JPH058441B2 - - Google Patents

Info

Publication number
JPH058441B2
JPH058441B2 JP60171086A JP17108685A JPH058441B2 JP H058441 B2 JPH058441 B2 JP H058441B2 JP 60171086 A JP60171086 A JP 60171086A JP 17108685 A JP17108685 A JP 17108685A JP H058441 B2 JPH058441 B2 JP H058441B2
Authority
JP
Japan
Prior art keywords
water
distribution
reservoir
amount
reservoirs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60171086A
Other languages
Japanese (ja)
Other versions
JPS6232520A (en
Inventor
Yukinobu Hayashi
Tetsuya Yamada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Information and Control Systems Inc
Original Assignee
Hitachi Ltd
Hitachi Information and Control Systems Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Information and Control Systems Inc filed Critical Hitachi Ltd
Priority to JP60171086A priority Critical patent/JPS6232520A/en
Publication of JPS6232520A publication Critical patent/JPS6232520A/en
Publication of JPH058441B2 publication Critical patent/JPH058441B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Control Of Positive-Displacement Pumps (AREA)
  • Control Of Non-Electrical Variables (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、貯水池からポンプを使つて複数配水
池に送水する送水系システムに係り特に配水池の
流量配分制御方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a water supply system that transports water from a reservoir to a plurality of reservoirs using pumps, and particularly relates to a flow rate distribution control method for the reservoirs.

〔発明の背景〕[Background of the invention]

従来の配水池の流量配分制御方法は、例えば特
開昭56−22112号に記載のように、貯水池から複
数の配水池に送水するに際し、各配水池の流入弁
をサイクリツクに制御し、かつ、固定速度の送水
ポンプで集中送水を繰り返す方法が知られてい
る。 各配水池は負荷への給水に際しバツフアの
役割を果たすもので、例えば第2図aに示すよう
な負荷変動で2池の場合、配水池1,2の水位変
動は同図b,cのように、配水池1,2への流入
量は同図d,eのように、配水池1,2の流入弁
開度は同図f,gのようになる。
A conventional water distribution reservoir flow distribution control method, for example, as described in Japanese Patent Application Laid-Open No. 56-22112, when water is sent from a reservoir to a plurality of reservoirs, the inflow valves of each reservoir are cyclically controlled, and A method is known in which concentrated water supply is repeated repeatedly using a fixed speed water pump. Each reservoir serves as a buffer when supplying water to the load. For example, in the case of two reservoirs with load fluctuations as shown in Figure 2 a, the water level fluctuations in reservoirs 1 and 2 will be as shown in Figure 2 b and c. The inflow amounts to the water distribution reservoirs 1 and 2 are as shown in d and e in the figure, and the opening degrees of the inflow valves of the water distribution reservoirs 1 and 2 are as shown in the figure f and g.

この方法は、配水池毎に流入弁のON−OFF制
御を行なつて水位を許容値内に収めるので、ロジ
ツクは簡単である。しかし、配水池毎の制御を行
なうために弁開度のON、OFF制御が頻繁で、か
つ、負荷変動によつては配水池への急激な流入量
変動を生じる。このため、水位、流量、圧力等の
ハンチングや、送水ポンプに対するウオーターハ
ンマなどの不安定現象を発生しやすい。さらに、
配水池の全容量を効率的に運用する点で配慮が無
く、ポンプ運用コストが増加するなどの問題があ
つた。
The logic of this method is simple, as the inflow valve is controlled on and off for each reservoir to keep the water level within the allowable range. However, in order to control each water distribution reservoir, the valve opening degree must be turned on and off frequently, and depending on load fluctuations, rapid fluctuations in the amount of inflow to the water distribution reservoir occur. Therefore, unstable phenomena such as hunting in water level, flow rate, pressure, etc., and water hammer against the water pump are likely to occur. moreover,
There was no consideration given to the efficient operation of the full capacity of the reservoir, leading to problems such as increased pump operating costs.

〔発明の目的〕[Purpose of the invention]

本発明の目的は上記従来技術の問題点を克服
し、複数配水池の効率的な運用によつて、各配水
池への流入量の急激な変動をさけ安定な流入制御
を行ない、かつ、運転コストを低減する送水系シ
ステムの流量配分制御方法を提供することにあ
る。
An object of the present invention is to overcome the problems of the prior art as described above, to perform stable inflow control by avoiding sudden fluctuations in the amount of inflow to each distribution reservoir by efficiently operating multiple distribution reservoirs, and to achieve stable operation. An object of the present invention is to provide a flow distribution control method for a water supply system that reduces costs.

〔発明の概要〕[Summary of the invention]

本発明の送水系システムの流量配分制御方法
は、容量の異なる複数個の配水池の貯水率が等し
くなるように制御する。
The flow rate distribution control method for a water supply system according to the present invention controls water storage rates of a plurality of water distribution reservoirs having different capacities to be equal.

すなわり、貯水池から送水ポンプと送水管によ
つて複数の配水池に配水する送水系システムの流
量配分制御方法において、負荷によつて変動し所
定周期毎に検出される各配水池の水位より配水池
毎の変動可能水位間の貯水量を求め、該貯水量と
各配水池の既知の変動可能容量から平均貯水率を
演算し、各配水池の貯水率を前記平均貯水率とな
るように各配水池の流入量を制御することを特徴
とする。
In other words, in a flow rate distribution control method for a water distribution system that distributes water from a reservoir to multiple reservoirs using water pumps and water pipes, the water level in each reservoir varies depending on the load and is detected at predetermined intervals. Calculate the amount of water stored between variable water levels for each distribution reservoir, calculate the average water storage rate from the storage amount and the known variable capacity of each distribution reservoir, and set the water storage rate of each distribution reservoir to the above average storage rate. It is characterized by controlling the inflow amount of each water distribution reservoir.

これによつて、各配水池の利用可能容量をフル
に活用して的確な流入量制御を行ない、安定した
流量配分制御を実現する。
This enables accurate inflow control by making full use of the available capacity of each reservoir, and achieves stable flow distribution control.

さらに、平均貯水率が予め定められた範囲外と
なつたとき、あるいは、貯水池からの送水量が既
知の予測負荷量に対する配水池全体の変動可能容
量の範囲内に収まるように、送水ポンプの運転台
数を制御することを特徴とする。
Additionally, water pumps are operated when the average water storage rate falls outside a predetermined range, or when the amount of water delivered from the reservoir falls within the variable capacity of the entire reservoir for a known predicted load. It is characterized by controlling the number of units.

これによつて、流入量弁の開閉制御のみでは制
御不可能な条件において、必要最小限のポンプ台
数制御が行なわれるので、頻繁なポンプ台数の切
替がなくなり、運転コストの低減が可能になる。
As a result, the number of pumps is controlled to the minimum necessary under conditions that cannot be controlled only by controlling the opening and closing of the inflow valve, so frequent switching of the number of pumps is eliminated, and operating costs can be reduced.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を詳細に説明する。 Hereinafter, one embodiment of the present invention will be described in detail.

第1図において、1は貯水池で、たとえば浄水
場など、2は複数の送水ポンプ群、2から送られ
た水は送水管3通り10,20……n0なるn個
の並列に配置された配水池に送られる。各配水池
からの配水流量は4なる負荷群である需要端へ送
られる。13,23……n3は各配水池への流入
量を調節する流入量調節弁であり、一般に電動弁
が用いられる。
In Fig. 1, 1 is a reservoir, for example a water purification plant, 2 is a group of water pumps, and the water sent from 2 is connected to three water pipes 10, 20...n0 arranged in parallel. sent to the water pond. The water distribution flow rate from each water distribution reservoir is sent to the demand end which is four load groups. 13, 23...n3 is an inflow control valve that adjusts the inflow into each water reservoir, and generally an electric valve is used.

配水池10を例に説明すると、11,21,n
1は水位発信器であり、配水池10,20,n0
の水位を計測して水位信号l1,l2,loを演算制御
装置100に入力する。また、送水管3を流れて
きた水は地点16,26,n6において分岐し、
配水池10,20,n0に流入する。12,2
2,n2は流量発信器であり、配水池10,2
0,n0の流入流量を計測して流量信号q1,q2
qoを演算制御装置100に入力する。また13,
23,n3は流量調節弁であり、配水池10,2
0,n0)に流入する水量を調節する。圧力発信
器14,24,n4において流量調節弁の一次側
圧力,入口圧力が計測され、更に圧力発信器1
5,5,n5において二次側圧力,出口圧力)が
計測され、圧力信号P11,p12,P21,P22,Po1
Po2が制御演算装置100に入力される。20,
……,n0の配水池についても同様である。
Taking the water distribution reservoir 10 as an example, 11, 21, n
1 is a water level transmitter, and water distribution reservoirs 10, 20, n0
water level is measured and water level signals l 1 , l 2 , lo are input to the arithmetic and control device 100 . In addition, the water flowing through the water pipe 3 branches at points 16, 26, and n6,
It flows into the water distribution reservoirs 10, 20, n0. 12,2
2, n2 is a flow rate transmitter, and water distribution reservoir 10, 2
By measuring the inflow flow rate of 0, n0, flow rate signals q 1 , q 2 ,
q o is input to the arithmetic and control unit 100. Also 13,
23, n3 is a flow rate control valve, and water distribution reservoir 10, 2
0, n0)). The pressure transmitters 14, 24, n4 measure the primary side pressure and inlet pressure of the flow control valve, and the pressure transmitter 1
5, 5, n5 (secondary side pressure, outlet pressure) are measured, and pressure signals P 11 , p 12 , P 21 , P 22 , P o1 ,
P o2 is input to the control calculation device 100 . 20,
..., the same applies to the water distribution reservoir n0.

制御演算装置100は、前述したように10〜
n0の配水池の水位計測値、流入流量計測値、流
量調節弁の一次側圧力、二次側圧力が入力され
る。また200は条件設定装置で、各種設定値や
定数を設定したり記憶したりする機能を有し、計
算機システムにおける設定操作卓の如きものであ
る。ここには、各配水池の運用条件が入力されて
おり、配水池10を例に説明すると、配水池の変
動可能水位の上限値l1H,l2H、loH)、下限値l1L
l2L、loL)、配水池の底面積S1,S2,So)及び時間
単位の予測流出量d1 1、d1 2……d1 24,……do 1、do 2
……do 24)が設定されている。配水池20〜n0
についても同様である。制御演算装置100は、
ここから各配水池の運用条件を入力される。
As mentioned above, the control calculation device 100 has 10 to
The water level measurement value of the water distribution reservoir of n0, the inflow flow rate measurement value, the primary side pressure of the flow rate control valve, and the secondary side pressure are input. Reference numeral 200 denotes a condition setting device, which has a function of setting and storing various setting values and constants, and is similar to a setting console in a computer system. The operating conditions of each water distribution reservoir are input here. Taking the water distribution reservoir 10 as an example, the upper limit value l 1H , l 2H , l oH ), the lower limit value l 1L ,
l 2L , l oL ), the bottom area of the distribution reservoir S 1 , S 2 , S o ) and the predicted hourly runoff volume d 1 1 , d 1 2 ...d 1 24 , ...d o 1 , d o 2
...d o 24 ) is set. Water distribution reservoir 20~n0
The same applies to The control calculation device 100 is
From here, the operating conditions for each reservoir are input.

制御演算装置100ではこれらの入力情報をも
とに、配水池の変動可能容量と現在貯水量の比で
ある貯水率が各配水池間で等しくなるように流量
調節弁13,23……n3の目標開度に相当する
弁損失係数Op1に*,Op2*……Opoを演算し出力
する。17は弁制御器であり、Pp1*を弁の目標
開度に変換した後、流入量調節弁が目標開度に等
しくなるよう位置決め制御する機能を有する。
Based on this input information, the control arithmetic unit 100 sets targets for the flow rate control valves 13, 23, . Calculates and outputs the valve loss coefficient O p1 *, O p2 *...O po corresponding to the opening degree. A valve controller 17 has a function of converting P p1 * into a target valve opening and then controlling the position of the inflow control valve so that it becomes equal to the target opening.

300はポンプ台数制御演算装置であり、各配
水池の時間単位予測流入量に見合つた送水を行な
うポンプ台数の計画値を演算し、5なるポンプ台
数切替装置に出力して、2のポンプ群を制御す
る。
300 is a pump number control calculation device which calculates a planned value of the number of pumps that will transport water commensurate with the predicted hourly inflow of each water distribution reservoir, outputs it to a pump number switching device 5, and switches the number of pumps in group 2. Control.

次に、第3図により制御演算装置100の機能
と本発明の動作について述べる。
Next, the functions of the control calculation device 100 and the operation of the present invention will be described with reference to FIG.

第3図の左端にまとめて示す入力情報を用い
て、111,121……1n1なる演算部では、
10,20……n0の配水池の変動可能容量及び
貯水量を求める。演算部111を例に示せば次の
通りである。
Using the input information collectively shown at the left end of FIG. 3, the calculation units 111, 121...1n1,
10, 20... Find the variable capacity and water storage amount of the water distribution reservoir of n0. An example of the calculation unit 111 is as follows.

V1=(l1H−l1L)*S1…… (1) V1′=(l1−l1L)*S1…… (2) ここで l1H……変動可能水位の上限値 l1L……変動可能水位の下限値 S1……配水池の底面積 l1……配水池の水位 v1……変動可能容量(変動可能水位間の容量) v1′……変動可能水位間の貯水量 演算部121,131……1n1においても同
様の演算を行なう。
V 1 = (l 1H − l 1L ) * S 1 … (1) V 1 ′ = (l 1 − l 1L ) * S 1 … (2) Here l 1H … upper limit of variable water level l 1L ...Lower limit value of variable water level S 1 ...Base area of the water distribution reservoir l 1 ...Water level of the water distribution reservoir v 1 ...Variable capacity (capacity between variable water levels) v 1 ′... Between variable water levels Similar calculations are performed in the calculation units 121, 131, . . . 1n1.

演算部101では以下のような演算を行なう。 The calculation unit 101 performs the following calculations.

n箇所の配水池の貯水率平均値r*を算出す
る。
Calculate the average water storage rate r* of the n distribution reservoirs.

*=oi=1 vi′/oi=1 Vi…… (3) 全配水池の変動可能容量における貯水率がr*
に等しくなるように流入量q1、q2……qoを修正す
る。
*= oi=1 v i ′/ oi=1 V i …… (3) The water storage rate in the variable capacity of all water distribution reservoirs is r*
Correct the inflow amounts q 1 , q 2 ...q o so that they are equal to .

各配水池の貯水率r1、r2、roは次式で算出され
る。
The water storage rates r 1 , r 2 , and r o of each reservoir are calculated using the following formula.

r1=v1′/v1 r2=v2′/v2 〓 ro=vo′/vo…… (4) (3)、(4)式から修正後の流入量q1*、q2*……qo
*は次式で算出される。
r 1 = v 1 ′/v 1 r 2 = v 2 ′/v 2 〓 r o = v o ′/v o …… (4) From equations (3) and (4), the corrected inflow amount q 1 * ,q 2 *……q o
* is calculated using the following formula.

q1*=q1+(r*−r1)・v1/t q2*=q2+(r*−r2)・v2/t 〓 qo*=qo+(r*−ro)・vo/t…… (5) ここでtは流量制御を行なう周期である。つま
り、時間tの間に各配水池の貯水率が等しくなる
よう現状流量を増減させるわけである。
q 1 *=q 1 +(r*-r 1 )・v 1 /t q 2 *=q 2 +(r*-r 2 )・v 2 /t 〓 q o *=q o + (r*- r o )·vo / t... (5) Here, t is the cycle for controlling the flow rate. In other words, the current flow rate is increased or decreased so that the water storage rates of each distribution reservoir become equal during time t.

演算部101で求めた修正後の流入量q1*、q2
*……qo*は流量調節弁の一次側圧力P11、P21
…Po1、二次側圧力P12、P22……Po2と共に流量調
節弁の目標開度演算部112,122……1n2
に入力される。
The corrected inflow amount q 1 *, q 2 obtained by the calculation unit 101
*...q o * is the primary side pressure of the flow control valve P 11 , P 21 ...
...P o1 , secondary side pressure P 12 , P 22 ... together with P o2, the target opening calculation section 112, 122...1n2 of the flow rate control valve
is input.

演算部112を例に動作を説明する。 The operation will be explained using the calculation unit 112 as an example.

流量調節は、電動弁で行なうことが多く、流
量・圧力と弁の損失係数の関係は次式表わされ
る。
Flow rate adjustment is often performed using an electric valve, and the relationship between flow rate/pressure and valve loss coefficient is expressed by the following equation.

(P11−P12)=1/2g(4/πD22・Op1・q1 2……(6) ここで P11:弁の一次側圧力 P12:弁の二次側圧力 g:動力加速度 π:円周率 D:弁内径 Op1:弁損失係数 q1:通水量(配水池10の流入量) 1/2g(4/πD22の項は弁毎に異なる定数である
た め、これをK1とすると、(6)式は Op1=P11−P12/K1・q1 2…… (7) と変形される。Op1は損失 係数と呼ばれ、弁の
操作量を表わする変数であり、弁開度に相当する
ものである(以下「開度」と表わす)。(7)式より
弁の目標開度Op1*は(8)式のように求められる。
なお、(P11−P12)は流量変動の少ない範囲では
ほぼ一定とみなすことができる。
(P 11 - P 12 ) = 1/2g (4/πD 2 ) 2・O p1・q 1 2 ...(6) where P 11 : Valve primary pressure P 12 : Valve secondary pressure g : Power acceleration π : Circumference D : Valve inner diameter O p1 : Valve loss coefficient q 1 : Water flow rate (inflow amount of water distribution reservoir 10) 1/2g (4/πD 2 ) The term 2 is a constant that differs for each valve. Therefore, if this is K 1 , equation (6) is transformed as O p1 = P 11 − P 12 /K 1 ·q 1 2 …… (7). O p1 is called a loss coefficient and is a variable that represents the amount of valve operation and corresponds to the valve opening degree (hereinafter referred to as ``opening degree''). From equation (7), the target opening degree O p1 * of the valve is determined as shown in equation (8).
Note that (P 11 −P 12 ) can be considered to be approximately constant in a range where the flow rate fluctuation is small.

Op1*=P1−P12/K1・q22…… (8) 演算部122,132……1n2においても同
様の演算を行ない、流量調節弁13,23……n
3の目標開度Op1*,Op2*……Opo*を出力す
る。算出した目標開度は、それぞれ流量調節弁の
弁制御器17,27……n7に送られ、流量調節
弁を制御して各配水池の変動可能容量における貯
水率を等しくする。なお、上記で貯水率平均値r
*は(3)式によつているが、(4)式の各貯水率r1、r2
……roの平均値によつてもよい。
O p1 *=P 1 −P 12 /K 1・q 2 * 2 ... (8) Similar calculations are performed in the calculation sections 122, 132...1n2, and the flow rate control valves 13, 23...n
3 target opening degrees O p1 *, O p2 *...O po * are output. The calculated target opening degrees are sent to the valve controllers 17, 27, . In addition, in the above, the water storage rate average value r
* is based on equation (3), but each water storage rate r 1 and r 2 in equation (4)
...It may be based on the average value of r o .

つぎに第4図により、以上のような流量制御と
結合されるポンプ台数演算装置300の動作を説
明する。
Next, referring to FIG. 4, the operation of the pump number calculating device 300 combined with the above-described flow rate control will be explained.

条件設定装置200からは、第4図左端にまと
めて示した入力情報が入力されている。なお、di
、di 2……di 24(i=1〜n)はi番目の配水池の
1時間毎24時間用の予測流出量である。演算部3
01では、1日24時間の予測流出量積算値曲線を
算出する(ブロツク302の図の曲線Aに相当)。
ブロツク302の予測流出量積算値曲線Aは、各
配水池の運用条件と共に演算部303に入力さ
れ、以下の演算が行なわれる。
The input information collectively shown at the left end of FIG. 4 is input from the condition setting device 200. Furthermore, d i
1 , d i 2 . . . d i 24 (i=1 to n) is the predicted outflow amount for each hour for 24 hours from the i-th distribution reservoir. Arithmetic unit 3
In step 01, a predicted outflow cumulative value curve for 24 hours a day is calculated (corresponding to curve A in the diagram of block 302).
The predicted runoff integrated value curve A of block 302 is input to the calculation unit 303 together with the operating conditions of each water distribution reservoir, and the following calculations are performed.

(1)式と同様にして各配水池の変動可能容量v1
v2……voを算出し、更にこれらを加算して全配水
池の総変動可能容量Vを算出する。
Similarly to equation (1), the variable capacity of each water reservoir v 1 ,
v 2 ...V o is calculated, and these are further added to calculate the total variable capacity V of all water distribution reservoirs.

V=oi=1 v1…… (9) 次に予測流出量積算曲線Aに総変動可能量Vを
加えた曲線を算出する(ブロツク304の図の曲
線Bに相当)。曲線A,Bは演算部305に入力
され、ポンプ群3からの送水量積算値(ブロツク
306の曲線Cに相当)が曲線A,B内に収まる
ようポンプ台数の計画を行ない、台数計画値Pst
*として出力する。ポンプ運転台数の計画値Pst
*は第1図に示したポンプ台数切替装置5に送ら
れ、ポンプ群2の制御を行なう。
V= oi=1 v 1 ... (9) Next, a curve is calculated by adding the total possible fluctuation amount V to the predicted outflow accumulation curve A (corresponding to curve B in the diagram of block 304). Curves A and B are input to the calculation unit 305, and the number of pumps is planned so that the integrated water flow amount from pump group 3 (corresponding to curve C in block 306) falls within curves A and B, and the planned number of pumps P is calculated. st
Output as *. Planned value of the number of pumps in operation P st
* is sent to the pump number switching device 5 shown in FIG. 1, and controls the pump group 2.

第5図a〜cに、本実施例により2つの配水池
に対して流量制御を行なつたシミユレーシヨン結
果を示す。同図aは配水池からの流出量を表わす
負荷変動量、ポンプからの送水量、配水池1,2
の流入量変化を示す。bは配水池1,2の流入量
を流入量調節弁で制御した時の弁開度変化を示
す。cは、配水池1,2の貯水率変化を示す。
Figures 5a to 5c show simulation results in which flow rate control was performed for two water distribution reservoirs according to this embodiment. Figure a shows the amount of load fluctuation representing the amount of outflow from the distribution reservoir, the amount of water sent from the pump, and the amount of water sent from the reservoirs 1 and 2.
shows the change in inflow amount. b shows the change in valve opening when the inflow of the water distribution reservoirs 1 and 2 is controlled by the inflow control valve. c indicates a change in the water storage rate of the water distribution reservoirs 1 and 2.

これから、弁を使つて流入量を制御することに
より、負荷が変動しても両配水池の貯水率を同じ
にし、また両配水池に流入する流量の合計を一定
に制御することができる。また、弁操作もゆるや
かであり、安定した制御が実現できることがわか
る。
By controlling the inflow using valves, it is possible to maintain the same water storage rate in both reservoirs even when the load fluctuates, and to control the total amount of flow flowing into both reservoirs to be constant. It can also be seen that the valve operation is gentle and stable control can be achieved.

以上が本発明の一実施例であるが、簡単なロジ
ツクを使つて複数の配水池の貯水率が一定になる
ように流入両調節弁の制御を行なつた結果、各配
水池が持つ変動可能容量(バツフア)を一括して
利用できるようになつた。このため、あたかも1
つの配水池のように扱うことができ、以下のよう
な効果が生まれた。
The above is an embodiment of the present invention, and as a result of controlling both inlet control valves using simple logic so that the water storage rate of multiple distribution reservoirs is constant, the fluctuation of each distribution reservoir is possible. It is now possible to use capacity in bulk. For this reason, as if 1
It can be treated like a single water distribution reservoir, resulting in the following effects:

(1) 需要変動などの外乱にも安定した配水池運用
が行なえる。
(1) Stable reservoir operation is possible even in the face of disturbances such as demand fluctuations.

(2) 配水池間での貯水率のアンバランスがなくな
り、公平かつ安全な運用ができる。
(2) There will be no imbalance in water storage rates between distribution reservoirs, allowing for fair and safe operation.

(3) ポンプ運用の計画を立てる際に、全配水池が
持つ変動可能容量が全て利用できる。また、全
配水池の予測流出量を合計して予測流出量積算
曲線を計画するため、配水池毎の変動が吸収さ
れたなだらかな曲線となる。このため、台数切
替回数の少ない長時間にわたる安定した運転計
画が立てられる。
(3) When planning pump operations, the variable capacity of all distribution reservoirs can be fully utilized. In addition, since the predicted runoff volume cumulative curve is planned by summing the predicted runoff volumes of all water distribution reservoirs, the curve becomes a gentle curve that absorbs the fluctuations of each water distribution reservoir. Therefore, a stable operation plan can be established over a long period of time with a small number of changes in the number of vehicles.

上記の実施例では、配水池の予測流出量からポ
ンプ運転台数の計画を立てたが、別な実施例とし
ては複数配水池の貯水率(第3図のr*)を監視
して、これをあらかじめ定めた規定値rnax、rMIN
と比較して、r*がrMAXを越えた場合にはポンプ
台数を減らし、逆にrMIN以下となつた場合には、
ポンプ台数を増加させる運転方式がある。
In the above example, the number of pumps to be operated was planned based on the predicted outflow of the distribution reservoir, but in another example, the water storage rate (r* in Figure 3) of multiple distribution reservoirs was monitored and this was determined. Predetermined specified values r nax , r MIN
In comparison, if r* exceeds r MAX , reduce the number of pumps, and conversely, if it falls below r MIN ,
There is an operation method that increases the number of pumps.

本実施例により、第2図と同様の負荷変動があ
つた場合のシミユレーシヨン結果を示す。第6図
a〜cは従来の水位一定制御、第7図a〜cは本
発明による貯水率均等制御の場合である。
According to this embodiment, simulation results are shown when load fluctuations similar to those shown in FIG. 2 occur. 6a to 6c show conventional water level constant control, and FIGS. 7a to 7c show water storage rate equalization control according to the present invention.

第6図は3池の例で、各配水池を定水位(水位
一定制御)に保つために、配水池弁開度は大幅に
変動していることが分る。これに対し第7図は貯
水率が各池で等しくなるように制御した場合で、
弁開度(同図c)や配水池への流入量(同図aの
下段)の変動は小さいが、同図bに示すように配
水池の水位変動は大きい。しかしこの場合でも各
池の貯水率は同じ変動をし(第5図cとはほぼ等
しい変化)、時間tkで丁度負荷のピークに達した
場合なので、ポンプ台数を切替えることなく、運
転を続行することが出来る。水位の上限値と下限
値間は本来水位変動が許容される範囲であつてそ
れを有効に利用し、弁切替、ポンプ台数の切替回
数を大幅に低減している。
Figure 6 shows an example of three reservoirs, and it can be seen that in order to maintain each reservoir at a constant water level (constant water level control), the reservoir valve opening varies significantly. On the other hand, Figure 7 shows the case where the water storage rate is controlled to be equal in each pond.
Although the fluctuations in the valve opening degree (c in the figure) and the amount of inflow into the reservoir (lower part in the figure a) are small, the fluctuations in the water level in the reservoir are large, as shown in b in the figure. However, even in this case, the water storage rate of each pond changes in the same way (almost the same change as in Figure 5 c), and the load reaches its peak at time t k , so operation continues without changing the number of pumps. You can. The range between the upper and lower limits of the water level is a range in which water level fluctuations are originally allowed, and this is effectively utilized to significantly reduce the number of valve changes and the number of pump changes.

本発明によれば、利用可能容量における配水池
の相対的な貯水率一定制御が簡単なロジツクを使
つて実現できる。このため、複数の配水池をあた
かも1つの池とみなした運用が可能になつた。複
数の配水池のバツフアとしての能力を最大限利用
できるので、 (1) 送水ポンプの継続的安定運転によるコスト低
減が図れる。
According to the present invention, constant relative water storage rate control of a water distribution reservoir at available capacity can be realized using simple logic. This has made it possible to operate multiple water distribution reservoirs as if they were one reservoir. Since the buffer capacity of multiple water distribution reservoirs can be utilized to the maximum, (1) costs can be reduced through continuous stable operation of water pumps;

(2) 配水池の効率的、かつ安定した運用が行なえ
る。
(2) The distribution reservoir can be operated efficiently and stably.

即ち、配水池の容量はいろいろであるが、小さ
な配水池の流入弁や配管は通常小規模なのが普通
である。本発明方式によれば、配水池への流量配
分が配水池容量に応じたものとなるため流量制御
幅が少なく、従つて各調節弁の操作量も少なくで
きるので、ハンチング等のない安定な流量制御が
行なえるという大きな利点がある。
That is, although the capacity of water distribution reservoirs varies, the inlet valves and piping of small reservoirs are usually small-scale. According to the method of the present invention, since the flow rate distribution to the distribution reservoir is in accordance with the capacity of the distribution reservoir, the flow rate control width is small, and therefore the amount of operation of each control valve can be reduced, resulting in stable flow rate without hunting etc. It has the great advantage of being controllable.

〔発明の効果〕〔Effect of the invention〕

本発明によると複数の配水池容量を有効に利用
して、弁開度操作回数やポンプ台数切替回数を少
なくすることが出来るので、安定で経済的な配分
流量制御が可能になる。
According to the present invention, it is possible to effectively utilize the capacity of a plurality of water distribution reservoirs and reduce the number of valve opening operations and the number of times the number of pumps is changed, thereby enabling stable and economical distribution flow control.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明装置の全体構成図、第2図は
従来例の説明図、第3図は本発明装置の中核をな
す制御演算装置の演算論理ブロツク図、第4図は
ポンプ台数演算装置の演算論理の一実施例図、第
5図は本発明装置を2配水池に適用した場合のシ
ミユレーシヨン結果、第6図a〜cは3配水池に
適用した場合の従来の定水位制御のシミユレーシ
ヨン結果、、、第7図a〜cは第6図と同一パター
ンにおける本発明の貯水率制御のシミユレーシヨ
ン結果を示す。 1……貯水池、2……ポンプ(複数)、3……
送水管路、4……需要端、5……ポンプ台数切替
装置、10,20……n0……配水池、11,2
1,n1……水位発信器、12,22,n2……
流量発信器、14,24,n4……一次側圧力発
信器、13,23,n3……流量調節弁、15,
25,n5……二次側圧力厚奥発信器、16,2
6,n6……管路分岐点、17,27,n7……
弁制御器、100……制御演算装置、200……
条件設定装置、300……ポンプ台数演算装置。
Fig. 1 is an overall configuration diagram of the device of the present invention, Fig. 2 is an explanatory diagram of a conventional example, Fig. 3 is an arithmetic logic block diagram of the control calculation device that forms the core of the device of the present invention, and Fig. 4 is a calculation for the number of pumps. An example of the calculation logic of the device, Figure 5 shows simulation results when the device of the present invention is applied to two distribution reservoirs, and Figures 6 a to c show the conventional constant water level control when applied to three distribution reservoirs. Simulation Results: Figures 7a to 7c show simulation results of the water storage rate control of the present invention in the same pattern as in Figure 6. 1...Reservoir, 2...Pump(s), 3...
Water transmission pipe, 4... Demand end, 5... Pump number switching device, 10, 20... n0... Water distribution reservoir, 11, 2
1, n1... Water level transmitter, 12, 22, n2...
Flow rate transmitter, 14, 24, n4...Primary side pressure transmitter, 13, 23, n3...Flow rate control valve, 15,
25, n5...Secondary side pressure thickness depth transmitter, 16,2
6, n6... Pipe branch point, 17, 27, n7...
Valve controller, 100... Control calculation device, 200...
Condition setting device, 300... Pump number calculation device.

Claims (1)

【特許請求の範囲】 1 貯水池から送水ポンプと送水管によつて複数
の配水池に配水する送水系システムの流量配分制
御方法において、 負荷によつて変動し所定周期毎に検出される各
配水池の水位より配水池毎の変動可能水位間の貯
水量を求め、該貯水量と各配水池の既知の変動可
能容量から平均貯水率を演算し、各配水池の貯水
率を前記平均貯水率となるように各配水池の流入
量を制御することを特徴とする送水系システムの
流量配分制御方法。 2 前記平均貯水率は、各配水池毎の前記変動可
能水位間の貯水量と前記変動可能容量の比で求め
られる各配水池の貯水率の平均値となることを特
徴とする特許請求の範囲第1項記載の送水系シス
テムの流量配分制御方法。 3 前記所定貯水率は、各配水池毎の前記変動可
能水位間の貯水量の総和と前記変動可能容量の総
和の比で求められることを特徴とする特許請求の
範囲第1項記載の送水系システムの流量配分制御
方法。 4 貯水池から送水管と複数の送水ポンプによつ
て複数の配水池に配水する送水系システムの流量
配分制御方法において、 負荷によつて変動し所定周期毎に検出される各
配水池の水位より配水池毎の変動可能水位間の貯
水量を求め、該貯水量と各配水池の既知の変動可
能容量から平均貯水率を演算し、各配水池の貯水
率を前記平均貯水率となるように各配水池の流入
量を制御するとともに、前記平均貯水率が予め定
められた所定範囲外となるとき、前記送水ポンプ
の運転台数の切替制御を行なうことを特徴とする
送水系システムの流量配分制御方法。
[Claims] 1. In a flow rate distribution control method for a water distribution system that distributes water from a reservoir to a plurality of distribution reservoirs using a water transmission pump and water pipes, each distribution reservoir varies depending on the load and is detected at predetermined intervals. The amount of water stored between the variable water levels for each distribution reservoir is calculated from the water level, and the average water storage rate is calculated from the amount of stored water and the known variable capacity of each distribution reservoir, and the storage rate of each distribution reservoir is calculated from the average water storage rate. 1. A flow distribution control method for a water transmission system, characterized by controlling the inflow amount of each water distribution reservoir so that 2. Claims characterized in that the average water storage rate is the average value of the water storage rates of each distribution reservoir, which is determined by the ratio of the storage amount between the variable water levels of each distribution reservoir and the variable capacity. 2. The method for controlling flow rate distribution of a water supply system according to item 1. 3. The water transmission system according to claim 1, wherein the predetermined water storage rate is determined by the ratio of the total amount of water stored between the variable water levels of each water distribution reservoir to the total sum of the variable capacity. System flow distribution control method. 4. In a flow distribution control method for a water distribution system that distributes water from a reservoir to multiple distribution reservoirs using water transmission pipes and multiple water pumps, distribution is based on the water level of each distribution reservoir that fluctuates depending on the load and is detected at predetermined intervals. The amount of water stored between the variable water levels for each water reservoir is calculated, and the average water storage rate is calculated from the amount of stored water and the known variable capacity of each distribution reservoir. A flow distribution control method for a water distribution system, characterized in that the inflow of a water distribution reservoir is controlled, and when the average water storage rate falls outside a predetermined range, the number of operating water pumps is controlled to switch. .
JP60171086A 1985-08-05 1985-08-05 Flow rate control method Granted JPS6232520A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60171086A JPS6232520A (en) 1985-08-05 1985-08-05 Flow rate control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60171086A JPS6232520A (en) 1985-08-05 1985-08-05 Flow rate control method

Publications (2)

Publication Number Publication Date
JPS6232520A JPS6232520A (en) 1987-02-12
JPH058441B2 true JPH058441B2 (en) 1993-02-02

Family

ID=15916739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60171086A Granted JPS6232520A (en) 1985-08-05 1985-08-05 Flow rate control method

Country Status (1)

Country Link
JP (1) JPS6232520A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002065165A2 (en) 2001-02-09 2002-08-22 Digital Optics Corporation Compensation and/or variation of wafer level produced lenses and resultant structures

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5949615A (en) * 1982-08-10 1984-03-22 オクシデンタル・ケミカル・コ−ポレ−シヨン Replenishment controller

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5949615A (en) * 1982-08-10 1984-03-22 オクシデンタル・ケミカル・コ−ポレ−シヨン Replenishment controller

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002065165A2 (en) 2001-02-09 2002-08-22 Digital Optics Corporation Compensation and/or variation of wafer level produced lenses and resultant structures

Also Published As

Publication number Publication date
JPS6232520A (en) 1987-02-12

Similar Documents

Publication Publication Date Title
WO1998000764A1 (en) Adaptive fuzzy controller that modifies membership functions
CN101479682A (en) Flow controller delivery of a specified quantity of a fluid
US5138845A (en) Method and apparatus for controlling the flow of process fluids
JP3865813B2 (en) Fluid mixing device
CN114576821A (en) Valve control method and system, computer readable storage medium and air conditioning system
JPH058441B2 (en)
JPS5841116B2 (en) Sewage treatment feed gas control method
CN113836785B (en) Municipal area intelligent water supply system and artificial intelligent control optimization method thereof
JP4592221B2 (en) Pump unit control device
JP2012160170A (en) Water supply control method of water purification facility
JPH06230831A (en) Water level control device
JPH0132525B2 (en)
JPS6138300A (en) Liquefied gas vaporizer
JPS5935043B2 (en) Water volume smoothing system for water distribution facilities
JPH0133741B2 (en)
JPH11117894A (en) Gas compression facility and its operating method
JPH0210284B2 (en)
JPH0810412B2 (en) Equal flow controller in mutual interference system
SU823750A1 (en) Automatic control system for feeding water into double-flow steam generator
JP2004046631A (en) Water valve controller
JP2006029173A (en) Circulating pump control system
SU1740731A1 (en) Method of joint control over gas-pumping units
SU1666852A1 (en) Method of heating plant control
JPH01177110A (en) Water level controller
JPS5947331B2 (en) flow control device