装置の断面図FIG. 2 is a sectional view of the membrane separation device.

【図3】図2のA−A線断面図3 is a sectional view taken along the line AA of FIG.

【図4】密閉容器の別実施例を示す図3と同様の断面図FIG. 4 is a sectional view similar to FIG. 3, showing another embodiment of the closed container.

【図5】膜分離装置の要部拡大断面図FIG. 5 is an enlarged sectional view of a main part of the membrane separation device.

【図6】駆動方式を異ならせた膜分離装置の別実施例を
示す図2と同様の断面図
FIG. 6 is a sectional view similar to FIG. 2, showing another embodiment of the membrane separation device with a different drive system.

【図7】隣接する濾過膜ユニットの隙間に発生する渦流
を示す図
FIG. 7 is a view showing a vortex flow generated in a gap between adjacent filtration membrane units.

【図8】本発明の膜分離装置と従来の膜分離装置の透過
流束の経時変化を示すグラフ
FIG. 8 is a graph showing changes with time of permeation fluxes of the membrane separator of the present invention and the conventional membrane separator.

【図9】本発明との比較に用いた従来の膜分離装置の概
略構成図
FIG. 9 is a schematic configuration diagram of a conventional membrane separation device used for comparison with the present invention.

【符号の説明】[Explanation of symbols]

1…貯蔵タンク、2…コンプレッサ、5…、6…、7
a,7b,7c…透過液貯蔵タンク、10…膜分離装
置、11…密閉容器、11a…膨出部、11b括れ部、
12…外側ケース、13…内側ケース、14…温水の入
口、15…温水の出口、16…被処理液の流入口、17
…濃縮液の流出口、21…濾過膜ユニット、22…中空
回転軸、23…筒状分離膜、25…中空部。
1 ... Storage tank, 2 ... Compressor, 5 ..., 6 ..., 7
a, 7b, 7c ... Permeate storage tank, 10 ... Membrane separation device, 11 ... Airtight container, 11a ... Swelling portion, 11b constricted portion,
12 ... Outer case, 13 ... Inner case, 14 ... Warm water inlet, 15 ... Warm water outlet, 16 ... Treatment liquid inlet, 17
... Concentrated liquid outlet, 21 ... Filtration membrane unit, 22 ... Hollow rotating shaft, 23 ... Cylindrical separation membrane, 25 ... Hollow part.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 被処理液の流入口(16)と濃縮液の流
出口(17)を備えた密閉容器(11)内に濾過膜ユニ
ット(21)を設けた膜分離装置において、前記濾過膜
ユニット(21)は互いに近接して平行に配列された中
空部(25)を備えた複数本の中空回転軸(22)と、
この中空回転軸(22)の外周面に装着された筒状分離
膜(23)からなり、更に各中空回転軸(22)は回転
方向を同一にするとともに筒状分離膜(23)を透過し
た透過液を前記中空部(25)に導く連通孔(26)を
形成していることを特徴とする膜分離装置。
1. A membrane separation device comprising a filtration membrane unit (21) provided in a closed container (11) having an inlet (16) for a liquid to be treated and an outlet (17) for a concentrated liquid. The unit (21) includes a plurality of hollow rotating shafts (22) each having a hollow portion (25) arranged in parallel with each other,
The hollow rotary shaft (22) is composed of a tubular separation membrane (23) mounted on the outer peripheral surface thereof, and the hollow rotary shafts (22) have the same rotation direction and pass through the tubular separation membrane (23). A membrane separation device, characterized in that a communication hole (26) for guiding the permeated liquid to the hollow portion (25) is formed.
【請求項2】 前記密閉容器(11)は個々の濾過膜ユ
ニット(21)を収める膨出部(11a)を括れ部(1
1b)で連続した形状をなしていることを特徴とする請
求項1に記載の膜分離装置。
2. The closed container (11) comprises a bulging portion (11a) for accommodating an individual filtration membrane unit (21) and a constricting portion (1).
The membrane separation device according to claim 1, wherein the membrane separation device has a continuous shape in 1b).
JP3277020A 1991-09-27 1991-09-27 Membrane separator Withdrawn JPH0584429A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3277020A JPH0584429A (en) 1991-09-27 1991-09-27 Membrane separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3277020A JPH0584429A (en) 1991-09-27 1991-09-27 Membrane separator

Publications (1)

Publication Number Publication Date
JPH0584429A true JPH0584429A (en) 1993-04-06

Family

ID=17577658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3277020A Withdrawn JPH0584429A (en) 1991-09-27 1991-09-27 Membrane separator

Country Status (1)

Country Link
JP (1) JPH0584429A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000047312A1 (en) * 1999-02-08 2000-08-17 Andritz Ag Method and device for cross-flow filtration
CN100349645C (en) * 2005-09-23 2007-11-21 浙江大学 Revolve type film separator
BE1017442A3 (en) * 2007-01-23 2008-09-02 Atlas Copco Airpower Nv Liquid gas separator device, contains rotary tubular gas permeable membrane with space inside connected to gas outlet
KR101384239B1 (en) * 2013-10-31 2014-04-17 코오롱워터앤에너지 주식회사 Submerged ceramic separation membrane module assembly and apparatus for treating wastewater by using the same
US20180065090A1 (en) * 2015-02-03 2018-03-08 Peter James CHRISTOU Tubular member with spiral flow

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000047312A1 (en) * 1999-02-08 2000-08-17 Andritz Ag Method and device for cross-flow filtration
US6808634B1 (en) * 1999-02-08 2004-10-26 Andritz Ag Method and device for cross-flow filtration
CN100349645C (en) * 2005-09-23 2007-11-21 浙江大学 Revolve type film separator
BE1017442A3 (en) * 2007-01-23 2008-09-02 Atlas Copco Airpower Nv Liquid gas separator device, contains rotary tubular gas permeable membrane with space inside connected to gas outlet
KR101384239B1 (en) * 2013-10-31 2014-04-17 코오롱워터앤에너지 주식회사 Submerged ceramic separation membrane module assembly and apparatus for treating wastewater by using the same
US20180065090A1 (en) * 2015-02-03 2018-03-08 Peter James CHRISTOU Tubular member with spiral flow

Similar Documents

Publication Publication Date Title
Drioli et al. Biocatalytic membrane reactors: applications in biotechnology and the pharmaceutical industry
JP4530245B2 (en) Membrane separator
US20040016699A1 (en) Systems and methods for ultrasonic cleaning of cross-flow membrane filters
WO2014204002A1 (en) Filter device, manufacturing device for chemical, and operation method for filter device
CZ20012794A3 (en) Cross flow filtration process
KR101773759B1 (en) Filtration method and device
US5137637A (en) Rotational high flux membrane device
NO323062B1 (en) Filter with several rotating filter discs mounted on a shaft
EP0360837B1 (en) Cell growth reactor with three compartments formed by hydrophobic and hydrophilic membranes
JPS5937945B2 (en) Fermentation equipment for aerated cultivation of microorganisms with simultaneous separation and removal of the metabolic products produced
JPH11309351A (en) Washing of hollow fiber membrane module
JP2661716B2 (en) Method for separating biotechnologically useful substances from culture solution
JPH0584429A (en) Membrane separator
JP3918304B2 (en) Hollow fiber membrane processing equipment
JPH0523194A (en) Method for separating protein by membrane
JPS61200808A (en) Apparatus for filtering solution
JPH0699040A (en) Liquid member separation device
Conrad et al. Two‐phase bioconversion product recovery by microfiltration I. Steady state studies
JPH09155166A (en) Immersion type flat membrane separator
JP2008206430A (en) Flat membrane element and biological reactor
JPS6125607A (en) Separating device using membrane
JPH02138963A (en) Method for culturing cell and apparatus therefor
JP2000005749A (en) Solid-liquid separation device and method
JPH04145929A (en) Cross-flow filter
JPH0531335A (en) Cleaning method of separation membrane

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19981203