JPH058441A - Imaging device - Google Patents

Imaging device

Info

Publication number
JPH058441A
JPH058441A JP18524791A JP18524791A JPH058441A JP H058441 A JPH058441 A JP H058441A JP 18524791 A JP18524791 A JP 18524791A JP 18524791 A JP18524791 A JP 18524791A JP H058441 A JPH058441 A JP H058441A
Authority
JP
Japan
Prior art keywords
lens
synthetic resin
transparent synthetic
focus
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18524791A
Other languages
Japanese (ja)
Inventor
Shunji Murano
俊次 村野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP18524791A priority Critical patent/JPH058441A/en
Publication of JPH058441A publication Critical patent/JPH058441A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the fogging of the surface of the lens array of an imaging device by protecting the surface from ozone generated by discharge in a copier, to also prevent the disturbance of an image by flattening the surfaces of lenses and to correct the irregularity of focus positions at every lenses. CONSTITUTION:A film of a transparent synthetic resin 4 is provided to the surface of a lens array not only to block a lens 2 from nitric acid mist generated from ozone but also to flatten the surface of the lens 2. The thickness of the transparent synthetic resin 4 to be applied is determined based on whether the lens 2 is a long or short focus and the transparent synthetic resin 4 is applied so as to become thick on the side of a light source surface 6 in the case of the long focus and on the side of an image forming surface 8 in the case of the short locus.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の利用分野】この発明は、LEDプリンタヘッド
や液晶シャッタプリンタヘッド、密着型イメージセンサ
等の画像装置に関し、特に用いるレンズアレイの改良に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an image device such as an LED printer head, a liquid crystal shutter printer head, and a contact image sensor, and more particularly to improvement of a lens array used.

【0002】[0002]

【従来技術】LEDアレイや液晶シャッタアレイと、セ
ルフフォーカシングレンズアレイ等のレンズアレイを組
み合わせた、プリンタヘッドは周知である。またセルフ
フォーカシングレンズアレイ等のレンズアレイと、光電
素子アレイ等を組み合わせた密着型イメージセンサも周
知である。これらの画像装置では、レンズアレイの性能
が重要である。
2. Description of the Related Art Printer heads in which an LED array or a liquid crystal shutter array and a lens array such as a self-focusing lens array are combined are well known. Further, a contact type image sensor in which a lens array such as a self-focusing lens array and a photoelectric element array are combined is also known. In these imagers, the performance of the lens array is important.

【0003】しかしながらレンズアレイの第1の問題と
して、焦点のばらつきが有る。レンズアレイの焦点のば
らつきは、レンズ内での屈折率分布のばらつき、個別の
レンズの長さのばらつき、レンズのピッチ精度が低下し
たりレンズが傾いたりする等のレンズの整列度の低下に
より生じる。レンズアレイの第2の問題として、レンズ
表面が複写機等の感光ドラムでの放電部で生じるオゾン
等で曇る事がある。オゾンによる曇りは、コロナ放電で
生じたオゾンが窒素と反応して窒素酸化物が生々し、生
々した窒素酸化物が水分と反応して硝酸となりレンズ表
面に付着することで進行する。
However, as the first problem of the lens array, there is variation in focus. The dispersion of the focal point of the lens array is caused by the dispersion of the refractive index distribution within the lens, the dispersion of the length of individual lenses, the deterioration of the lens alignment degree such as the deterioration of the pitch accuracy of the lens or the inclination of the lenses. .. A second problem of the lens array is that the lens surface is fogged by ozone or the like generated at the discharge portion of the photosensitive drum of a copying machine or the like. The clouding due to ozone progresses when ozone generated by corona discharge reacts with nitrogen to generate nitrogen oxides, and the generated nitrogen oxides react with moisture to become nitric acid and adhere to the lens surface.

【0004】レンズアレイの焦点ばらつきの問題はプラ
スチックレンズで特に著しく、プラスチックレンズの場
合はこれ以外にレンズ表面が平坦でないという問題も有
る。これはプラスチックレンズアレイは、プラスチック
レンズを結束し切断しただけで、レンズ表面には切断時
の傷がそのまま残っているからである。レンズアレイの
表面が平坦でないことは、画像の乱れの原因となる。オ
ゾンによる曇りの発生の問題は、ガラスレンズで特に著
しい。ガラスレンズの場合、硝酸ミストが表面に付着す
ると、ガラス中のアルカリ成分が析出し、レンズの曇り
となる。レンズの曇りはオゾンに限らず、大気汚染によ
り生じた窒素酸化物や硫黄酸化物でも、同様に進行す
る。このような曇りはアルコール等で拭き取ることがで
きるが、複写機やプリンタファクシミリ等に組み込んだ
画像ヘッドのレンズアレイ表面を清掃することは難し
い。ガラスレンズを用いた従来の画像ヘッドでは、50
0時間程度使用すると出力が約10%減少し、レンズの
曇りの問題は大きな問題となる。
The problem of focus variation of the lens array is particularly remarkable in a plastic lens, and in the case of a plastic lens, there is another problem that the lens surface is not flat. This is because the plastic lens array is obtained by simply bundling and cutting the plastic lenses, and the scratches at the time of cutting remain on the lens surface. The uneven surface of the lens array causes image distortion. The problem of fogging due to ozone is particularly remarkable in glass lenses. In the case of a glass lens, when nitric acid mist adheres to the surface, the alkaline component in the glass is deposited and the lens becomes cloudy. The cloudiness of the lens is not limited to ozone, and similarly progresses with nitrogen oxides and sulfur oxides generated by air pollution. Such fog can be wiped off with alcohol or the like, but it is difficult to clean the surface of the lens array of the image head incorporated in a copying machine, a printer / facsimile, or the like. With a conventional image head using a glass lens, 50
When it is used for about 0 hours, the output is reduced by about 10%, and the problem of lens fogging becomes a serious problem.

【0005】[0005]

【発明の課題】この発明の課題は、オゾン等によるレン
ズアレイの曇りの発生や、切断時の傷によるレンズアレ
イ表面の平坦度の低下を防止し、画像装置の性能を向上
させる事にある。
SUMMARY OF THE INVENTION An object of the present invention is to prevent the occurrence of fogging of a lens array due to ozone or the like, and prevent the flatness of the lens array surface from being lowered due to scratches at the time of cutting, thereby improving the performance of an image device.

【0006】[0006]

【発明の構成】この発明の画像装置は、画像素子と、該
画像素子と光学的に結合したレンズアレイとを組み合わ
せたものにおいて、前記レンズアレイの少なくとも一部
のレンズ表面を、透明合成樹脂で被覆したことを特徴と
する。
The image device of the present invention is a combination of an image element and a lens array optically coupled to the image element, wherein at least a part of the lens surface of the lens array is made of a transparent synthetic resin. It is characterized by being coated.

【0007】[0007]

【発明の作用】レンズの表面を透明合成樹脂で被覆する
と、レンズはオゾンや窒素酸化物、硫黄酸化物等から遮
断され、レンズの曇りの発生を防止することができる。
この結果、画像装置の交換寿命やメインテナンスの間隔
を延ばすことができる。この効果は、ガラスレンズに対
し特に著しい。被覆した透明合成樹脂はレンズ表面を平
坦化しプラスチックレンズの場合に特に問題となる、表
面の不平担性による画像の乱れを除くことができる。
When the surface of the lens is coated with a transparent synthetic resin, the lens is shielded from ozone, nitrogen oxides, sulfur oxides, etc., and it is possible to prevent fogging of the lens.
As a result, the replacement life of the image device and the maintenance interval can be extended. This effect is particularly remarkable for glass lenses. The coated transparent synthetic resin can flatten the lens surface and eliminate the image disturbance due to the non-flatness of the surface, which is a problem particularly in the case of a plastic lens.

【0008】透明合成樹脂での被覆は、特に限定するも
のではないが、次のように用いることもできる。プラス
チックレンズの場合も、ガラスレンズの場合も、レンズ
アレイには焦点位置のばらつきがある。このようなばら
つきは、レンズ内での屈折率分布のばらつきや、個別の
レンズの長さのばらつき、あるいはレンズ間のピッチが
異なる、またレンズが傾いており整列していない等の事
で生じ、レンズ毎に異なったばらつきとして現れる。な
お焦点位置のばらつきは、プラスチックレンズでガラス
レンズの場合よりも大きい。レンズアレイ全体が等しく
標準からばらつくのであればともかく、焦点位置のばら
つきは一つのレンズアレイの中でも個別のレンズ毎のば
らつきとして現れる。このような個別のレンズ毎のばら
つきの補正は、きわめて困難である。そこで被覆した透
明合成樹脂の屈折率が周囲の空気等の屈折率と異なるこ
とを利用し、焦点位置のばらつきを補正する。
The coating with the transparent synthetic resin is not particularly limited, but can be used as follows. In both the case of a plastic lens and the case of a glass lens, the lens array has variations in the focal position. Such variations occur due to variations in the refractive index distribution within the lenses, variations in the length of individual lenses, different pitches between lenses, and lenses that are tilted and not aligned. It appears as a different variation for each lens. The variation in the focal position is larger than that in the case of a plastic lens and a glass lens. Regardless of whether the entire lens array varies equally from the standard, the variation in the focal position appears as the variation for each individual lens in one lens array. It is extremely difficult to correct such variations for each individual lens. Therefore, the dispersion of the focal position is corrected by utilizing the fact that the refractive index of the transparent synthetic resin coated is different from that of the surrounding air.

【0009】透明合成樹脂の屈折率をn、周囲の媒体が
空気で屈折率が1とすると、厚さdの透明合成樹脂の被
覆を設けると、レンズと光源面や結像面との距離Lは、
等価的に △L=d・(n−1)/n (1) だけ短縮する。そこで結像面がレンズから遠すぎる場
合、レンズの結像面側に透明合成樹脂の被覆を設けれ
ば、見かけ上結像面を近づけ、結像面に焦点位置を合わ
せることができる。逆に光源面が遠すぎる場合、レンズ
の光源面側に透明合成樹脂の被覆を設ければ、見かけ上
光源面を近づけ、焦点位置を合わせることができる。結
像面が近すぎる場合、レンズの光源面側に透明合成樹脂
の被覆を設ける。これは、レンズアレイの空間周波数M
TFで表した解像度が、レンズと光源面や結像面との距
離が共に長すぎる場合や、共に短すぎる場合には余り低
下せず、一方のみが長すぎるあるいは短すぎる場合には
著しく低下することを利用したものである。同様に光源
面が近すぎる場合には、レンズの結像面側に透明合成樹
脂の被覆を設ける。透明合成樹脂の被覆は、CCD素子
等で焦点位置のばらつきをレンズ毎に測定してレンズ毎
に行えるため、個別のレンズに応じた補正ができる。な
おLEDプリンタヘッドのLEDアレイや、光電素子ア
レイ、あるいは液晶シャッタアレイ等の表面高さのばら
つきをも補正する場合、これらのものをレンズアレイと
一体化した状態で焦点位置のばらつきを測定し補正すれ
ば、レンズアレイの焦点位置のばらつきとLEDアレイ
等の表面高さのばらつきを同時に補正できる。
Assuming that the refractive index of the transparent synthetic resin is n, the surrounding medium is air and the refractive index is 1, when a transparent synthetic resin coating having a thickness of d is provided, the distance L between the lens and the light source surface or the image plane is L. Is
Equivalently shorten by ΔL = d · (n−1) / n (1). Therefore, if the image plane is too far from the lens, a transparent synthetic resin coating may be provided on the image plane side of the lens to apparently bring the image plane closer to bring the focus position to the image plane. On the other hand, when the light source surface is too far away, a transparent synthetic resin coating may be provided on the light source surface side of the lens to apparently bring the light source surface closer to each other so that the focal position can be adjusted. If the image plane is too close, a transparent synthetic resin coating is provided on the light source surface side of the lens. This is the spatial frequency M of the lens array.
The resolution expressed in TF does not decrease so much when the distance between the lens and the light source surface or the image forming surface is too long or both are too short, and significantly decreases when only one is too long or too short. This is what was used. Similarly, when the light source surface is too close, a transparent synthetic resin coating is provided on the imaging surface side of the lens. Since the transparent synthetic resin coating can be performed for each lens by measuring the variation of the focal position with a CCD element or the like, correction can be performed according to each individual lens. When correcting variations in the surface height of the LED array of the LED printer head, photoelectric element array, liquid crystal shutter array, etc., the variations in the focal position are measured and corrected with these elements integrated with the lens array. Then, the variation in the focal position of the lens array and the variation in the surface height of the LED array or the like can be simultaneously corrected.

【0010】[0010]

【実施例】図1〜図4に、レンズの焦点位置のばらつき
補正の原理を示す。なお各図において、光源は図の左側
に、結像面は図の右側に有り、光はレンズを左から右へ
通過するものとする。また実線は補正前の光の進路を示
し、破線は透明合成樹脂で補正後の光の進路を示す。こ
れらの表示は、全ての図で統一した。各図において、2
はレンズで、セルフフォーカシングレンズアレイの個別
のガラスレンズやプラスチックレンズとする。4は透明
合成樹脂で、好ましいものは透明アクリル樹脂や透明シ
リコン樹脂で、この他にも透明エポキシ樹脂等も用い
得、透明で硝酸等の酸への耐久性が高いもので有れば良
い。6は光源面で、ここではLEDプリンタヘッドのL
EDアレイであり、8は結像面でここではプリンタの感
光ドラムである。
1 to 4 show the principle of correcting variations in the focal position of a lens. In each figure, the light source is on the left side of the figure, the image plane is on the right side of the figure, and light passes through the lens from left to right. The solid line shows the path of light before correction, and the broken line shows the path of light after correction with transparent synthetic resin. These displays are unified in all figures. 2 in each figure
Is a lens, which may be a separate glass lens or plastic lens of the self-focusing lens array. Reference numeral 4 denotes a transparent synthetic resin, preferably a transparent acrylic resin or a transparent silicon resin. In addition to this, a transparent epoxy resin or the like can be used as long as it is transparent and has high durability against acids such as nitric acid. 6 is a light source surface, and here, L of the LED printer head
Reference numeral 8 denotes an ED array, and 8 denotes an image plane, which is a photosensitive drum of a printer in this case.

【0011】図1に、光源面6が遠すぎるため、焦点位
置が結像面8よりも遠方に有る(長焦点)状態を示す。
図2に、結像面8の位置が離れ過ぎているため、焦点位
置が結像面8よりも前方に有る(短焦点)の状態を示
す。なお長焦点、短焦点の用語は、常に結像面8に関し
て用い、光源面6に関しては用いないものとする。図3
は結像面8が近すぎるため長焦点となった状態を示す。
図4は光源面6が近すぎるため短焦点となった状態を示
す。これらのいずれの状態でも、長焦点で有れば光源面
6側に、短焦点で有れば結像面8側に透明合成樹脂4を
被覆し、焦点位置を補正する。
FIG. 1 shows a state in which the light source surface 6 is too far away so that the focus position is farther than the image plane 8 (long focus).
FIG. 2 shows a state in which the focus position is ahead of the image plane 8 (short focus) because the position of the image plane 8 is too far away. The terms long focus and short focus are always used for the image plane 8 and not for the light source plane 6. Figure 3
Indicates that the image plane 8 is too close to have a long focus.
FIG. 4 shows a state in which the light source surface 6 is too close to have a short focus. In any of these states, the transparent synthetic resin 4 is coated on the light source surface 6 side if the focal length is long, and on the image forming surface 8 side if the focal length is short, to correct the focal position.

【0012】補正の原理を説明する。図1の場合、光源
面6側に透明合成樹脂4を被覆すれば、レンズ2から見
て光源面6は式(1)に従い、見かけ上接近する。見かけ
上の接近距離を△L、レンズ2と光源面6や結像面8と
の距離をL、透明合成樹脂4の厚さをd、その屈折率を
n、周囲の媒体が空気で屈折率を1とすると、 △L=d・(n−1)/n (1) となる。図2の場合、透明合成樹脂4で結像面8を見か
け上△Lだけ接近させ、(焦点位置を△Lだけ遠ざ
け)、短焦点の状態を補正する。図3の場合、結像面8
の位置が近すぎるため長焦点の状態であり、光源面6側
に透明合成樹脂4を被覆する。このようにすると見かけ
上光源面6がレンズ2に近づき、結果的に長焦点の状態
を補正できる。これはレンズの解像度には、光源面6や
結像面8が共に近すぎる場合や共に遠すぎる場合には影
響が少なく、一方のみが近すぎるあるいは遠すぎる場合
には影響が大きいことを用いたものである。即ち長焦点
の状態は結像面8が近すぎるのであり、光源面6を見か
け上近づけるのである。図4の場合、光源面6が近すぎ
るため短焦点の状態に有る。そこで結像面8側に透明合
成樹脂4を被覆し、結像面8を見かけ上近づけ、短焦点
の状態を補正する。これらのことから明かなように、長
焦点の場合には光源面6側に、短焦点の場合には結像面
8側に透明合成樹脂4を被覆すれば、焦点位置のばらつ
きの補正ができる。
The principle of correction will be described. In the case of FIG. 1, if the transparent synthetic resin 4 is coated on the light source surface 6 side, the light source surface 6 apparently approaches according to the equation (1) when viewed from the lens 2. The apparent approach distance is ΔL, the distance between the lens 2 and the light source surface 6 or the image forming surface 8 is L, the thickness of the transparent synthetic resin 4 is d, the refractive index is n, and the surrounding medium is air and the refractive index is Is 1, ΔL = d · (n−1) / n (1). In the case of FIG. 2, the transparent synthetic resin 4 apparently brings the image plane 8 closer by .DELTA.L (removes the focus position by .DELTA.L) to correct the short focus state. In the case of FIG. 3, the image plane 8
Since the position is too close, it is in a long focus state, and the transparent synthetic resin 4 is coated on the light source surface 6 side. By doing so, the light source surface 6 apparently approaches the lens 2, and as a result, the long focus state can be corrected. This is because the resolution of the lens is less affected when the light source surface 6 and the imaging surface 8 are both too close or too far, and has a large effect when only one is too close or too far. It is a thing. That is, in the long focus state, the image forming surface 8 is too close, and the light source surface 6 is apparently brought closer. In the case of FIG. 4, since the light source surface 6 is too close, it is in a short focus state. Therefore, the transparent synthetic resin 4 is coated on the side of the image plane 8 so that the image plane 8 is apparently closer to correct the short focus state. As is clear from the above, if the transparent synthetic resin 4 is coated on the light source surface 6 side in the case of the long focus and on the image forming surface 8 side in the case of the short focus, the variation in the focus position can be corrected. ..

【0013】図5に、短焦点か長焦点かのばらつきの測
定方法を示す。10はセルフフォーカシングレンズアレ
イで、結像面8の位置にCCD素子や光電子増倍管等の
イメージセンサを配置し、光源面6からの点光源の結像
状態を観察する。なおLEDアレイの発光ダイオードは
極小さく、点光源と言える。この状態で、イメージセン
サを結像面8の左右に、あるいは左側や右側の一方向に
移動させ、画像ビームのビーム径の変化を観測する。短
焦点の場合には、図6のように結像面8からA,Bへと
イメージセンサの位置を変化させると、位置Cで画像ビ
ームのビーム径は最小となり、再び増加する。一方長焦
点の場合は位置Cで画像ビームのビーム径は最小とな
り、A,Bへと移動するにつれてビーム径は増加する。
そこでビーム径が最小となる位置Cが、手前に有れば短
焦点であり、遠方に有れば長焦点である。また結像面8
からの位置Cのずれの距離で、焦点位置のずれの絶対値
が判明する。イメージセンサを手前側に(A,Bの側
に)のみ移動させる場合、結像面8と位置A,Bでの画
像ビームのビーム径の変化パターンと3点でのビーム径
の相対値から、短焦点か長焦点かの弁別とずれの絶対値
が判明する。
FIG. 5 shows a method of measuring the variation between the short focus and the long focus. Reference numeral 10 denotes a self-focusing lens array, in which an image sensor such as a CCD element or a photomultiplier tube is arranged at the position of the image forming surface 8 and the image forming state of the point light source from the light source surface 6 is observed. The light emitting diodes of the LED array are extremely small and can be said to be point light sources. In this state, the image sensor is moved to the left or right of the image plane 8 or in one direction of the left side or the right side, and the change in the beam diameter of the image beam is observed. In the case of short focus, when the position of the image sensor is changed from the image plane 8 to A and B as shown in FIG. 6, the beam diameter of the image beam at the position C becomes the minimum and increases again. On the other hand, in the case of long focus, the beam diameter of the image beam becomes the minimum at the position C, and the beam diameter increases as it moves to A and B.
Therefore, the position C where the beam diameter is the smallest is the short focus if it is in the front, and the long focus is if it is far. The image plane 8
The absolute value of the shift of the focal position is found from the shift distance of the position C from. When only moving the image sensor to the front side (to the A and B sides), from the change pattern of the beam diameter of the image beam at the image plane 8 and the positions A and B, and the relative value of the beam diameter at three points, The absolute value of the discrepancy between the short focus and the long focus and the deviation is found.

【0014】具体的には、レンズアレイ10とLEDア
レイの基板とをセットし、感光ドラムの位置にイメージ
センサを配置する。次いでイメージセンサを移動させ、
個別のレンズ2毎に長焦点か短焦点かのずれの有無と、
ずれの程度を測定する。この後にレンズアレイ10をL
EDアレイの基板から切り離し、短焦点のレンズ2では
結像面8側に、長焦点のレンズ2では光源面6側に、透
明合成樹脂4を被覆する。被覆は、レンズ2毎に行い、
被覆する厚さは図5〜図7の手法で測定した値に従って
決定する。この後、LEDアレイを搭載した基板とレン
ズアレイ10をセットすれば、個別の発光ダイオードの
高さのばらつきと、レンズ2毎の焦点位置のばらつきと
を同時に補正できる。なおレンズアレイ10の焦点位置
の補正は、レンズアレイ単独で行い、発光ダイオードの
高さのばらつき補正は行わなくても良い。このようにし
て塗布した透明合成樹脂4は、同時にレンズ2の表面を
オゾンと空気中の窒素との反応で生じた硝酸ミスト等か
ら保護する役割をも持つ。
Specifically, the lens array 10 and the substrate of the LED array are set, and the image sensor is arranged at the position of the photosensitive drum. Then move the image sensor,
Whether there is a difference between the long focus and the short focus for each individual lens 2,
Measure the degree of deviation. After this, the lens array 10 is set to L
Separated from the substrate of the ED array, the short focal length lens 2 is coated with the transparent synthetic resin 4 on the image plane 8 side and the long focal length lens 2 is coated on the light source surface 6 side. The coating is performed for each lens 2,
The coating thickness is determined according to the value measured by the method of FIGS. After that, if the substrate on which the LED array is mounted and the lens array 10 are set, it is possible to simultaneously correct variations in height of individual light emitting diodes and variations in focal position for each lens 2. The focus position of the lens array 10 may be corrected by the lens array alone, and the height variation of the light emitting diodes may not be corrected. The transparent synthetic resin 4 applied in this manner also has a role of simultaneously protecting the surface of the lens 2 from nitric acid mist generated by the reaction between ozone and nitrogen in the air.

【0015】焦点位置のばらつきはプラスチックレンズ
で大きく、ガラスレンズでは小さい。プラスチックレン
ズでは、焦点位置のばらつきの原因としてレンズ2の長
さのばらつきが大きい。そこで図8に示すように、レン
ズアレイ10の表面の凹凸を測定し、透明合成樹脂4の
被覆位置と厚さとを定める。レンズ21のように結像面
8の側が凹の場合、短焦点で有り、凹の程度に応じて透
明合成樹脂4の厚さを定め、結像面8側を被覆する。レ
ンズ22のように、光源面6側が凹の場合、長焦点であ
り光源面6側に透明合成樹脂4を被覆する。レンズ23
のように、結像面8側が凸の場合、長焦点であり光源面
6側に透明合成樹脂4を被覆する。レンズ24のよう
に、光源面6側が凸の場合、短焦点であり結像面8側に
透明合成樹脂4を被覆する。レンズ25のように共に凹
の場合は、透明合成樹脂4を両面に被覆しても良く、被
覆しなくても良い。レンズ26のように共に凸の場合
は、共に被覆しない、あるいは凸の程度が著しい側に透
明合成樹脂4を被覆する。なおレンズ2の表面の凹凸と
長焦点か短焦点かの関係は、図5から明かである。
The variation of the focal position is large for the plastic lens and small for the glass lens. In a plastic lens, variation in the length of the lens 2 is large as a cause of variation in the focal position. Therefore, as shown in FIG. 8, the unevenness on the surface of the lens array 10 is measured to determine the coating position and the thickness of the transparent synthetic resin 4. When the image plane 8 side is concave like the lens 21, it has a short focal point, and the thickness of the transparent synthetic resin 4 is determined according to the degree of the concave, and the image plane 8 side is covered. When the light source surface 6 side is concave like the lens 22, it is a long focus and the light source surface 6 side is covered with the transparent synthetic resin 4. Lens 23
As described above, when the image forming surface 8 side is convex, it is a long focus and the light source surface 6 side is covered with the transparent synthetic resin 4. When the light source surface 6 side is convex like the lens 24, it has a short focus and the transparent synthetic resin 4 is coated on the image forming surface 8 side. When both are concave like the lens 25, both surfaces may be covered with the transparent synthetic resin 4 or may not be covered. When both lenses are convex like the lens 26, they are not covered, or the transparent synthetic resin 4 is coated on the side where the degree of convex is remarkable. The relationship between the unevenness on the surface of the lens 2 and the long focus or the short focus is clear from FIG.

【0016】図9,図10に、プラスチックレンズの平
坦化と焦点精度のばらつきの補正の、双方の処理をした
変形例を示す。この場合、図9に示すように、レンズア
レイ10の全面に薄い透明合成樹脂12を被覆し、表面
を平坦化する。次いで図10に示すように、図8,図5
の手法で短焦点か長焦点かの焦点位置のばらつきの有無
と程度を決定し、それに応じて透明合成樹脂4による補
正を行う。2つの透明合成樹脂12,4は一度に塗布し
ても良い。
FIG. 9 and FIG. 10 show modified examples in which both processes of flattening the plastic lens and correcting variations in focus accuracy are performed. In this case, as shown in FIG. 9, the entire surface of the lens array 10 is covered with a thin transparent synthetic resin 12 to flatten the surface. Then, as shown in FIG.
By determining the presence or absence and the degree of variation in the focal position of the short focus or the long focus, the correction by the transparent synthetic resin 4 is performed accordingly. The two transparent synthetic resins 12 and 4 may be applied at once.

【0017】プラスチックレンズの平坦化は、図11の
ように一対のヒータ14,14を用い、レンズの両端を
加圧しながら加熱しても良い。加熱には、ヒータ14か
らの直接の熱伝導の他に赤外線加熱、マイクロ波加熱等
の任意のものを用い得る。図12に平坦化後のレンズア
レイ10を示す。平坦化したレンズアレイ10に、図
5,図8の手法で、焦点位置のずれの補正を施せば、図
10と同様に、平坦化処理と焦点位置のずれの補正の双
方を施したレンズアレイが得られる。なお図11の平坦
化で、圧力と加熱温度とを増せば、レンズ2の表面が単
に平坦化するだけでなく、図8に示した凹凸が解消さ
れ、焦点位置のばらつきの補正も行える。
For flattening the plastic lens, a pair of heaters 14 and 14 may be used as shown in FIG. 11 while heating both ends of the lens while applying pressure. For heating, in addition to direct heat conduction from the heater 14, any heating such as infrared heating or microwave heating may be used. FIG. 12 shows the lens array 10 after flattening. If the focal position shift correction is performed on the flattened lens array 10 by the method shown in FIGS. 5 and 8, the lens array subjected to both the flattening process and the focus position shift correction as in FIG. Is obtained. If the pressure and the heating temperature are increased in the flattening of FIG. 11, not only the surface of the lens 2 is flattened, but also the unevenness shown in FIG. 8 is eliminated and the variation in the focal position can be corrected.

【0018】図13にガラスレンズに適した、レンズ表
面の保護と焦点位置のばらつきとの双方を行った変形例
を示す。この場合、図5,図8の手法で、短焦点、長焦
点の焦点位置のばらつきの有無と程度をレンズ2毎に測
定する。次いでこれに基づいて、透明合成樹脂4の被覆
量を定め、両面に透明合成樹脂4を被覆する。焦点位置
のばらつきがないレンズ27では透明合成樹脂4の厚さ
は最小とし、焦点位置のばらつきのあるレンズ28等で
は、短焦点の場合結像面8側の透明合成樹脂4を厚く、
長焦点の場合光源面6側の透明合成樹脂4を厚く塗布
し、補正を行う。
FIG. 13 shows a modification suitable for a glass lens, in which the lens surface is protected and the focal position is varied. In this case, the presence / absence and the degree of variation in the focal positions of the short focus and the long focus are measured for each lens 2 by the method shown in FIGS. Then, based on this, the coating amount of the transparent synthetic resin 4 is determined, and the both sides are coated with the transparent synthetic resin 4. The thickness of the transparent synthetic resin 4 is minimized in the lens 27 where the focal position does not vary, and in the case of the lens 28 where the focal position varies, the transparent synthetic resin 4 on the image plane 8 side is thick in the case of short focus.
In the case of a long focus, the transparent synthetic resin 4 on the light source surface 6 side is thickly applied and correction is performed.

【0019】[0019]

【発明の効果】この発明では、オゾン等によるレンズア
レイの曇りの発生や、切断時の傷によるレンズアレイ表
面の平坦度の低下を防止し、画像装置の性能を向上させ
る。
According to the present invention, it is possible to prevent the fogging of the lens array due to ozone or the like and to prevent the flatness of the surface of the lens array from being deteriorated due to scratches at the time of cutting, thereby improving the performance of the image device.

【図面の簡単な説明】[Brief description of drawings]

【図1】 実施例での光源面とレンズとの距離が長す
ぎる場合の補正を示す図
FIG. 1 is a diagram showing correction in a case where a distance between a light source surface and a lens is too long in an embodiment.

【図2】 実施例での結像面とレンズとの距離が長す
ぎる場合の補正を示す図
FIG. 2 is a diagram showing correction when the distance between the image forming surface and the lens is too long in the example.

【図3】 実施例での結像面とレンズとの距離が短す
ぎる場合の補正を示す図
FIG. 3 is a diagram showing correction when the distance between the image forming surface and the lens in the embodiment is too short.

【図4】 実施例での結像面とレンズとの距離が短す
ぎる場合の補正を示す図
FIG. 4 is a diagram showing correction when the distance between the image forming surface and the lens is too short in the example.

【図5】 実施例でのレンズアレイの焦点位置ばらつ
きの補正を示す図
FIG. 5 is a diagram showing correction of variations in focal position of the lens array in the example.

【図6】 実施例での焦点位置ばらつきの測定を示す
FIG. 6 is a diagram showing measurement of focal position variation in the example.

【図7】 実施例での焦点位置ばらつきの測定を示す
FIG. 7 is a diagram showing measurement of focal position variation in the example.

【図8】 変形例での焦点位置ばらつきの補正を示す
FIG. 8 is a diagram showing correction of focus position variation in a modified example.

【図9】 実施例での透明合成樹脂被覆によるレンズ
表面の平坦化を示す図
FIG. 9 is a diagram showing flattening of a lens surface by coating with a transparent synthetic resin in an example.

【図10】 実施例でのレンズ表面の平坦化後の、焦点
位置ばらつきの補正を示す図
FIG. 10 is a diagram showing correction of focal position variation after the lens surface is flattened in the example.

【図11】 他の変形例でのレンズ表面の平坦化を示す
FIG. 11 is a diagram showing flattening of a lens surface in another modification.

【図12】 図11の変形例での平坦化後のレンズ表面
を示す図
FIG. 12 is a diagram showing a lens surface after flattening in a modification of FIG.

【図13】 図11の変形例でのレンズ表面の平坦化後
の、焦点位置ばらつきの補正を示す図
13 is a diagram showing correction of focal position variation after flattening of the lens surface in the modification of FIG.

【符号の説明】[Explanation of symbols]

2 レンズ 4 透明合成樹脂 6 光源面 8 結像面 10 レンズアレイ 12 透明合成樹脂 14 ヒータ 2 lens 4 transparent synthetic resin 6 light source surface 8 image forming surface 10 lens array 12 transparent synthetic resin 14 heater

Claims (1)

【特許請求の範囲】 【請求項1】 画像素子と、該画像素子と光学的に結合
したレンズアレイとを組み合わせた画像装置において、 前記レンズアレイの少なくとも一部のレンズ表面を、透
明合成樹脂で被覆したことを特徴とする、画像装置。
Claim: What is claimed is: 1. An imaging device comprising an image element and a lens array optically coupled to the image element, wherein at least a part of the lens surface of the lens array is made of a transparent synthetic resin. An imaging device characterized by being coated.
JP18524791A 1991-06-29 1991-06-29 Imaging device Pending JPH058441A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18524791A JPH058441A (en) 1991-06-29 1991-06-29 Imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18524791A JPH058441A (en) 1991-06-29 1991-06-29 Imaging device

Publications (1)

Publication Number Publication Date
JPH058441A true JPH058441A (en) 1993-01-19

Family

ID=16167468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18524791A Pending JPH058441A (en) 1991-06-29 1991-06-29 Imaging device

Country Status (1)

Country Link
JP (1) JPH058441A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002065165A3 (en) * 2001-02-09 2003-02-27 Digital Optics Corp Compensation and/or variation of wafer level produced lenses and resultant structures
JP2007136704A (en) * 2005-11-15 2007-06-07 Fuji Xerox Co Ltd Optical writing head, image forming apparatus, and method for manufacturing optical writing head
JP2019056618A (en) * 2017-09-21 2019-04-11 富士ゼロックス株式会社 Multifocal lens, measurement device and measurement method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002065165A3 (en) * 2001-02-09 2003-02-27 Digital Optics Corp Compensation and/or variation of wafer level produced lenses and resultant structures
US6836612B2 (en) * 2001-02-09 2004-12-28 Digital Optics Corp. Compensation and/or variation of wafer level produced lenses and resultant structures
US6934460B2 (en) 2001-02-09 2005-08-23 Digital Optics Corp Compensation and/or variation of wafer level produced lenses and resultant structures
JP2007136704A (en) * 2005-11-15 2007-06-07 Fuji Xerox Co Ltd Optical writing head, image forming apparatus, and method for manufacturing optical writing head
JP2019056618A (en) * 2017-09-21 2019-04-11 富士ゼロックス株式会社 Multifocal lens, measurement device and measurement method

Similar Documents

Publication Publication Date Title
US7061518B2 (en) LED print head and production method of LED print head and method of producing LED substrate and method of pasting LED substrate
US9557563B2 (en) Optical scanning device, method of adjusting optical scanning device, and image forming apparatus
CN103209277B (en) Image read-out and image processing system
US20080239267A1 (en) Exposure apparatus and exposure method for exposure apparatus
US20080225303A1 (en) Method and Apparatus for the Three-Dimensional Measurement of the Shape and the Local Surface Normal of Preferably Specular Objects
JP2006349945A (en) Exposure apparatus
JP3518765B2 (en) Multi-beam optical scanning optical element, multi-beam optical scanning apparatus and image forming apparatus using this optical element
US20140160545A1 (en) Optical scanning device and image forming apparatus
US20110116835A1 (en) Scanning optical apparatus and image forming apparatus using the same
JP2001343604A (en) Lens for optical scanning, optical scanner and image forming device
JP5968040B2 (en) Optical scanning apparatus, image forming apparatus, and optical scanning apparatus control method
JP2001246782A (en) Optical writing device and image forming device
JP2009128098A (en) Shape measuring device of transparent planar body, and manufacturing method of plate glass
JPH058441A (en) Imaging device
US20050088746A1 (en) Light quantity distribution control element and optical apparatus using the same
US7145590B2 (en) Apparatus with offset light source for forming images on photosensitive surface
JP4732569B2 (en) Method for continuously determining the optical layer thickness of a coating
US20080158634A1 (en) Optical scanning apparatus and image forming apparatus comprising the same
JP3833542B2 (en) Optical scanning apparatus, image forming apparatus, and image forming method
US7630137B2 (en) Lens array, exposure device, and image forming apparatus
JP2004045840A (en) Method and device for optical scanning, and image forming device
US20080123072A1 (en) Projection Head Focus Position Measurement Method And Exposure Method
JP4631475B2 (en) Image forming apparatus
US6337706B1 (en) Solid scanning optical writing device, light amount correction method therefor and light amount measuring device
JP5058850B2 (en) Semiconductor laser light recording apparatus and image forming apparatus using the same