JPH0584291B2 - - Google Patents

Info

Publication number
JPH0584291B2
JPH0584291B2 JP63202954A JP20295488A JPH0584291B2 JP H0584291 B2 JPH0584291 B2 JP H0584291B2 JP 63202954 A JP63202954 A JP 63202954A JP 20295488 A JP20295488 A JP 20295488A JP H0584291 B2 JPH0584291 B2 JP H0584291B2
Authority
JP
Japan
Prior art keywords
group
general formula
represented
chloride
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63202954A
Other languages
Japanese (ja)
Other versions
JPH0253738A (en
Inventor
Isao Hashiba
Atsushi Hamada
Yoshikazu Yoshioka
Shinya Kuwabara
Yoshihiro Iwazawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Chemical Corp
Original Assignee
Nissan Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Chemical Corp filed Critical Nissan Chemical Corp
Priority to JP63202954A priority Critical patent/JPH0253738A/en
Publication of JPH0253738A publication Critical patent/JPH0253738A/en
Publication of JPH0584291B2 publication Critical patent/JPH0584291B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(イ) 産業上の利用分野 本発明で得られる一般式〔〕で表されるアリ
ールスルホニルクロライドは医薬、農薬及び動物
薬等の中間体として有用である。 (ロ) 従来の技術 アリールスルホニルクロライドの製法として
は、二つの方法が実施されている。 第1の方法は、アリール化合物の大過剰のクロ
ルスルホン酸を反応させ、水中で処理してアリー
ルスルホニルクロライドを得る方法である。 この方法は、クロルスルホン酸を大過剰に使用
するため危険である上、アリール化合物の種類に
よつては反応が進行しない場合がある。 又、目的とするアリールスルホニルクロライド
と置換位置が異なるアリールスルホニルクロライ
ド等の副生成物が生成し、複雑なアリールスルホ
ニルクロライドの製造には適用できない場合があ
る。 第2の方法は、硫酸水溶液中、アリールアミン
塩素塩を亜硝酸ナトリウムでジアゾ化後、この水
溶液を二酸化硫黄及び銅化合物が存在する酢酸等
の溶液へ低温で滴下して、アリールスルホニルク
ロライドを得る方法である。〔ジヤーナル、ヘテ
ロサイクリツク、ケミストリイ(J of
Heterocyclic chemistry)、第21巻、4号、1017
頁、1984年、オルガニツク、シンセシス
(Organic Synsesis)、第60巻、121頁〕。 この方法は適用範囲が広く、複雑なアリールス
ルホニルクロライドの製法として有用であるが、
工業的実施に際しては、次のようなジアゾ化反応
特有の欠点を有している。 (1) ジアゾ化反応の反応熱が大きく、ジアゾニウ
ム塩の安定性が低いため、反応温度を0℃程度
の低温に保つ必要がある。 従つて、工業規模になると冷却が充分できず
反応時間が長くなり、しばしばアリールスルホ
ニルクロライドの収率が低下する。 (2) 多量の溶媒を必要とする上、反応操作が煩雑
であるため、アリールスルホニルクロライドの
製造の効率が非常に悪い。 又、廃酸が大量に生成しその処理に困る。 (ハ) 問題点を解決する為の手段 本発明者等は、上記2法の欠点を改良すべく鋭
意検討の結果本発明を完成するに至つた。 即ち、本発明は一般式〔〕 ArNH2 〔〕 (Arは置換又は未置換のアリール基を示す。) で表されるアリールアミンを 塩化水素、二酸化硫黄及び銅化合物の存在下、 一般式〔〕 R1YNOa 〔〕 (R1は炭素数2〜10のアルキル基、Yは酸素原
子又は硫黄原子、aは1又は2の整数を示す。) で表されるアルキルナイトライトと反応させるこ
とを特徴とする 一般式〔〕 ArSO2Cl 〔〕 で表されるアリールスルホニルクロライドの製法
に関するものである。 特に、本発明は一般式〔〕
(a) Industrial application field The arylsulfonyl chloride represented by the general formula [] obtained by the present invention is useful as an intermediate for pharmaceuticals, agricultural chemicals, veterinary drugs, etc. (b) Prior Art Two methods have been used to produce arylsulfonyl chloride. The first method is to react an aryl compound with a large excess of chlorosulfonic acid and treat it in water to obtain an arylsulfonyl chloride. This method is dangerous because it uses a large excess of chlorosulfonic acid, and the reaction may not proceed depending on the type of aryl compound. Furthermore, by-products such as arylsulfonyl chloride having a substitution position different from that of the target arylsulfonyl chloride are produced, and this method may not be applicable to the production of complex arylsulfonyl chloride. The second method is to diazotize an arylamine chloride salt with sodium nitrite in an aqueous sulfuric acid solution, and then dropwise drop this aqueous solution into a solution of acetic acid or the like containing sulfur dioxide and a copper compound at a low temperature to obtain an arylsulfonyl chloride. It's a method. [Journal, Heterocyclics, Chemistry (J of
Heterocyclic chemistry), Volume 21, No. 4, 1017
Page, 1984, Organic Synthesis, Vol. 60, p. 121]. This method has a wide range of applicability and is useful as a method for producing complex arylsulfonyl chlorides.
In industrial implementation, the diazotization reaction has the following disadvantages. (1) Since the reaction heat of the diazotization reaction is large and the stability of the diazonium salt is low, the reaction temperature must be kept at a low temperature of about 0°C. Therefore, on an industrial scale, cooling is not sufficient and the reaction time becomes long, often resulting in a decrease in the yield of arylsulfonyl chloride. (2) Since a large amount of solvent is required and the reaction operation is complicated, the efficiency of producing arylsulfonyl chloride is very low. In addition, a large amount of waste acid is generated, making it difficult to dispose of it. (c) Means for solving the problems The inventors of the present invention have completed the present invention as a result of intensive studies to improve the drawbacks of the above two methods. That is, the present invention provides an arylamine represented by the general formula [] ArNH 2 [] (Ar represents a substituted or unsubstituted aryl group) in the presence of hydrogen chloride, sulfur dioxide, and a copper compound. R 1 YNO a [ ] (R 1 is an alkyl group having 2 to 10 carbon atoms, Y is an oxygen atom or a sulfur atom, and a is an integer of 1 or 2.) This invention relates to a method for producing arylsulfonyl chloride represented by the general formula [] ArSO 2 Cl []. In particular, the present invention relates to the general formula []

【化】 (R2は炭素数1〜10のアルキル基を示す。) で表されるピラゾールアミンより 一般式〔〕[Chemical formula] (R 2 represents an alkyl group having 1 to 10 carbon atoms.) From the general formula []

【化】 (R2は炭素数1〜10のアルキル基を示す。) で表されるピラゾールスルホニルクロライドの製
法として特に有用である。 炭素数2〜10のアルキル基であるR1としては、
エチル基、n−プロピル基、i−プロピル基、n
−ブチル基、i−ブチル基、t−ブチル基、n−
ペンチル基、i−ペンチル基、n−ヘキシル基、
i−ヘキシル基、n−ヘプチル基、i−ヘプチル
基、n−オクチル基、i−オクチル基、n−ノニ
ル基、i−ノニル基、n−デシル基、i−デシル
基等が挙げられる。 炭素数1〜10のアルキル基であるR2としては、
メチル基、エチル基、n−プロピル基、i−プロ
ピル基、n−ブチル基、i−ブチル基、t−ブチ
ル基、n−ペンチル基、i−ペンチル基、n−ヘ
キシル基、i−ヘキシル基、n−ヘプチル基、i
−ヘプチル基、n−オクチル基、i−オクチル
基、n−ノニル基、i−ノニル基、n−デシル
基、i−デシル基等が挙げられる。 置換又は未置換のアリール基であるArとして
は、フエニル基、ナフチル基、アントラセニル
基、アルキル基置換フエニル基、アルキル基置換
ナフチル基、アルキル基置換アントラセニル基、
ハロゲン置換フエニル基、ハロゲン置換ナフチル
基、ハロゲン置換アントラセニル基、ニトロ基置
換フエニル基、ニトロ基置換ナフチル基、ニトロ
基置換アントラセニル基、1−アルキルピラゾー
ル、1,4−ジアルキルピラゾール、1−アルキ
ル−4−アルコキシカルボニルピラゾール基、1
−アルキル−4−アルコキシカルボニル−5−ア
ルキルピラゾール基、1,3−ジアルキル−5−
アルコキシカルボニルピラゾール基、3−ハロゲ
ノ−1,4−ジアルキルピラゾール基、3−ハロ
ゲノ−1−アルキル−4−アルコキシカルボニル
ピラゾール基、3−ニトロ−1,4−ジアルキル
ピラゾール基、3−ニトロ−1−アルキル−4−
アルコキシカルボニルピラゾール基等が挙げられ
る。 上記置換基のアルキル基としては、メチル基、
エチル基、n−プロピル基、i−プロピル基、n
−ブチル基、i−ブチル基、t−ブチル基、n−
ペンチル基、i−ペンチル基、n−ヘキシル基、
i−ヘキシル基、n−ヘプチル基、i−ヘプチル
基、n−オクチル基、i−オクチル基、n−ノニ
ル基、i−ノニル基、n−デシル基、i−デシル
基等が挙げられる。 ハロゲンとしては、塩素、臭素、妖素等が挙げ
られる。 置換又は未置換のアリール基であるArの具体
例としては、フエニル基、ナフチル基、アントラ
セニル基、メチル基置換フエニル基、エチル基置
換フエニル基、n−プロピル基置換フエニル基、
i−プロピル基置換フエニル基、n−ブチル基置
換フエニル基、i−ブチル基置換フエニル基、メ
チル基置換ナフチル基、エチル基置換ナフチル
基、n−プロピル基置換ナフチル基、i−プロピ
ル基置換ナフチル基、n−ブチル基置換ナフチル
基、i−ブチル基置換ナフチル基、メチル基置換
アントラセニル基、エチル基置換アントラセニル
基、n−プロピル基置換アントラセニル基、i−
プロピル基置換アントラセニル基、n−ブチル基
置換アントラセニル基、i−ブチル基置換アント
ラセニル基、塩素置換フエニル基、臭素置換フエ
ニル基、沃素置換フエニル基、塩素置換ナフチル
基、臭素置換ナフチル基、沃素置換ナフチル基、
塩素置換アントラセニル基、臭素置換アントラセ
ニル基、沃素置換アントラセニル基、ニトロ基置
換フエニル基、ニトロ基置換ナフチル、ニトロ基
置換アントラセニル基、1−メチルピラゾール、
1−エチルピラゾール、1,4−ジメチルピラゾ
ール、1,4−ジエチルピラゾール、1−メチル
−4−メトキシカルボニルピラゾール基、1−メ
チル−4−エトキシカルボニルピラゾール基、1
−メチル−4−ブトキシカルボニルピラゾール
基、1−メチル−4−オクタオキシカルボニルピ
ラゾール基、1−メチル−4−デシロキシカルボ
ニルピラゾール基、1−エチル−4−メトキシカ
ルボニルピラゾール基、1−エチル−4−エトキ
シカルボニルピラゾール基、1−メチル−4−プ
ロポキシカルボニルピラゾール基、1−メチル−
4−ヘプタオキシカルボニルピラゾール基、1−
メチル−4−ノナキシカルボニルピラゾール基、
1−メチル−4−メトキシカルボニル−5−メチ
ルピラゾール基、1−メチル−4−エトキシカル
ボニル−5−メチルピラゾール基、1−メチル−
4−エトキシカルボニル−5−エチルピラゾール
基、1,3−ジメチル−5−メトキシカルボニル
ピラゾール基、1,3−ジエチル−5−メトキシ
カルボニルピラゾール基、1,3−ジメチル−5
−エトキシカルボニルピラゾール基、3−クロロ
−1,4−ジメチルピラゾール基、3−クロロ−
1,4−ジエチルルピラゾール基、3−ブロモ−
1,4−ジメチルピラゾール基、3−ブロモ−
1,4−ジメチルピラゾール基、3−ヨード−
1,4−ジメチルピラゾール基、3−ヨード−
1,4−ジエチルピラゾール基、3−クロロ−1
−メチル−4−メトキシカルボニルピラゾール
基、3−ブロモ−1−メチル−4−メトキシカル
ボニルピラゾール基、3−ヨード−1−メチル−
4−メトキシカルボニルピラゾール基、3−クロ
ロ−1−エチル−4−メトキシカルボニルピラゾ
ール基、3−ブロモ−1−エチル−4−メトキシ
カルボニルピラゾール基、3−ヨード−1−エチ
ル−4−メトキシカルボニルピラゾール基、3−
クロロ−1−メチル−4−エトキシカルボニルピ
ラゾール基、3−ブロモ−1−メチル−4−エト
キシカルボニルピラゾール基、3−ヨード−1−
メチル−4−エトキシカルボニルピラゾール基、
3−ニトロ−1,4−ジメチルピラゾール基、3
−ニトロ−1,4−ジエチルピラゾール基、3−
ニトロ−1−メチル−4−メトキシカルボニルピ
ラゾール基、3−ニトロ−1−エチル−4−メト
キシカルボニルピラゾール基、3−ニトロ−1−
メチル−4−メトキシカルボニルピラゾール基等
が挙げられる。 以下、本発明について詳細に説明する。 一般式〔〕で表されるアルキルナイトライト
としては、t−ブチルナイトライト、ネオペンチ
ルナイトライト等の第3級アルキルナイトライト
を使用することが望ましい。 一般式〔〕で表されるアルキルナイトライト
が、エチルナイトライト、n−プロピルナイトラ
イト、n−ブチルナイトライト、n−アルミナイ
トライト、i−アルミナイトライト等の第1級ア
ルキルナイトライトの場合、一般式〔〕で表さ
れるアリールアミンのアミン基が水素に置換され
たアリール化合物ArHが生成し易いからである。 尚、第1級アルキルナイトライトを使用する場
合、反応系に無水酢酸を添加するとアリール化合
物ArHの副生を抑制することができる。 一般式〔〕で表されるアルキルナイトライト
の量は、一般式〔〕で表されるアリールアミン
に対して通常1〜5(モル比)の範囲、望ましく
は1〜2(モル比)の範囲が良い。 一般式〔〕で表されるアルキルナイトライト
の製法としては、例えば亜硝酸ナトリウム水溶液
に硫酸とアルキルアルコールの混合物を低温で滴
下する方法等が挙げられる。 塩化水素としては、塩素水素ガス及び塩酸を使
用することができるが、塩素水素ガスが望まし
い。 塩化水素の量は、一般式〔〕で表されるアリ
ールアミンに対して通常1〜1.5(モル比)の範囲
が良い。 塩化水素の量が1(モル比)未満であると、一
般式〔〕で表されるアリールアミンのアミノ基
が水素に置換されたアリール化合物ArHの生成
が増加する。 塩素水素の量が1.5(モル比)を越えると、一般
式〔〕で表されるアリールアミンのアミノ基が
塩素に置換されたアリールクロライドArClの生
成が増加する。 二酸化硫黄は、液状でもガス状でも使用するこ
とができる。 二酸化硫黄の量は、一般式〔〕で表されるア
リールアミンに対して1〜20(モル比)の範囲、
望ましくは2〜8(モル比)の範囲が良い。 銅化合物としては、硫酸第1銅、硫酸第2銅、
硝酸第1銅、硝酸第2銅、塩化第1銅、塩化第2
銅、酢酸第1銅、酢酸第2銅、塩基性酢酸第2
銅、酸化第1銅、酸化第2銅、ビスアセチルアセ
トナト第2銅が挙げられ、望ましくは硫酸第2銅
が良い。 銅化合物の量は、一般式で表されるアリールア
ミンに対して0.1〜100重量%の範囲、望ましくは
2〜10重量%の範囲が良い。 銅化合物の量が0.1重量%未満では、上記アリ
ール化合物ArH及びアリールクロライドArClの
生成が増加し、100重量%と越えるとアリールク
ロライドArClの生成が増加する。 本発明には溶媒を使用することもできる。 溶媒としては、一般式〔〕で表されるアリー
ルアミン、その塩酸塩、二酸化硫黄、銅化合物を
溶解する溶媒が望ましい。 溶媒としては、有機酸、その酸無水物、有機酸
エステル、第3級アルコール、ケトン、ハロゲン
化炭化水素、低級アルキルニトリル等が挙げられ
る。 その具体例としては、例えば酢酸、酢酸エチ
ル、無水酢酸、t−ブチルアルコール、アセト
ン、メチルエチルケトン、エチレンジクロライ
ド、クロロホルム、アセトニトリル、プロピオニ
トリル等が挙げられる。 又、反応試剤である二酸化硫黄も溶媒として使
用することができる。 一般式〔〕で表されるアルキルナイトライト
として第1級ナイトライトを使用する場合、上述
のようにアリール化合物ArHが生成し易いので
上記溶媒と無水酢酸の混合溶媒を使用することが
望ましい。 反応温度は、通常0〜50℃の範囲、望ましくは
0〜25℃の範囲が良い。 温度が50℃を越えると、副反応が起こり一般式
〔〕で表されるアリールスルホニルクロライド
の収率が低下する。 本発明反応は、常圧でも加圧でも行うことがで
きる。 本発明反応では反応中に水が生成するが、この
水を除去するために反応系に脱水剤を添加する
と、一般式〔〕で表されるアリールスルホニル
クロライドの収率が向上する場合がある。 脱水剤としては、シリカゲル、モレキユラーシ
ーブ等を挙げることができる。 本発明の実施態様の具体例を挙げると 第1の方法は、一般式〔〕で表されるアリー
ルアミンと塩化水素の存在下、一般式〔〕で表
されるアルキルナイトライトを低温、例えば0〜
5℃で反応させ、一般式〔〕で表されるアリー
ルアミンのジアゾニウム塩を生成させた後、二酸
化硫黄、銅化合物及び必要なら溶媒からなる分解
液に添加することにより、一般式〔〕で表され
るアリールスルホニルクロライドを得る方法であ
る。 第2の方法は、一般式〔〕で表されるアリー
ルアミン、塩化水素、二酸化硫黄、銅化合物及び
必要なら溶媒の存在下、一般式〔〕で表される
アルキルナイトライトを添加し、一般式〔〕で
表されるアリールスルホニルクロライドを得る方
法である。 上記の方法において、どちらかと言えば第2の
方法の方が一般式〔〕で表されるアリールスル
ホニルクロライドの収率及び反応操作面で好まし
い。 (ニ) 発明の効果 一般式〔〕で表されるアルキルナイトライト
を使用することにより、一般式〔〕で表される
アリールアミンから一般式〔〕で表されるアリ
ールスルホニルクロライドが工業規模でも容易に
高収率で得られ、又廃酸の生成がない。 (ホ) 実施例 次に実施例を挙げて、本発明について更に詳し
く説明するが本発明はこれらに限定されるもので
はない。 実施例 1
It is particularly useful as a method for producing pyrazolesulfonyl chloride represented by: (R 2 represents an alkyl group having 1 to 10 carbon atoms). As R 1 which is an alkyl group having 2 to 10 carbon atoms,
Ethyl group, n-propyl group, i-propyl group, n
-butyl group, i-butyl group, t-butyl group, n-
pentyl group, i-pentyl group, n-hexyl group,
Examples include i-hexyl group, n-heptyl group, i-heptyl group, n-octyl group, i-octyl group, n-nonyl group, i-nonyl group, n-decyl group, i-decyl group, and the like. R2, which is an alkyl group having 1 to 10 carbon atoms, is
Methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, i-butyl group, t-butyl group, n-pentyl group, i-pentyl group, n-hexyl group, i-hexyl group , n-heptyl group, i
-heptyl group, n-octyl group, i-octyl group, n-nonyl group, i-nonyl group, n-decyl group, i-decyl group and the like. Ar, which is a substituted or unsubstituted aryl group, includes a phenyl group, a naphthyl group, an anthracenyl group, an alkyl group-substituted phenyl group, an alkyl group-substituted naphthyl group, an alkyl group-substituted anthracenyl group,
Halogen-substituted phenyl group, halogen-substituted naphthyl group, halogen-substituted anthracenyl group, nitro-substituted phenyl group, nitro-substituted naphthyl group, nitro-substituted anthracenyl group, 1-alkylpyrazole, 1,4-dialkylpyrazole, 1-alkyl-4 -alkoxycarbonylpyrazole group, 1
-Alkyl-4-alkoxycarbonyl-5-alkylpyrazole group, 1,3-dialkyl-5-
Alkoxycarbonylpyrazole group, 3-halogeno-1,4-dialkylpyrazole group, 3-halogeno-1-alkyl-4-alkoxycarbonylpyrazole group, 3-nitro-1,4-dialkylpyrazole group, 3-nitro-1- Alkyl-4-
Examples include alkoxycarbonylpyrazole groups. As the alkyl group of the above substituent, methyl group,
Ethyl group, n-propyl group, i-propyl group, n
-butyl group, i-butyl group, t-butyl group, n-
pentyl group, i-pentyl group, n-hexyl group,
Examples include i-hexyl group, n-heptyl group, i-heptyl group, n-octyl group, i-octyl group, n-nonyl group, i-nonyl group, n-decyl group, i-decyl group, and the like. Examples of the halogen include chlorine, bromine, and atomic. Specific examples of Ar, which is a substituted or unsubstituted aryl group, include phenyl group, naphthyl group, anthracenyl group, methyl group-substituted phenyl group, ethyl group-substituted phenyl group, n-propyl group-substituted phenyl group,
i-propyl-substituted phenyl group, n-butyl-substituted phenyl group, i-butyl-substituted phenyl group, methyl-substituted naphthyl group, ethyl-substituted naphthyl group, n-propyl-substituted naphthyl group, i-propyl-substituted naphthyl group group, n-butyl-substituted naphthyl group, i-butyl-substituted naphthyl group, methyl-substituted anthracenyl group, ethyl-substituted anthracenyl group, n-propyl-substituted anthracenyl group, i-
Propyl-substituted anthracenyl group, n-butyl-substituted anthracenyl group, i-butyl-substituted anthracenyl group, chlorine-substituted phenyl group, bromine-substituted phenyl group, iodine-substituted phenyl group, chlorine-substituted naphthyl group, bromine-substituted naphthyl group, iodine-substituted naphthyl group basis,
Chlorine-substituted anthracenyl group, bromine-substituted anthracenyl group, iodine-substituted anthracenyl group, nitro-substituted phenyl group, nitro-substituted naphthyl, nitro-substituted anthracenyl group, 1-methylpyrazole,
1-ethylpyrazole, 1,4-dimethylpyrazole, 1,4-diethylpyrazole, 1-methyl-4-methoxycarbonylpyrazole group, 1-methyl-4-ethoxycarbonylpyrazole group, 1
-Methyl-4-butoxycarbonylpyrazole group, 1-methyl-4-octoxycarbonylpyrazole group, 1-methyl-4-desyloxycarbonylpyrazole group, 1-ethyl-4-methoxycarbonylpyrazole group, 1-ethyl-4 -Ethoxycarbonylpyrazole group, 1-methyl-4-propoxycarbonylpyrazole group, 1-methyl-
4-heptaoxycarbonylpyrazole group, 1-
methyl-4-nonoxycarbonylpyrazole group,
1-methyl-4-methoxycarbonyl-5-methylpyrazole group, 1-methyl-4-ethoxycarbonyl-5-methylpyrazole group, 1-methyl-
4-ethoxycarbonyl-5-ethylpyrazole group, 1,3-dimethyl-5-methoxycarbonylpyrazole group, 1,3-diethyl-5-methoxycarbonylpyrazole group, 1,3-dimethyl-5
-Ethoxycarbonylpyrazole group, 3-chloro-1,4-dimethylpyrazole group, 3-chloro-
1,4-diethyllupyrazole group, 3-bromo-
1,4-dimethylpyrazole group, 3-bromo-
1,4-dimethylpyrazole group, 3-iodo-
1,4-dimethylpyrazole group, 3-iodo-
1,4-diethylpyrazole group, 3-chloro-1
-Methyl-4-methoxycarbonylpyrazole group, 3-bromo-1-methyl-4-methoxycarbonylpyrazole group, 3-iodo-1-methyl-
4-methoxycarbonylpyrazole group, 3-chloro-1-ethyl-4-methoxycarbonylpyrazole group, 3-bromo-1-ethyl-4-methoxycarbonylpyrazole group, 3-iodo-1-ethyl-4-methoxycarbonylpyrazole group, 3-
Chloro-1-methyl-4-ethoxycarbonylpyrazole group, 3-bromo-1-methyl-4-ethoxycarbonylpyrazole group, 3-iodo-1-
methyl-4-ethoxycarbonylpyrazole group,
3-nitro-1,4-dimethylpyrazole group, 3
-nitro-1,4-diethylpyrazole group, 3-
Nitro-1-methyl-4-methoxycarbonylpyrazole group, 3-nitro-1-ethyl-4-methoxycarbonylpyrazole group, 3-nitro-1-
Examples include methyl-4-methoxycarbonylpyrazole group. The present invention will be explained in detail below. As the alkyl nitrite represented by the general formula [], it is desirable to use tertiary alkyl nitrite such as t-butyl nitrite and neopentyl nitrite. When the alkyl nitrite represented by the general formula [] is a primary alkyl nitrite such as ethyl nitrite, n-propyl nitrite, n-butyl nitrite, n-aluminum nitrite, i-aluminum nitrite, etc. This is because an aryl compound ArH, in which the amine group of the arylamine represented by the general formula [] is substituted with hydrogen, is likely to be produced. In addition, when using primary alkyl nitrite, adding acetic anhydride to the reaction system can suppress the by-product of the aryl compound ArH. The amount of alkyl nitrite represented by the general formula [] is usually in the range of 1 to 5 (molar ratio), preferably in the range of 1 to 2 (molar ratio), relative to the arylamine represented by the general formula [] is good. Examples of the method for producing the alkyl nitrite represented by the general formula [] include a method in which a mixture of sulfuric acid and alkyl alcohol is dropped into an aqueous sodium nitrite solution at a low temperature. As hydrogen chloride, chlorine-hydrogen gas and hydrochloric acid can be used, but chlorine-hydrogen gas is preferable. The amount of hydrogen chloride is usually in the range of 1 to 1.5 (molar ratio) to the arylamine represented by the general formula []. When the amount of hydrogen chloride is less than 1 (molar ratio), the production of aryl compound ArH, in which the amino group of the arylamine represented by the general formula [] is substituted with hydrogen, increases. When the amount of chlorine hydrogen exceeds 1.5 (molar ratio), the production of aryl chloride ArCl, in which the amino group of the arylamine represented by the general formula [] is substituted with chlorine, increases. Sulfur dioxide can be used in liquid or gaseous form. The amount of sulfur dioxide is in the range of 1 to 20 (molar ratio) to the arylamine represented by the general formula [],
Desirably, the range is 2 to 8 (molar ratio). Copper compounds include cuprous sulfate, cupric sulfate,
Cuprous nitrate, cupric nitrate, cuprous chloride, dichloride
Copper, cuprous acetate, cupric acetate, basic acetic acid 2
Examples include copper, cuprous oxide, cupric oxide, and cupric bisacetylacetonate, with cupric sulfate being preferred. The amount of the copper compound is preferably in the range of 0.1 to 100% by weight, preferably in the range of 2 to 10% by weight, based on the arylamine represented by the general formula. When the amount of the copper compound is less than 0.1% by weight, the production of the aryl compound ArH and the aryl chloride ArCl increases, and when it exceeds 100% by weight, the production of the aryl chloride ArCl increases. Solvents can also be used in the present invention. The solvent is preferably a solvent that dissolves the arylamine represented by the general formula [], its hydrochloride, sulfur dioxide, and the copper compound. Examples of the solvent include organic acids, their acid anhydrides, organic acid esters, tertiary alcohols, ketones, halogenated hydrocarbons, lower alkyl nitriles, and the like. Specific examples include acetic acid, ethyl acetate, acetic anhydride, t-butyl alcohol, acetone, methyl ethyl ketone, ethylene dichloride, chloroform, acetonitrile, propionitrile, and the like. Moreover, sulfur dioxide, which is a reaction reagent, can also be used as a solvent. When primary nitrite is used as the alkyl nitrite represented by the general formula [], it is desirable to use a mixed solvent of the above solvent and acetic anhydride because the aryl compound ArH is likely to be formed as described above. The reaction temperature is usually in the range of 0 to 50°C, preferably in the range of 0 to 25°C. When the temperature exceeds 50°C, side reactions occur and the yield of the arylsulfonyl chloride represented by the general formula [] decreases. The reaction of the present invention can be carried out at normal pressure or under increased pressure. In the reaction of the present invention, water is produced during the reaction, and if a dehydrating agent is added to the reaction system to remove this water, the yield of the arylsulfonyl chloride represented by the general formula [] may be improved. Examples of the dehydrating agent include silica gel and molecular sieve. To give specific examples of the embodiments of the present invention, the first method involves alkyl nitrite represented by the general formula [] in the presence of an arylamine represented by the general formula [] and hydrogen chloride at a low temperature, e.g. ~
After reacting at 5°C to produce a diazonium salt of the arylamine represented by the general formula [], the diazonium salt represented by the general formula [] is added to the decomposition solution consisting of sulfur dioxide, a copper compound and, if necessary, a solvent. This is a method for obtaining arylsulfonyl chloride. The second method involves adding an alkyl nitrite represented by the general formula [] in the presence of an arylamine represented by the general formula [], hydrogen chloride, sulfur dioxide, a copper compound, and a solvent if necessary, and This is a method for obtaining arylsulfonyl chloride represented by []. Among the above methods, the second method is preferable in terms of the yield of the arylsulfonyl chloride represented by the general formula [] and the reaction operation. (d) Effect of the invention By using the alkyl nitrite represented by the general formula [], the arylsulfonyl chloride represented by the general formula [] can be easily produced from the arylamine represented by the general formula [] even on an industrial scale. It can be obtained in high yield and there is no generation of waste acid. (e) Examples Next, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited thereto. Example 1

【化】 1−メチル−4−エトキシカルボニル−5−ア
ミノピラゾール−(以下、MPAと略称する。)
5.07g(0.03モル)、塩化水素1.1g(0.03モル
比)、塩化第2銅2水塩0.5g及び酢酸50gを反応
器に仕込んだ後、亜硫酸ガス8gを吹込んだ。 次に、撹拌しながらt−ブチルナイトライト6
mlを10℃での溶液に10分間で滴下した。滴下と同
時に、発熱と窒素ガスの発生があり温度は15〜20
℃に上昇した。15〜20℃で撹拌しながら1時間反
応させた。 固形分を濾過後、反応液について内部標準法で
液クロマトグラフイ分析したところ、1−メチル
−4−エトキシカルボニル−5−クロロスルホニ
ルピラゾール(以下、PSClと略称する。)4.1g
(収率54%)が得られた。 実施例 2 MPA5.07g(0.03モル)、塩化水素1.1g(0.03
モル)、酢酸50g、塩化第2銅2水塩0.5g及びモ
レキユラーシーブ10gを反応器に仕込んだ後、亜
硫酸ガス8gを吹込んだ。 次に、撹拌しながらt−ブチルナイトライト6
mlを10℃の溶液に10分間で滴下した。滴下と同時
に、発熱と窒素ガスの発生があり温度は15〜20℃
に上昇した。15〜20℃で撹拌しながら1時間反応
させた。 実施例1と同様に操作を行い反応液について分
析を行つたところ、PSCl5.0g(収率66%)が得
られた。 実施例 3 MPA5.07g(0.03モル)、アセトニトリル30
g、塩化水素1.1g(0.03モル)のアセトニトリ
ル溶液4.85g、硫酸第2銅5水塩0.5g及びモレ
キユラーシーブ10gを反応器に仕込んだ後、亜硫
酸ガス12gを吹込んだ。 次に、撹拌しながらt−ブチルナイトライト6
mlを10℃の溶液に10分間で滴下した。滴下と同時
に、発熱と窒素ガスの発生があり温度は20〜25℃
に上昇した。15〜20℃で撹拌しながら1時間反応
させた。 固形分を濾過後、反応液中の低沸物を減圧下で
留去し、残留物に加え、トルエン抽出を行つた。 実施例1と同様に抽出液について分析を行つた
ところ、PSCl5.8g(収率76%)が得られた。 実施例 4 アセトニトリル30g、硫酸第2銅5水塩0.5g
及びモレキユラーシーブ10gを反応器に仕込み、
亜硫酸ガス8gを吹込んだ。 次に、MPA5.07g(0.03モル)、アセトニトリ
ル30g及び塩化水素1.1g(0.03モル)のアセト
ニトリル溶液4.85gの混合液に、t−ブチルナイ
トライト6mlを撹拌しながら0℃で10分間で滴下
した溶液を、上記反応器中の溶液に0〜10℃で30
分間で滴下した。更に、15〜20℃で撹拌しながら
1時間反応させた。 固形分を濾過後、反応液中の低沸物を減圧下60
℃以下で留去し、水を加えトルエン抽出を行つ
た。 実施例1と同様に抽出液について分析を行つた
ところ、PSCl4.0g(収率53%)が得られた。 実施例 5 アセトニトリル30g、硫酸第2銅5水塩0.5g
及びモレキユラーシーブ10gを反応器に仕込み、
亜硫酸ガス8gを吹込んだ。 次に、MPA5.07g(0.03モル)、アセトニトリ
ル30g及び塩化水素1.1g(0.03モル)のアセト
ニトリル溶液4.85gの混合液に、ネオペンチルナ
イトライト7mlを撹拌しながら0℃で10分間で滴
下した溶液を、上記反応器中の溶液に0〜10℃で
30分間で滴下した。更に、15〜20℃で撹拌しなが
ら1時間反応させた。 固形分を濾過後、反応液中の低沸物を減圧下60
℃以下で留去し、水を加えトルエン抽出を行つ
た。 実施例1と同様に抽出液について分析を行つた
ところ、PSCl4.7g(収率62%)が得られた。 実施例 6 MPA50.7g(0.3モル)、塩化水素10.95g(0.3
モル)、酢酸250g、塩化第2銅2水塩5g及びモ
レキユラーシーブ50gを反応器に仕込んだ後、亜
硫酸ガスを80g吹込んだ。 次に、撹拌しながらtブチルナイトライト60ml
を10℃の溶液に30分間で滴下した。滴下と同時
に、発熱と窒素ガスの発生があり温度は15〜20℃
に上昇した。15〜20℃で撹拌しながら1時間反応
させた。 固形分を濾過後、反応液中の低沸物を減圧下30
℃以下で留去し、残留物に水300gを加え、ジク
ロロエチレン500gで抽出を行つた。 更に、ジクロロエチレン層を水300gで洗浄し、
ジクロロエチレンを減圧下留去後、残渣について
真空蒸留を行つたところ、PSCl42g(沸点110
℃/0.3mmHg、収率55%)が得られた。 実施例 7 MPA5.07g(0.03モル)、塩化水素1.1g(0.03
モル)、酢酸20g、塩化第2銅2水塩0.5g及び無
水酢酸25gを反応器に仕込んだ後、亜硫酸ガスを
8g吹込んだ。 次に、撹拌しながら、n−アミルナイトライト
6mlを20℃の溶液に10分間で滴下した。滴下と同
時に、発熱と窒素ガスの発生があり温度は20〜20
℃に上昇した。15〜20℃で撹拌しながら1時間反
応させた。 実施例1と同様に操作を行い反応液について分
析を行つたところ、PSCl4.2g(収率55%)が得
られた。 実施例 8 酢酸25g、塩化第2銅2水塩0.5g、モレキユ
ラーシーブ10gを反応器に仕込んだ後、亜硫酸ガ
スを8g吹込んだ。 次に、撹拌しながらMPA5.07g(0.03モル)、
塩化水素1.1g(0.03モル)及び酢酸25gよりな
る溶液を10℃の溶液に30分間で滴下した。滴下と
同時に、窒素ガスの発生があり温度は15〜20℃に
上昇した。15〜20℃で撹拌しながら1時間反応さ
せた。 次に、実施例1と同様に操作を行い反応液につ
いて分析を行つたところ、PSCl4.0g(収率53
%)が得られた。 実施例 9 MPA5.7g(0.03モル)、アセトニトリル30g、
塩化水素1.1g(0.03モル)を含むアセトニトリ
ル溶液4.85g及び硫酸第2銅5水塩0.5gを反応
器に仕込んだ後、亜硫酸ガス12gを吹込んだ。 次に、撹拌しながらt−ブチルナイトライト60
mlを10℃の溶液に10分間で滴下した。滴下と同時
に、発熱と窒素ガスの発生があり温度は20〜25℃
に上昇した。15〜20℃で撹拌しながら1時間反応
させた。この反応の間、圧力は5Kg/cm2に維持し
た。 固形分を濾過後、反応液中の低沸物を減圧下60
℃以下で留去し、水を加え、トルエン抽出を行つ
た。 次に、実施例1と同様に操作を行い反応液につ
いて分析を行つたところ、PSCl5.6g(収率74
%)が得られた。 実施例 10 MPA5.7g(0.03モル)、塩化水素1.1g(0.03
モル)を含むアセトニトリル溶液4.85g及び硫酸
第2銅5水塩0.5gを反応器に仕込んだ後、亜硫
酸ガス25gを吹込んだ。 次に、撹拌しながら5−ブチルナイトライト60
mlを10℃の溶液に10分間で滴下した。滴下と同時
に、発熱と窒素ガスの発生があり温度は20〜25℃
に上昇した。15〜20℃で撹拌しながら1時間反応
させた。この反応の間、圧力は5Kg/cm2に維持し
た。 固形分を濾過後、反応液中の低沸物を減圧下60
℃以下で留去し、水を加え、トルエン抽出を行つ
た。 次に、実施例1と同様に操作を行い反応液につ
いて分析を行つたところ、PSCl3.8g(収率50
%)が得られた。 実施例 11 アニリン2.79g(0.03モル)、塩化水素1.1(0.03
モル)、酢酸50g、塩化第2銅2水塩0.5g及びモ
レキユラーシーブ10gを反応器に仕込んだ後、亜
硫酸ガス8gを吹込んだ。 次に、撹拌しながら、t−ブチルナイトライト
6mlを10℃の溶液に10分間で滴下した。滴下と同
時に、発熱と窒素ガスの発生があり温度は15〜20
℃に上昇した。15〜20℃で撹拌しながら1時間反
応させた。 実施例1と同様に操作を行い反応液について分
析を行つたところ、ベンゼンスルホニルクロライ
ド2.1g(収率45%)が得られた。 実施例 12 p−ニトロアニリン4.14g(0.03モル)、塩化
水素1.1g(0.03モル)、酢酸80g及び塩化第2銅
2水塩0.5gを反応器に仕込んだ後、亜硫酸ガス
8gを吹込んだ。 次に、撹拌しながらt−ブチルナイトライト6
mlを10℃の溶液に10分間で滴下した。滴下と同時
に、発熱と窒素ガスの発生があり温度は20〜25℃
に上昇した。15〜20℃で撹拌しながら1時間反応
させた。 固形分を濾過後、反応液中の低沸物を減圧下60
℃以下で留去し、残留物に氷水を加えたところオ
レンジ色の固体が析出した。 この固体を乾燥後、実施例1と同様に分析を行
つたところ、p−ニトロベンゼンスルホニルクロ
ライド4.9g(収率73%)が得られた。 実施例 13 p−クロルアニリン3.83g(0.03モル)、塩化
水素1.1g(0.03モル)、酢酸80g及び塩化第2銅
2水塩0.5g及びモレキユラーシーブ10gを反応
器に仕込んだ後、亜硫酸ガス8gを吹込んだ。 次に、撹拌しながらt−ブチルナイトライト6
mlを10℃の溶液に10分間で滴下した。滴下と同時
に、発熱と窒素ガスの発生があり温度は20〜25℃
に上昇した。15〜20℃で撹拌しながら1時間反応
させた。 固形分を濾過後、反応液中の低沸物を減圧下60
℃以下で留去し、残留物に氷水を加えたところ淡
橙色の固体が析出した。 この固体を乾燥後、実施例1と同様に分析を行
つたところ、p−クロルベンゼンスルホニルクロ
ライド6.1g(収率96%)が得られた。 実施例 14 p−トルイジン3.2g(0.03モル)、塩化水素1.1
g(0.03モル)を含むアセトニトリル溶液4.85
g、硫酸第2銅5水塩0.5g及びアセトニトリル
30gを反応器に仕込んだ後、亜硫酸ガス8gを吹
込んだ。 次に、撹拌しながらt−ブチルナイトライト6
mlを10℃の溶液に10分間で滴下した。滴下と同時
に、発熱と窒素ガスの発生があり温度は20〜25℃
に上昇した。15〜20℃で撹拌しながら1時間反応
させた。 固形分を濾過後、反応液中の低沸物を減圧下60
℃以下で留去し、水を加えトルエン抽出を行つ
た。 このトルエン溶液を乾燥後、実施例1と同様に
分析を行つたところ、p−メチルベンゼンスルホ
ニルクロライド3.4g(収率50%)が得られた。 実施例 15 2,4−ジクロロアニリン4.9g(0.03モル)、
塩化水素1.1g(0.03モル)を含むアセトニトリ
ル溶液4.85g、硫酸第2銅5水塩0.5g及びアセ
トニトリル30gを反応器に仕込んだ後、亜硫酸ガ
ス12gを吹込んだ。 次に、撹拌しながらt−ブチルナイトライト6
mlを10℃を溶液に10分間で滴下した。滴下と同時
に、発熱と窒素ガスの発生があり温度は20〜25℃
に上昇した。15〜20℃で撹拌しながら1時間反応
させた。 固形分を濾過後、反応液中の低沸物を減圧下60
℃以下で留去し、水を加えトルエン抽出を行つ
た。 このトルエン溶液を乾燥後、実施例1と同様に
分析を行つたところ、2,4−ジクロロベンゼン
スルホニルクロライド6.0g(収率83%)が得ら
れた。
[Chemical formula] 1-Methyl-4-ethoxycarbonyl-5-aminopyrazole- (hereinafter abbreviated as MPA)
After charging 5.07 g (0.03 mol), 1.1 g (0.03 molar ratio) of hydrogen chloride, 0.5 g of cupric chloride dihydrate, and 50 g of acetic acid into a reactor, 8 g of sulfur dioxide gas was blown into the reactor. Next, while stirring, t-butyl nitrite 6
ml was added dropwise over 10 minutes to the solution at 10°C. At the same time as dropping, heat generation and nitrogen gas are generated, and the temperature is 15 to 20.
The temperature rose to ℃. The reaction was allowed to proceed for 1 hour while stirring at 15-20°C. After filtering the solid content, liquid chromatography analysis of the reaction solution using an internal standard method revealed 4.1 g of 1-methyl-4-ethoxycarbonyl-5-chlorosulfonylpyrazole (hereinafter abbreviated as PSCl).
(Yield 54%) was obtained. Example 2 MPA5.07g (0.03mol), hydrogen chloride 1.1g (0.03mol)
After charging 50 g of acetic acid, 0.5 g of cupric chloride dihydrate, and 10 g of molecular sieve into a reactor, 8 g of sulfur dioxide gas was blown into the reactor. Next, while stirring, t-butyl nitrite 6
ml was added dropwise to the solution at 10°C over 10 minutes. At the same time as dropping, heat generation and nitrogen gas are generated, and the temperature is 15 to 20℃.
rose to The reaction was allowed to proceed for 1 hour while stirring at 15-20°C. When the reaction solution was analyzed in the same manner as in Example 1, 5.0 g of PSCl (yield: 66%) was obtained. Example 3 MPA5.07g (0.03mol), acetonitrile 30
After charging a reactor with 4.85 g of an acetonitrile solution containing 1.1 g (0.03 mol) of hydrogen chloride, 0.5 g of cupric sulfate pentahydrate, and 10 g of molecular sieve, 12 g of sulfur dioxide gas was blown into the reactor. Next, while stirring, t-butyl nitrite 6
ml was added dropwise to the solution at 10°C over 10 minutes. At the same time as dropping, heat generation and nitrogen gas are generated, and the temperature is 20 to 25℃.
rose to The reaction was allowed to proceed for 1 hour while stirring at 15-20°C. After filtering the solid content, low-boiling substances in the reaction solution were distilled off under reduced pressure, added to the residue, and extracted with toluene. When the extract was analyzed in the same manner as in Example 1, 5.8 g of PSCl (yield 76%) was obtained. Example 4 30 g of acetonitrile, 0.5 g of cupric sulfate pentahydrate
and 10g of molecular sieve into the reactor,
8 g of sulfur dioxide gas was blown into the tank. Next, 6 ml of t-butyl nitrite was added dropwise to a mixture of 4.85 g of an acetonitrile solution containing 5.07 g (0.03 mol) of MPA, 30 g of acetonitrile, and 1.1 g (0.03 mol) of hydrogen chloride at 0°C for 10 minutes with stirring. Add the solution to the solution in the above reactor at 0-10℃ for 30 minutes.
It was dripped in minutes. Furthermore, the mixture was reacted for 1 hour while stirring at 15 to 20°C. After filtering the solid content, remove low-boiling substances from the reaction solution under reduced pressure at 60°C.
The residue was distilled off at a temperature below 0.degree. C., water was added, and extraction with toluene was performed. When the extract was analyzed in the same manner as in Example 1, 4.0 g of PSCl (yield 53%) was obtained. Example 5 Acetonitrile 30g, cupric sulfate pentahydrate 0.5g
and 10g of molecular sieve into the reactor,
8 g of sulfur dioxide gas was blown into the tank. Next, 7 ml of neopentyl nitrite was added dropwise to a mixture of 4.85 g of an acetonitrile solution containing 5.07 g (0.03 mol) of MPA, 30 g of acetonitrile, and 1.1 g (0.03 mol) of hydrogen chloride at 0°C with stirring. into the solution in the above reactor at 0-10℃
It was added dropwise over 30 minutes. Furthermore, the mixture was reacted for 1 hour while stirring at 15 to 20°C. After filtering the solid content, remove low-boiling substances from the reaction solution under reduced pressure at 60°C.
The residue was distilled off at a temperature below 0.degree. C., water was added, and extraction with toluene was performed. When the extract was analyzed in the same manner as in Example 1, 4.7 g of PSCl (yield 62%) was obtained. Example 6 MPA50.7g (0.3mol), hydrogen chloride 10.95g (0.3mol)
After charging 250 g of acetic acid, 5 g of cupric chloride dihydrate, and 50 g of molecular sieve into a reactor, 80 g of sulfur dioxide gas was blown into the reactor. Next, while stirring, add 60ml of t-butyl nitrite.
was added dropwise to the solution at 10°C over 30 minutes. At the same time as dropping, heat generation and nitrogen gas are generated, and the temperature is 15 to 20℃.
rose to The reaction was allowed to proceed for 1 hour while stirring at 15-20°C. After filtering the solid content, remove low-boiling substances from the reaction solution under reduced pressure for 30 minutes.
The residue was distilled off at a temperature below 0.degree. C., and 300 g of water was added to the residue, followed by extraction with 500 g of dichloroethylene. Furthermore, the dichloroethylene layer was washed with 300 g of water,
After dichloroethylene was distilled off under reduced pressure, the residue was vacuum distilled, resulting in 42 g of PSCl (boiling point 110
°C/0.3 mmHg, yield 55%). Example 7 MPA5.07g (0.03mol), hydrogen chloride 1.1g (0.03mol)
After charging a reactor with 20 g of acetic acid, 0.5 g of cupric chloride dihydrate, and 25 g of acetic anhydride, 8 g of sulfur dioxide gas was blown into the reactor. Next, 6 ml of n-amyl nitrite was added dropwise to the 20° C. solution over 10 minutes while stirring. At the same time as dropping, heat generation and nitrogen gas are generated, and the temperature is 20 to 20.
The temperature rose to ℃. The reaction was allowed to proceed for 1 hour while stirring at 15-20°C. When the reaction solution was analyzed in the same manner as in Example 1, 4.2 g of PSCl (yield 55%) was obtained. Example 8 After charging 25 g of acetic acid, 0.5 g of cupric chloride dihydrate, and 10 g of molecular sieve into a reactor, 8 g of sulfur dioxide gas was blown into the reactor. Next, while stirring, MPA5.07g (0.03mol),
A solution consisting of 1.1 g (0.03 mol) of hydrogen chloride and 25 g of acetic acid was added dropwise to the solution at 10° C. over 30 minutes. Simultaneously with the dropping, nitrogen gas was generated and the temperature rose to 15-20°C. The reaction was allowed to proceed for 1 hour while stirring at 15-20°C. Next, the same operation as in Example 1 was carried out and the reaction solution was analyzed, and it was found that PSCl4.0g (yield 53
%)was gotten. Example 9 MPA5.7g (0.03mol), acetonitrile 30g,
After charging 4.85 g of an acetonitrile solution containing 1.1 g (0.03 mol) of hydrogen chloride and 0.5 g of cupric sulfate pentahydrate into a reactor, 12 g of sulfur dioxide gas was blown into the reactor. Next, while stirring, add t-butyl nitrite 60
ml was added dropwise to the solution at 10°C over 10 minutes. At the same time as dropping, heat generation and nitrogen gas are generated, and the temperature is 20 to 25℃.
rose to The reaction was allowed to proceed for 1 hour while stirring at 15-20°C. During this reaction, the pressure was maintained at 5 Kg/cm 2 . After filtering the solid content, remove low-boiling substances from the reaction solution under reduced pressure at 60°C.
The residue was distilled off at a temperature below 0.degree. C., water was added, and extraction with toluene was performed. Next, the same operation as in Example 1 was carried out and the reaction solution was analyzed, and it was found that 5.6 g of PSCl (yield 74
%)was gotten. Example 10 MPA5.7g (0.03mol), hydrogen chloride 1.1g (0.03mol)
After charging 4.85 g of an acetonitrile solution containing mol) and 0.5 g of cupric sulfate pentahydrate into a reactor, 25 g of sulfur dioxide gas was blown into the reactor. Next, while stirring, 5-butyl nitrite 60
ml was added dropwise to the solution at 10°C over 10 minutes. At the same time as dropping, heat generation and nitrogen gas are generated, and the temperature is 20 to 25℃.
rose to The reaction was allowed to proceed for 1 hour while stirring at 15-20°C. During this reaction, the pressure was maintained at 5 Kg/cm 2 . After filtering the solid content, remove low-boiling substances from the reaction solution under reduced pressure at 60°C.
The residue was distilled off at a temperature below 0.degree. C., water was added, and extraction with toluene was performed. Next, the same operation as in Example 1 was carried out and the reaction solution was analyzed, and it was found that 3.8 g of PSCl (yield: 50
%)was gotten. Example 11 2.79 g (0.03 mol) of aniline, 1.1 (0.03 mol) of hydrogen chloride
After charging 50 g of acetic acid, 0.5 g of cupric chloride dihydrate, and 10 g of molecular sieve into a reactor, 8 g of sulfur dioxide gas was blown into the reactor. Next, 6 ml of t-butyl nitrite was added dropwise to the 10° C. solution over 10 minutes while stirring. At the same time as dropping, heat generation and nitrogen gas are generated, and the temperature is 15 to 20.
The temperature rose to ℃. The reaction was allowed to proceed for 1 hour while stirring at 15-20°C. The reaction solution was analyzed in the same manner as in Example 1, and 2.1 g (yield: 45%) of benzenesulfonyl chloride was obtained. Example 12 After charging 4.14 g (0.03 mol) of p-nitroaniline, 1.1 g (0.03 mol) of hydrogen chloride, 80 g of acetic acid, and 0.5 g of cupric chloride dihydrate into a reactor, 8 g of sulfur dioxide gas was blown into the reactor. . Next, while stirring, t-butyl nitrite 6
ml was added dropwise to the solution at 10°C over 10 minutes. At the same time as dropping, heat generation and nitrogen gas are generated, and the temperature is 20 to 25℃.
rose to The reaction was allowed to proceed for 1 hour while stirring at 15-20°C. After filtering the solid content, remove low-boiling substances from the reaction solution under reduced pressure at 60°C.
The residue was distilled off at a temperature below 0.degree. C., and ice water was added to the residue to precipitate an orange solid. After drying this solid, it was analyzed in the same manner as in Example 1, and 4.9 g (yield: 73%) of p-nitrobenzenesulfonyl chloride was obtained. Example 13 After charging 3.83 g (0.03 mol) of p-chloroaniline, 1.1 g (0.03 mol) of hydrogen chloride, 80 g of acetic acid, 0.5 g of cupric chloride dihydrate, and 10 g of molecular sieve into a reactor, sulfurous acid 8g of gas was injected. Next, while stirring, t-butyl nitrite 6
ml was added dropwise to the solution at 10°C over 10 minutes. At the same time as dropping, heat generation and nitrogen gas are generated, and the temperature is 20 to 25℃.
rose to The reaction was allowed to proceed for 1 hour while stirring at 15-20°C. After filtering the solid content, remove low-boiling substances from the reaction solution under reduced pressure at 60°C.
The residue was distilled off at a temperature below 0.degree. C., and ice water was added to the residue to precipitate a pale orange solid. After drying this solid, it was analyzed in the same manner as in Example 1, and 6.1 g (yield: 96%) of p-chlorobenzenesulfonyl chloride was obtained. Example 14 3.2 g (0.03 mol) p-toluidine, 1.1 hydrogen chloride
Acetonitrile solution containing 4.85 g (0.03 mol)
g, cupric sulfate pentahydrate 0.5 g and acetonitrile
After charging 30 g into the reactor, 8 g of sulfur dioxide gas was blown into the reactor. Next, while stirring, t-butyl nitrite 6
ml was added dropwise to the solution at 10°C over 10 minutes. At the same time as dropping, heat generation and nitrogen gas are generated, and the temperature is 20 to 25℃.
rose to The reaction was allowed to proceed for 1 hour while stirring at 15-20°C. After filtering the solid content, remove low-boiling substances from the reaction solution under reduced pressure at 60°C.
The residue was distilled off at a temperature below 0.degree. C., water was added, and extraction with toluene was performed. After drying this toluene solution, it was analyzed in the same manner as in Example 1, and 3.4 g (yield: 50%) of p-methylbenzenesulfonyl chloride was obtained. Example 15 2,4-dichloroaniline 4.9 g (0.03 mol),
After charging 4.85 g of an acetonitrile solution containing 1.1 g (0.03 mol) of hydrogen chloride, 0.5 g of cupric sulfate pentahydrate, and 30 g of acetonitrile into a reactor, 12 g of sulfur dioxide gas was blown into the reactor. Next, while stirring, t-butyl nitrite 6
ml was added dropwise to the solution at 10°C for 10 minutes. At the same time as dropping, heat generation and nitrogen gas are generated, and the temperature is 20 to 25℃.
rose to The reaction was allowed to proceed for 1 hour while stirring at 15-20°C. After filtering the solid content, remove low-boiling substances from the reaction solution under reduced pressure at 60°C.
The residue was distilled off at a temperature below 0.degree. C., water was added, and extraction with toluene was performed. After drying this toluene solution, it was analyzed in the same manner as in Example 1, and 6.0 g (yield: 83%) of 2,4-dichlorobenzenesulfonyl chloride was obtained.

Claims (1)

【特許請求の範囲】 1 一般式〔〕 ArNH2 〔〕 (Arは置換又は未置換のアリール基を示す。) で表されるアリールアミンを 塩化水素、二酸化硫黄及び銅化合物の存在下、 一般式〔〕 R1YNOa 〔〕 (R1は炭素数2〜10のアルキル基、Yは酸素原
子又は硫黄原子、aは1又は2の整数を示す。) で表されるアルキルナイトライトと反応させるこ
とを特徴とする 一般式〔〕 ArSO2Cl 〔〕 で表されるアリールスルホニルクロライドの製
法。 2 一般式〔〕で表されるアルキルナイトライ
トが第3級アルキルナイトライトである請求項1
記載のアリールスルホニルクロライドの製法。 3 一般式〔〕で表されるアリールスルホニル
クロライドが 一般式〔〕 【化】 (R2は炭素数1〜10のアルキル基を示す。) で表されるピラゾールスルホニルクロライドであ
ることを特徴とする請求項1記載のアリールスル
ホニルクロライドの製法。
[Claims] 1. An arylamine represented by the general formula [] ArNH 2 [] (Ar represents a substituted or unsubstituted aryl group) in the presence of hydrogen chloride, sulfur dioxide and a copper compound, [] R 1 YNO a [] (R 1 is an alkyl group having 2 to 10 carbon atoms, Y is an oxygen atom or a sulfur atom, and a is an integer of 1 or 2.) React with alkyl nitrite represented by A method for producing arylsulfonyl chloride represented by the general formula [] ArSO 2 Cl []. 2 Claim 1 wherein the alkyl nitrite represented by the general formula [] is a tertiary alkyl nitrite.
Process for producing the described arylsulfonyl chloride. 3 The arylsulfonyl chloride represented by the general formula [] is a pyrazolesulfonyl chloride represented by the general formula [] [C] (R 2 represents an alkyl group having 1 to 10 carbon atoms) A method for producing arylsulfonyl chloride according to claim 1.
JP63202954A 1988-08-15 1988-08-15 Production of arylsulfonyl chloride Granted JPH0253738A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63202954A JPH0253738A (en) 1988-08-15 1988-08-15 Production of arylsulfonyl chloride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63202954A JPH0253738A (en) 1988-08-15 1988-08-15 Production of arylsulfonyl chloride

Publications (2)

Publication Number Publication Date
JPH0253738A JPH0253738A (en) 1990-02-22
JPH0584291B2 true JPH0584291B2 (en) 1993-12-01

Family

ID=16465916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63202954A Granted JPH0253738A (en) 1988-08-15 1988-08-15 Production of arylsulfonyl chloride

Country Status (1)

Country Link
JP (1) JPH0253738A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3599537B2 (en) * 1997-08-29 2004-12-08 株式会社ニデック Eye refractive power measuring device

Also Published As

Publication number Publication date
JPH0253738A (en) 1990-02-22

Similar Documents

Publication Publication Date Title
Keana et al. New reagents for photoaffinity labeling: synthesis and photolysis of functionalized perfluorophenyl azides
JPS5934702B2 (en) Method for producing α・α-dimethylbenzyl isocyanate or its nuclear substituted product
PL185614B1 (en) Method of obtaining n-substituted 3-hydroxyparasoles
ZA200304687B (en) Method for carbamoylating alcohols.
CA2246941A1 (en) Process for the preparation of nitrosourea compounds
SU1648249A3 (en) Method for preparation of 1-methyl-5-nitroimidazoles
JPH0584291B2 (en)
EA001630B1 (en) Method for producing n-substituted 3-hydroxypyrazoles
US5550237A (en) Process for the preparation of carboxyarenesulfonic acids and their carboxylic acid derivatives
WO1998040332A1 (en) Process for the manufacture of arylsulfonyl chloride
US3474135A (en) N-(omega-aminoalkylene)-aminoalkyl sulfonic acids
EP0169375A2 (en) Process for producing 2-tert.-butyl-4,5-dichloro-3(2H)-pyridazinone
JP2651028B2 (en) Hydroxylamine derivative
JP2794241B2 (en) Method for producing aromatic amine derivative
JPS60158118A (en) Nitration with acid anhydride accelerator
US6011177A (en) Process for 4-sulfonamidolphenyl hydrazines
JPS5928546B2 (en) Production method of hydrazodicarbonamide
JPH09188662A (en) Production of sulfonic acid amide compound
KR970001474B1 (en) Process of preparation of 5-aminopyrazole derivatives
JP2002255914A (en) Method for producing mineral acid salt of cis-4-amino-2- cyclopentenecarboxylic acid
JP2533690B2 (en) Sulfonamide derivative
KR100300880B1 (en) Method of Making 2-Aminothioxanthone
JPS595586B2 (en) Method for producing pyrrole derivatives
JPH0529334B2 (en)
JP4116103B2 (en) Method for producing pentamethine compound and quaternary salt compound

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees