JPH0584168B2 - - Google Patents

Info

Publication number
JPH0584168B2
JPH0584168B2 JP61295694A JP29569486A JPH0584168B2 JP H0584168 B2 JPH0584168 B2 JP H0584168B2 JP 61295694 A JP61295694 A JP 61295694A JP 29569486 A JP29569486 A JP 29569486A JP H0584168 B2 JPH0584168 B2 JP H0584168B2
Authority
JP
Japan
Prior art keywords
electrode
bush
underwater
dielectric
tip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61295694A
Other languages
Japanese (ja)
Other versions
JPS62144647A (en
Inventor
Fuorusuman Berunto
Aitsuenheefuaa Hararuto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dornier Medizintechnik GmbH
Original Assignee
Dornier Medizintechnik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dornier Medizintechnik GmbH filed Critical Dornier Medizintechnik GmbH
Publication of JPS62144647A publication Critical patent/JPS62144647A/en
Publication of JPH0584168B2 publication Critical patent/JPH0584168B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K15/00Acoustics not otherwise provided for
    • G10K15/04Sound-producing devices
    • G10K15/06Sound-producing devices using electric discharge

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Surgical Instruments (AREA)
  • Plasma Technology (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Manufacturing Of Micro-Capsules (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、非接触式砕石用の水中電極に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an underwater electrode for non-contact stone crushing.

〔従来の技術〕[Conventional technology]

人体の結石は機械的な衝撃波によつて排泄し得
る破片に非接触で破砕できる。衝撃波の発生は水
中火花放電によつて行われ、その場合電極は回転
楕円体の水が満たされた集束室の焦点にあり、コ
ンデンサに蓄えられた電極エネルギーが、火花放
電によつて衝撃波エネルギーに変換される。
Stones in the human body can be broken up non-contact into excretable fragments by mechanical shock waves. Shock wave generation is performed by underwater spark discharge, where the electrode is at the focal point of a spheroidal water-filled focusing chamber, and the electrode energy stored in the capacitor is converted into shock wave energy by the spark discharge. converted.

この種の衝撃波を発生するために使用する電極
は、ドイツ連邦共和国特許第2635635号公報で知
られている。特にその公報の第4図に示された電
極は実際に評判が良い。この電極の場合、管状外
側導体は継鉄あるいはケージに移行し、その先端
に電極尖端が固定され、この電極尖端は内側導体
に接続された他方の電極尖端に軸方向に対向して
位置している。
An electrode used to generate shock waves of this type is known from German Patent No. 26 35 635. In particular, the electrode shown in FIG. 4 of that publication is actually well received. In this electrode, the tubular outer conductor transitions into a yoke or cage, at the tip of which is fixed an electrode tip, which is located axially opposite the other electrode tip connected to the inner conductor. There is.

電極の同心的な配置構造は、内側導体から出発
して外側導体、外側導体ケージおよび外側導体尖
端で終わる界線(Feldlinien)の恒常的な境界範
囲を条件づける。火花の跳躍は楕円体による集束
のためにできだけ電極軸心に沿つて行われねばな
らない。これは電極の消耗が進行した場合にはも
はや保証できない。はじめは分離し、次に“不発
火”となつてしまい、これは多数のプラズマ通路
の形成状態における放電である。この“不発火”
は音響的に弱くはつきりしない衝撃として認識さ
れる。これが頻繁に生ずる場合、電極は交換され
る。
The concentric arrangement of the electrodes provides a constant boundary range of the field line starting from the inner conductor and ending at the outer conductor, the outer conductor cage and the outer conductor tip. The jump of the spark should be carried out as far as possible along the electrode axis for focusing by the ellipsoid. This can no longer be guaranteed in the event of advanced electrode wear. It first separates and then becomes a "misfire", which is a discharge in the formation of multiple plasma channels. This “misfire”
is perceived as a weak acoustic shock. If this occurs frequently, the electrodes are replaced.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明の目的は、非接触式砕石用の水中電極の
寿命を延長することにある。
An object of the present invention is to extend the life of underwater electrodes for non-contact stone crushing.

〔問題点の解決手段〕[Means for solving problems]

本発明によればこの目的は、少なくとも一方の
電極尖端に、誘電性材料から成るブツシユあるい
はブラインドが配置されていることによつて達成
される。
According to the invention, this object is achieved in that at least one electrode tip is arranged with a bush or blind made of dielectric material.

〔作用効果〕[Effect]

ブツシユあるいはブラインドの形をした(水の
他の)第2の誘電体を利用することによつて、電
極の寿命はかなり延長される。実験の結果、寿命
は3倍になることが確認された。本発明におい
て、異なつた誘電率をした第2の誘電体の境界層
における界線屈折効果が利用される。ε=80の水
は固形誘電体に比べて非常に大きな誘電分極性を
有するので、幾何学的に適当に形成された小さな
誘電分極性(ε=2−3)の誘電体を追加するこ
とによつて、電極尖端間における界線分布が良好
に影響される。火花の跳躍は有利に電極軸心上で
させられ、これによつて火花の局所的な集束は上
側の焦点の周りにおいて僅かしか巻き散らされな
くなる。
By utilizing a second dielectric (other than water) in the form of a bush or blind, the life of the electrode is considerably extended. As a result of the experiment, it was confirmed that the lifespan was tripled. In the present invention, the field line refraction effect in the boundary layer of a second dielectric having a different dielectric constant is utilized. Since water with ε = 80 has a much larger dielectric polarization than a solid dielectric, we decided to add a geometrically appropriately formed dielectric with a small dielectric polarization (ε = 2-3). Therefore, the field line distribution between the electrode tips is favorably influenced. The jump of the spark is advantageously made on the electrode axis, so that the local focus of the spark is only slightly scattered around the upper focal point.

本発明の有利な実施態様は特許請求の範囲の実
施態様項に記載されている。
Advantageous embodiments of the invention are described in the subclaims.

〔実施例〕〔Example〕

以下図面に示した実施例を参照して本発明を詳
細に説明する。
The present invention will be described in detail below with reference to embodiments shown in the drawings.

第1図は、非接触式砕石用に用いる衝撃波発生
用の水中電極2を示している。この電極は電極尖
端6を持つた内側導体4、絶縁体8、外側導体1
0および組立ブツシユ12から構成されている。
FIG. 1 shows an underwater electrode 2 for generating shock waves used for non-contact stone crushing. This electrode consists of an inner conductor 4 having an electrode tip 6, an insulator 8, and an outer conductor 1.
0 and an assembly bush 12.

電極2は組立ブツシユ12によつて図示してな
い電極ホルダーに固定されており、その場合同時
に内側導体4および外側導体10は電気系統(図
示せず)に接続される。
The electrode 2 is fastened to an electrode holder (not shown) by means of an assembly bush 12, and at the same time the inner conductor 4 and the outer conductor 10 are connected to an electrical system (not shown).

外側導体10にケージ14が固定されており、
このケージ14は複数の線15から成り、第2の
電極尖端16を支持している。線15の上には部
分的に合成樹脂製の保護ホース18が被せられて
いる。
A cage 14 is fixed to the outer conductor 10,
This cage 14 consists of a plurality of wires 15 and supports a second electrode tip 16. A protective hose 18 made of synthetic resin is partially placed over the wire 15.

内側導体4および外側導体10は金属材料から
成つている。電極尖端16はタングステン、タン
タルあるいは別の耐燃性材料あるいは合金から成
つている。絶縁体8および組立ブツシユ12は合
成樹脂で作られている。
The inner conductor 4 and the outer conductor 10 are made of metal material. Electrode tip 16 is made of tungsten, tantalum or another flame resistant material or alloy. The insulator 8 and the assembly bush 12 are made of synthetic resin.

第1図において、電極尖端6の上にブツシユ2
0が焼きばめられている。ブツシユ20は、衝撃
に強く適当な誘電率を持つた材料で作られてい
る。この材料として例えば摂氏20゜で1MHzにおい
て誘電率ε=3.0材料“Pocan”(Leverkusenの
Firma Bayer社の商品名)が適している。この
材料は使用状態において水と同じ音響特性を有
し、音を通過し、衝撃波の屈折および分散が避け
られる。ブツシユ20の内周面22および外周面
23は円錐状をしており、端面24はこの実施例
の場合平らになつている。ブツシユ20は絶縁体
8と一体になつている。
In FIG. 1, a bush 2 is placed on the electrode tip 6.
0 is shrink-fitted. The bush 20 is made of a material that is resistant to impact and has a suitable dielectric constant. An example of this material is "Pocan"(Leverkusen's
Firma Bayer (product name) is suitable. In use, this material has the same acoustic properties as water, allowing sound to pass through and avoiding refraction and dispersion of shock waves. The inner circumferential surface 22 and the outer circumferential surface 23 of the bush 20 have a conical shape, and the end surface 24 is flat in this embodiment. The bush 20 is integral with the insulator 8.

第2図は、第1図に示した構造部品に加えて、
電極尖端16にある誘電性ブツシユ26を示して
いる。電極ブツシユ20,26は幾何学的形状お
よび肉厚が、最適な界線(Feldlinien)経路が生
ずるように形成されている。
Figure 2 shows, in addition to the structural parts shown in Figure 1,
The dielectric bushing 26 on the electrode tip 16 is shown. The geometry and wall thickness of the electrode bushes 20, 26 are designed in such a way that an optimum field line path is produced.

このために例えば第3図から明らかなようにブ
ツシユ20,26の端面28,30は、凸面ある
いは凹面に形成される。またこの実施例の場合も
ブツシユは電極尖端6,16に焼きばめられてい
る。
For this purpose, for example, as can be seen in FIG. 3, the end faces 28, 30 of the bushes 20, 26 are designed to be convex or concave. Also in this embodiment, the bushings are shrink-fitted onto the electrode tips 6, 16.

第4図はケーヂ14に固定されている孔34付
の誘電性リング32を示している。このリング3
2はレンズ状に形成されている。本発明の枠内に
おいてリング32の形状および固定方式を変更す
ることもできる。
FIG. 4 shows a dielectric ring 32 with holes 34 secured to the cage 14. this ring 3
2 is formed into a lens shape. It is also possible within the framework of the invention to vary the shape and manner of fastening of the ring 32.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は片側の電極尖端に誘電性ブツシユを持
つた電極の断面図、第2図は両側の電極尖端に誘
電性ブツシユを持つた電極の断面図、第3図は幾
何学的に異なつて形成された誘電性ブツシユを持
つた電極の断面図、第4図は誘電性リングを持つ
た電極の断面図である。 2……電極、6……電極尖端、14……ケー
ジ、16……電極尖端、20……ブツシユ、24
……ブツシユの端面、26……ブツシユ、28…
…ブツシユ端面、30……ブツシユ端面、32…
…リング。
Figure 1 is a cross-sectional view of an electrode with a dielectric bushing on one electrode tip, Figure 2 is a cross-sectional view of an electrode with dielectric bushings on both electrode tips, and Figure 3 is a cross-sectional view of an electrode with dielectric bushings on both electrode tips. FIG. 4 is a cross-sectional view of an electrode with a dielectric bush formed thereon; FIG. 4 is a cross-sectional view of an electrode with a dielectric ring formed thereon; 2... Electrode, 6... Electrode tip, 14... Cage, 16... Electrode tip, 20... Bush, 24
...Button end face, 26...Button, 28...
...Bushy end face, 30...Bushy end face, 32...
…ring.

Claims (1)

【特許請求の範囲】 1 2つの電極尖端が向き合つて位置している非
接触式砕石用の水中電極において、少なくとも一
方の電極尖端6,16に、誘電性材料から成るブ
ツシユ20,26あるいはリング32が配置され
ていることを特徴とする非接触式砕石用の水中電
極。 2 ブツシユ20の端面24が平らであることを
特徴とする特許請求の範囲第1項記載の水中電
極。 3 ブツシユ20,26の端面28,30が凸面
あるいは凹面であることを特徴とする特許請求の
範囲第1項記載の水中電極。 4 一方の電極尖端6におけるブツシユの端面2
8が凸面であり、他方の電極尖端16におけるブ
ツシユの端面30が凹面であることを特徴とする
特許請求の範囲第1項記載の水中電極。 5 リング32がケージ14あるいは電極尖端
6,16に固定されていることを特徴とする特許
請求の範囲第1項記載の水中電極。 6 リング32が円形、レンズ形、矩形の形に形
成されているか、凸面およびないし凹面を組み合
わせて形成されていることを特徴とする特許請求
の範囲第5項記載の水中電極。
[Claims] 1. In an underwater electrode for non-contact stone crushing in which two electrode tips are located facing each other, at least one electrode tip 6, 16 is provided with a bush 20, 26 or a ring made of a dielectric material. An underwater electrode for non-contact stone crushing, characterized in that: 32 is arranged. 2. The underwater electrode according to claim 1, wherein the end surface 24 of the bush 20 is flat. 3. The underwater electrode according to claim 1, wherein the end surfaces 28, 30 of the bushes 20, 26 are convex or concave. 4 End face 2 of the bush at one electrode tip 6
8 is a convex surface, and the end surface 30 of the bush at the other electrode tip 16 is a concave surface. 5. The underwater electrode according to claim 1, wherein the ring 32 is fixed to the cage 14 or the electrode tips 6, 16. 6. The underwater electrode according to claim 5, wherein the ring 32 is formed in a circular, lens-shaped, rectangular shape, or a combination of convex and concave surfaces.
JP61295694A 1985-12-12 1986-12-11 Submerged electrode for non-contact destruction of stone Granted JPS62144647A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3543881.9 1985-12-12
DE3543881A DE3543881C1 (en) 1985-12-12 1985-12-12 Underwater electrode for non-contact lithotripsy

Publications (2)

Publication Number Publication Date
JPS62144647A JPS62144647A (en) 1987-06-27
JPH0584168B2 true JPH0584168B2 (en) 1993-12-01

Family

ID=6288247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61295694A Granted JPS62144647A (en) 1985-12-12 1986-12-11 Submerged electrode for non-contact destruction of stone

Country Status (5)

Country Link
US (1) US4809682A (en)
EP (1) EP0226047B1 (en)
JP (1) JPS62144647A (en)
DE (1) DE3543881C1 (en)
ES (1) ES2034954T3 (en)

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3713884A1 (en) * 1987-04-25 1988-11-03 Dornier System Gmbh CONNECTING A METAL SLEEVE TO A PLASTIC SLEEVE IN ITS HOLE
CU22021A1 (en) * 1987-04-28 1992-06-05 Mini Salud Publ Electrode for renal calculus destruction.
DE3804993C1 (en) * 1988-02-18 1989-08-10 Dornier Medizintechnik Gmbh, 8034 Germering, De
SE465552B (en) * 1989-03-21 1991-09-30 Hans Wiksell DEVICE FOR SUBDIVISION OF CONCRETE IN THE BODY OF A PATIENT
DE4016054A1 (en) * 1990-05-18 1991-11-21 Dornier Medizintechnik SPARK RANGE FOR LITHOTRIPSY
FR2693306B1 (en) * 1992-07-02 1994-10-14 Technomed Int Sa Electric discharge electrode with movable ring, discharge device, pressure wave generating device and treatment apparatus comprising the same.
ES2097848T3 (en) * 1992-09-28 1997-04-16 Hmt Ag APPARATUS FOR THE GENERATION OF SHOCK WAVES FOR THE CONTACTLESS DESTRUCTION OF CONCRETIONS IN BODIES OF ORGANISMS.
US5420473A (en) * 1993-10-12 1995-05-30 Thomas; Howard C. Spark gap electrode assembly for lithotripters
US7189209B1 (en) 1996-03-29 2007-03-13 Sanuwave, Inc. Method for using acoustic shock waves in the treatment of a diabetic foot ulcer or a pressure sore
US6390995B1 (en) 1997-02-12 2002-05-21 Healthtronics Surgical Services, Inc. Method for using acoustic shock waves in the treatment of medical conditions
DE19718512C1 (en) * 1997-05-02 1998-06-25 Hmt Ag Production of shock waves for medical applications using spark discharge in water
DE59814001D1 (en) 1997-10-24 2007-06-21 Mts Europ Gmbh Method for the automatic adjustment of the electrode gap of a spark gap in electro-hydraulic shock wave systems
CN100342828C (en) * 2005-09-22 2007-10-17 何申戌 Final surface treating method of electrode for extracorporeal stone breaking via hydroelectrical impact
EP2300091B1 (en) 2008-06-13 2018-03-21 Shockwave Medical, Inc. Shockwave balloon catheter system
US10702293B2 (en) 2008-06-13 2020-07-07 Shockwave Medical, Inc. Two-stage method for treating calcified lesions within the wall of a blood vessel
US9072534B2 (en) * 2008-06-13 2015-07-07 Shockwave Medical, Inc. Non-cavitation shockwave balloon catheter system
US9180280B2 (en) 2008-11-04 2015-11-10 Shockwave Medical, Inc. Drug delivery shockwave balloon catheter system
US9044618B2 (en) 2008-11-05 2015-06-02 Shockwave Medical, Inc. Shockwave valvuloplasty catheter system
US8574247B2 (en) 2011-11-08 2013-11-05 Shockwave Medical, Inc. Shock wave valvuloplasty device with moveable shock wave generator
US9642673B2 (en) 2012-06-27 2017-05-09 Shockwave Medical, Inc. Shock wave balloon catheter with multiple shock wave sources
EP2879597B1 (en) 2012-08-06 2016-09-21 Shockwave Medical, Inc. Shockwave catheter
JP6257625B2 (en) 2012-08-06 2018-01-10 ショックウェーブ メディカル, インコーポレイテッド Thin electrodes for shock wave catheters for angioplasty
WO2014025981A1 (en) 2012-08-08 2014-02-13 Shockwave Medical, Inc. Shockwave valvuloplasty with multiple balloons
US9138249B2 (en) 2012-08-17 2015-09-22 Shockwave Medical, Inc. Shock wave catheter system with arc preconditioning
US9522012B2 (en) 2012-09-13 2016-12-20 Shockwave Medical, Inc. Shockwave catheter system with energy control
US9333000B2 (en) 2012-09-13 2016-05-10 Shockwave Medical, Inc. Shockwave catheter system with energy control
CN103198825B (en) * 2013-02-21 2015-10-28 西北工业大学 The sparking electrode of underwater plasma sound source
US9140070B2 (en) 2013-11-22 2015-09-22 Thru Tubing Solutions, Inc. Method of using a downhole force generating tool
US9730715B2 (en) 2014-05-08 2017-08-15 Shockwave Medical, Inc. Shock wave guide wire
WO2017087195A1 (en) 2015-11-18 2017-05-26 Shockwave Medical, Inc. Shock wave electrodes
CN105654938B (en) * 2016-01-26 2019-12-24 云南科威液态金属谷研发有限公司 Liquid metal plasma electro-acoustic conversion device
US10226265B2 (en) 2016-04-25 2019-03-12 Shockwave Medical, Inc. Shock wave device with polarity switching
CN109788965B (en) 2016-10-06 2022-07-15 冲击波医疗公司 Aortic leaflet repair using shock wave applicator
US10357264B2 (en) 2016-12-06 2019-07-23 Shockwave Medical, Inc. Shock wave balloon catheter with insertable electrodes
US10441300B2 (en) 2017-04-19 2019-10-15 Shockwave Medical, Inc. Drug delivery shock wave balloon catheter system
US11020135B1 (en) 2017-04-25 2021-06-01 Shockwave Medical, Inc. Shock wave device for treating vascular plaques
JP2018200747A (en) * 2017-05-25 2018-12-20 株式会社融合技術開発センター Pulsed power generator
US10966737B2 (en) 2017-06-19 2021-04-06 Shockwave Medical, Inc. Device and method for generating forward directed shock waves
US10709462B2 (en) 2017-11-17 2020-07-14 Shockwave Medical, Inc. Low profile electrodes for a shock wave catheter
WO2019245746A1 (en) 2018-06-21 2019-12-26 Shockwave Medical, Inc. System for treating occlusions in body lumens
CN114727828A (en) 2019-09-24 2022-07-08 冲击波医疗公司 System for treating thrombus in body cavity
US11992232B2 (en) 2020-10-27 2024-05-28 Shockwave Medical, Inc. System for treating thrombus in body lumens

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2559227A (en) * 1947-05-24 1951-07-03 Interval Instr Inc Shock wave generator
US3286226A (en) * 1965-01-18 1966-11-15 Edgerton Germeshausen & Grier Underwater spark discharge sound-producing system
US3347336A (en) * 1965-06-29 1967-10-17 Shell Oil Co Seismic wave generator
US3416128A (en) * 1966-10-14 1968-12-10 Gen Electric Electrode for electrohydraulic systems
US3566648A (en) * 1968-09-25 1971-03-02 Continental Can Co Pulsed liquid wire-electrohydraulic system
AT309663B (en) * 1971-05-14 1973-08-27 Phil Heinz Schmidt Kloiber Dr Device for destroying stones in the bladder, ureter, kidney and the like. like
DE2635635C3 (en) * 1976-08-07 1979-05-31 Dornier System Gmbh, 7990 Friedrichshafen Spark gap for generating shock waves for the contact-free destruction of calculus in the bodies of living beings
DE3622352C1 (en) * 1986-07-03 1987-12-03 Dornier System Gmbh Spark gap with electrode tips of different geometries

Also Published As

Publication number Publication date
ES2034954T3 (en) 1993-04-16
JPS62144647A (en) 1987-06-27
EP0226047A3 (en) 1988-09-14
US4809682A (en) 1989-03-07
EP0226047B1 (en) 1992-08-26
DE3543881C1 (en) 1987-03-26
EP0226047A2 (en) 1987-06-24

Similar Documents

Publication Publication Date Title
JPH0584168B2 (en)
US5195508A (en) Spark gap unit for lithotripsy
JPH0338850B2 (en)
JPS6319139A (en) Spark gap
JPH0832265B2 (en) Shock wave source device
CA1109955A (en) Method and means for reducing the resonant frequency of a piezoelectric transducer
EP0397959A3 (en) Annular array sensors
US4228532A (en) Piezoelectric transducer
JP2005339981A (en) Spark plug
US20020145371A1 (en) Spark plug with simultaneously multi-firing cap
KR100236492B1 (en) Piezo-electric motor intended for a timepiece
US3486062A (en) Electrohydraulic shock-wave generating apparatus with directing and shaping means
GB2110901A (en) Electronstatic transducer
JPH0459898B2 (en)
RU2009105396A (en) IGNITION CANDLE, FIRST FOR WORK IN THE CONDITIONS OF HIGH PRESSURE IN THE COMBUSTION CHAMBER
US1253265A (en) Brush for electrical apparatus.
JP2004207219A (en) Spark plug
RU2715609C2 (en) Electrode of spark plug with welded seam of deep penetration, as well as spark plug with such electrode and method of its manufacturing
SU642779A1 (en) Electric contact
US1929203A (en) Shielded spark plug
US1174157A (en) Electric sparking device.
CN209826876U (en) Electromagnetic head and electromagnetic shock wave generating source
JPH09260025A (en) Multipolar spark plug and manufacture therefor
JP7392563B2 (en) Spark plug for internal combustion engine
JPS5840513Y2 (en) Vacuum fuse electrode structure